

The revision list summarizes the locations of revisions and additions. Details should always be checked by referring to the relevant text.

H8S/2113 Group

User's Manual: Hardware

Renesas 16-Bit Single-Chip Microcomputer H8S Family / H8S/2100 Series

H8S/2113 R4F2113

All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Electronics Corp. without notice. Please review the latest information published by Renesas Electronics Corp. through various means, including the Renesas Electronics Corp. website (http://www.renesas.com).

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
 does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
 incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions may occur due to the false recognition of the pin state as an input signal. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

— The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

 The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

— When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.

How to Use This Manual

1. Purpose and Target Readers

This manual is designed to provide the user with an understanding of the hardware functions and electrical characteristics of the MCU. It is intended for users designing application systems incorporating the MCU. A basic knowledge of electric circuits, logical circuits, and MCUs is necessary in order to use this manual.

The manual comprises an overview of the product; descriptions of the CPU, system control functions, peripheral functions, and electrical characteristics; and usage notes.

Particular attention should be paid to the precautionary notes when using the manual. These notes occur within the body of the text, at the end of each section, and in the Usage Notes section.

The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer to the text of the manual for details.

The following documents apply to the H8S/2113 Group. Make sure to refer to the latest versions of these documents. The newest versions of the documents listed may be obtained from the Renesas Electronics Web site.

Document Type	Contents	Document Title	Document No.
Data Sheet	Hardware overview and electrical characteristics	_	_
User's manual for Hardware	Hardware specifications (pin assignments, memory maps, peripheral function specifications, electrical characteristics, timing charts) and operation description	H8S/2113 Group User's manual for Hardware	This User's manual
User's manual for	Note: Refer to the application notes for details on using peripheral functions.	H8S/2600 Series	REJ09B0139
Software		H8S/2000 Series Software Manual	
Application Note	Description of CPU instruction set	Available from Renesas Web site.	Electronics
Renesas Technical Update	Information on using peripheral functions and application examples		

2. Description of Numbers and Symbols

Aspects of the notations for register names, bit names, numbers, and symbolic names in this manual are explained below.

(1) Overall notation

In descriptions involving the names of bits and bit fields within this manual, the modules and registers to which the bits belong may be clarified by giving the names in the forms "module name". "register name". "bit name" or "register name". "bit name".

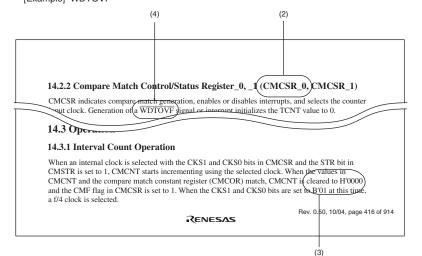
(2) Register notation

The style "register name"_"instance number" is used in cases where there is more than one instance of the same function or similar functions.

[Example] CMCSR_0: Indicates the CMCSR register for the compare-match timer of channel 0.

(3) Number notation

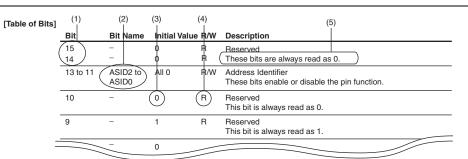
Binary numbers are given as B'nnnn (B' may be omitted if the number is obviously binary), hexadecimal numbers are given as H'nnnn or 0xnnnn, and decimal numbers are given as nnnn.


[Examples] Binary: B'11 or 11

Hexadecimal: H'EFA0 or 0xEFA0

Decimal: 1234

(4) Notation for active-low


An overbar on the name indicates that a signal or pin is active-low. [Example] WDTOVF

Note: The bit names and sentences in the above figure are examples and have nothing to do with the contents of this manual.

3. Description of Registers

Each register description includes a bit chart, illustrating the arrangement of bits, and a table of bits, describing the meanings of the bit settings. The standard format and notation for bit charts and tables are described below.

Note: The bit names and sentences in the above figure are examples, and have nothing to do with the contents of this manual.

(1) Bit

Indicates the bit number or numbers.

In the case of a 32-bit register, the bits are arranged in order from 31 to 0. In the case of a 16-bit register, the bits are arranged in order from 15 to 0.

(2) Bit name

Indicates the name of the bit or bit field.

When the number of bits has to be clearly indicated in the field, appropriate notation is included (e.g., ASID[3:0]).

A reserved bit is indicated by "-".

Certain kinds of bits, such as those of timer counters, are not assigned bit names. In such cases, the entry under Bit Name is blank.

(3) Initial value

Indicates the value of each bit immediately after a power-on reset, i.e., the initial value.

0: The initial value is 0

1: The initial value is 1

-: The initial value is undefined

(4) R/W

For each bit and bit field, this entry indicates whether the bit or field is readable or writable, or both writing to and reading from the bit or field are impossible.

The notation is as follows:

R/W: The bit or field is readable and writable.

R/(W): The bit or field is readable and writable.

However, writing is only performed to flag clearing.

R: The bit or field is readable.

"R" is indicated for all reserved bits. When writing to the register, write the value under Initial Value in the bit chart to reserved bits or fields.

W: The bit or field is writable.

(5) Description

Describes the function of the bit or field and specifies the values for writing.

4. Description of Abbreviations

The abbreviations used in this manual are listed below.

• Abbreviations specific to this product

Abbreviation	Description
BSC	Bus controller
CPG	Clock pulse generator
INT	Interrupt controller
SCI	Serial communication interface
TMR	8-bit timer
TPU	16-bit timer pulse unit
WDT	Watchdog timer

• Abbreviations other than those listed above

Abbreviation	Description
ACIA	Asynchronous communications interface adapter
bps	Bits per second
CRC	Cyclic redundancy check
DMA	Direct memory access
DMAC	Direct memory access controller
GSM	Global System for Mobile Communications
Hi-Z	High impedance
IEBus	_
I/O	Input/output
IrDA	Infrared Data Association
LSB	Least significant bit
MSB	Most significant bit
NC	No connection
PLL	Phase-locked loop
PWM	Pulse width modulation
SFR	Special function register
SIM	Subscriber Identity Module
UART	Universal asynchronous receiver/transmitter
VCO	Voltage-controlled oscillator

All trademarks and registered trademarks are the property of their respective owners.

Contents

Secti	on 1	Overview	1
1.1	Featur	es	1
	1.1.1	Applications	1
	1.1.2	Overview of Functions	2
1.2	List o	f Products	8
1.3	Block	Diagram	9
1.4	Pin D	escriptions	10
	1.4.1	Pin Assignments	10
	1.4.2	Pin Assignment in Each Operating Mode	13
	1.4.3	Pin Functions	20
Secti	on 2	CPU	.31
2.1	Featur	es	31
	2.1.1	Differences between H8S/2600 CPU and H8S/2000 CPU	32
2.2	CPU (Operating Modes	33
2.3	Addre	ss Space	35
2.4	Regist	ers	36
	2.4.1	General Registers	37
	2.4.2	Program Counter (PC)	38
	2.4.3	Extended Control Register (EXR)	38
	2.4.4	Condition-Code Register (CCR)	39
	2.4.5	Initial Values of CPU Registers	40
2.5	Data I	Formats	41
	2.5.1	General Register Data Formats	41
	2.5.2	Memory Data Formats	43
2.6	Instru	ction Set	44
	2.6.1	Table of Instructions Classified by Function	45
	2.6.2	Basic Instruction Formats	55
2.7	Addre	ssing Modes and Effective Address Calculation	56
	2.7.1	Register Direct—Rn	56
	2.7.2	Register Indirect—@ERn	56
	2.7.3	Register Indirect with Displacement—@(d:16, ERn) or @(d:32, ERn)	57
	2.7.4	Register Indirect with Post-Increment or Pre-Decrement—@ERn+ or @-ERn	57
	2.7.5	Absolute Address—@aa:8, @aa:16, @aa:24, or @aa:32	57
	2.7.6	Immediate—#xx:8, #xx:16, or #xx:32	58
	2.7.7	Program-Counter Relative—@(d:8, PC) or @(d:16, PC)	58

	2.7.8 Memory Indirect—@@aa:8	59
	2.7.9 Effective Address Calculation	60
2.8	Processing States	62
2.9	Usage Note	64
	2.9.1 TAS Instruction	64
	2.9.2 STM/LDM Instruction	64
	2.9.3 Notes on Using the Bit Operation Instruction	64
	2.9.4 EEPMOV Instruction	65
Sect	ction 3 MCU Operating Modes	67
3.1	Operating Mode Selection	
3.2	Register Descriptions	68
	3.2.1 Mode Control Register (MDCR)	68
	3.2.2 System Control Register (SYSCR)	69
	3.2.3 Serial/Timer Control Register (STCR)	71
3.3	Operating Mode Descriptions	72
	3.3.1 Mode 2	72
3.4	Address Map	72
Sect	ction 4 Resets	73
4.1	Types of Resets	73
4.2	Input/Output Pins	75
4.3	Register Descriptions	75
	4.3.1 Reset Source Flag Register (RSTFR)	76
	4.3.2 System Control Register (SYSCR)	77
4.4	Pin Reset	79
4.5	Power-on Reset/Low-voltage Detection Reset 0	79
4.6	Low-voltage Detection Reset 1	81
4.7	Watchdog Timer Reset	81
4.8	Determination of Reset Generation Source	82
Sect	ction 5 Low-Voltage Detection Circuits (LVD)	83
5.1	Features	83
5.2	Register Descriptions	85
	5.2.1 Low-Voltage Detection Circuit Control Protect Regist	er (VDCPR)86
	5.2.2 Low-Voltage Detection Circuit 1 Control Register H (LD1CRH) 87
	5.2.3 Low-Voltage Detection Circuit 1 Control Register L (LD1CRL) 89
	5.2.4 Low-Voltage Detection Circuit 0 Control Register H (LD0CRH) 90
	5.2.5 Low-Voltage Detection Circuit 0 Control Register L (
5 3	Operation	92

	5.3.1	Power-On Reset Function	92	
	5.3.2	Low-Voltage Detection Circuit	93	
Sec	tion 6	Exception Handling	99	
6.1		tion Handling Types and Priority		
6.2	_	otion Sources and Exception Vector Table		
6.3	_			
	6.3.1	Reset Exception Handling	. 102	
	6.3.2	Interrupts Immediately after Reset	. 103	
	6.3.3	On-Chip Peripheral Modules after Reset Is Cancelled	. 103	
6.4	Interr	upt Exception Handling	. 104	
6.5	Trap l	Instruction Exception Handling	. 104	
6.6	Stack	Status after Exception Handling	. 105	
6.7	Usage	Note	. 106	
Sec		Interrupt Controller		
7.1		res		
7.2		Input/Output Pins		
7.3	Regis	ter Descriptions		
	7.3.1	Interrupt Control Registers A to D (ICRA to ICRD)		
	7.3.2	Address Break Control Register (ABRKCR)		
	7.3.3	Break Address Registers A to C (BARA to BARC)		
	7.3.4	IRQ Sense Control Registers (ISCR16H, ISCR16L, ISCRH, ISCRL)		
	7.3.5	IRQ Enable Registers (IER16, IER)		
	7.3.6	IRQ Status Registers (ISR16, ISR)	. 119	
	7.3.7	IRQ Sense Port Select Registers 16 (ISSR16) IRQ Sense Port Select Registers (ISSR)	. 121	
	7.3.8	Keyboard Matrix Interrupt Mask Registers (KMIMRA, KMIMRB)		
		Wake-up Event Interrupt Mask Registers (WUEMRA, WUEMRB)	. 122	
	7.3.9	Wake-Up Sense Control Register (WUESCRA, WUESCRB) Wake-Up Input		
		Interrupt Status Register (WUESRA, WUESRB)		
		Wake-Up Enable Register (WUEER)	. 125	
7.4	Interr	upt Sources	. 128	
	7.4.1	External Interrupt Sources	. 128	
	7.4.2	Internal Interrupt Sources	. 130	
7.5	Interr	upt Exception Handling Vector Tables	. 131	
7.6	Interr	upt Control Modes and Interrupt Operation	. 136	
	7.6.1	Interrupt Control Mode 0		
	7.6.2	Interrupt Control Mode 1		
	7.6.3	Interrupt Exception Handling Sequence	. 143	

	7.6.4	Interrupt Response Times	144
7.7	Addres	s Breaks	145
	7.7.1	Features	145
	7.7.2	Block Diagram	145
	7.7.3	Operation	146
	7.7.4	Usage Notes	146
7.8	Usage 1	Notes	148
	7.8.1	Conflict between Interrupt Generation and Disabling	148
	7.8.2	Instructions for Disabling Interrupts	149
	7.8.3	Interrupts during Execution of EEPMOV Instruction	149
	7.8.4	External Interrupt Pin in Software Standby Mode and Watch Mode	149
	7.8.5	Noise Canceler Switching	149
	7.8.6	IRQ Status Register (ISR)	150
Sect	tion 8	Bus Controller (BSC)	151
8.1	Registe	er Descriptions	151
	8.1.1	Bus Control Register (BCR)	
	8.1.2	Wait State Control Register (WSCR)	152
Sect	tion 9	I/O Ports	153
9.1	Registe	er Descriptions	160
	9.1.1	Data Direction Register (PnDDR) (n = 1 to 6, 8, 9, A to J)	161
	9.1.2	Data Register (PnODR) (n = 1 to 6, 8, 9, A to J)	161
	9.1.3	Input Data Register (PnPIN) (n = 1 to 9 and A to J)	162
	9.1.4	Pull-Up MOS Control Register (PnPCR) (n = 1 to 6, 8, 9, B to F, and H)	162
	9.1.5	Noise Canceler Enable Register (PnNCE) (n = 4, 6, C, and G)	163
	9.1.6	Noise Canceler Decision Control Register (PnNCMC) (n = 4, 6, C, and G)	163
	9.1.7	Noise Cancel Cycle Setting Register (PnNCCS) (n = 4, 6, C, and G)	164
	9.1.8	Port Nch-OD Control Register (PnNOCR) (n = A and C to J)	165
9.2	Pin Fu	nctions	166
	9.2.1	Port 1	166
	9.2.2	Port 2	166
	9.2.3	Port 3	167
	9.2.4	Port 4	168
	9.2.5	Port 5	171
	9.2.6	Port 6	172
	9.2.7	Port 7	172
	9.2.8	Port 8	173
	9.2.9	Port 9	176
	9.2.10	Port A	

	9.2.11	Port B	180
	9.2.12	Port C	183
	9.2.13	Port D	187
	9.2.14	Port E	190
	9.2.15	Port F	191
	9.2.16	Port G	195
	9.2.17	Port H	199
	9.2.18	Port I	200
	9.2.19	Port J	200
9.3	Change	e of Peripheral Function Pins	201
	9.3.1	Port Control Register 0 (PTCNT0)	201
	9.3.2	Port Control Register 1 (PTCNT1)	202
	9.3.3	Port Control Register 2 (PTCNT2)	203
Sect	ion 10	8-Bit PWM Timer (PWMU)	205
10.1	Feature	28	205
10.2	Input/C	Output Pins	207
10.3	Registe	er Descriptions	208
	10.3.1	PWM Clock Control Register (PWMCKCR)	210
	10.3.2	PWM Output Control Register (PWMOUTCR)	210
	10.3.3	PWM Mode Control Register (PWMMDCR)	213
	10.3.4	PWM Phase Control Register (PWMPCR)	214
	10.3.5	PWM Prescaler Latch Register (PRELAT)	215
	10.3.6	PWM Duty Setting Latch Register (REGLAT)	216
	10.3.7	PWM Prescaler Registers 0 to 5 (PWMPRE0 to PWMPRE5)	217
	10.3.8	PWM Duty Setting Registers 0 to 5 (PWMREG0 to PWMREG5)	220
10.4	Operati	ion	222
	10.4.1	Single-Pulse Mode (8 Bits, 12 Bits, and 16 Bits)	222
	10.4.2	Pulse Division Mode	226
10.5	Usage 1	Note	229
	10.5.1	Setting Module Stop Mode	229
	10.5.2	Note on Using 16-Bit/12-Bit Single-Pulse PWM Timer	229
Sect	ion 11	16-Bit Timer Pulse Unit (TPU)	231
11.1	Feature	28	231
11.2	Input/C	Output Pins	235
11.3	Registe	er Descriptions	236
	11.3.1	Timer Control Register (TCR)	237
	11.3.2	Timer Mode Register (TMDR)	241
	11.3.3	Timer I/O Control Register (TIOR)	243

	11.3.4	Timer Interrupt Enable Register (TIER)	252
		Timer Status Register (TSR)	
	11.3.6	Timer Counter (TCNT)	257
	11.3.7	Timer General Register (TGR)	257
		Timer Start Register (TSTR)	
		Timer Synchro Register (TSYR)	
11.4	Interfa	ce to Bus Master	259
	11.4.1	16-Bit Registers	
	11.4.2	8-Bit Registers	259
11.5		ion	
	11.5.1	Basic Functions.	261
	11.5.2	Synchronous Operation	267
	11.5.3	Buffer Operation	269
	11.5.4	PWM Modes	273
	11.5.5	Phase Counting Mode	277
11.6	Interru	pts	282
	11.6.1	Interrupt Source and Priority	282
	11.6.2	A/D Converter Activation	283
11.7	Operat	ion Timing	284
	11.7.1	Input/Output Timing	284
	11.7.2	Interrupt Signal Timing	288
11.8	Usage	Notes	291
	11.8.1	Input Clock Restrictions	291
	11.8.2	Caution on Period Setting	291
	11.8.3	Conflict between TCNT Write and Clear Operations	292
	11.8.4	Conflict between TCNT Write and Increment Operations	292
	11.8.5	Conflict between TGR Write and Compare Match	293
		Conflict between Buffer Register Write and Compare Match	
	11.8.7	Conflict between TGR Read and Input Capture	294
	11.8.8	Conflict between TGR Write and Input Capture	294
		Conflict between Buffer Register Write and Input Capture	
	11.8.10	Conflict between Overflow/Underflow and Counter Clearing	296
	11.8.11	Conflict between TCNT Write and Overflow/Underflow	296
	11.8.12	2 Multiplexing of I/O Pins	297
	11.8.13	3 Module Stop Mode Setting	297
Sect	ion 12	8-Bit Timer (TMR)	299
12.1		es	
12.2		Output Pins	
12.3	_	ar Descriptions	

	12.3.1	Timer Counter (TCNT)	305
	12.3.2	Time Constant Register A (TCORA)	305
	12.3.3	Time Constant Register B (TCORB)	305
	12.3.4	Timer Control Register (TCR)	306
	12.3.5	Timer Clock Selector Register (TCKR_0, TCKR_1)	307
	12.3.6	Timer Control/Status Register (TCSR)	312
	12.3.7	Input Capture Registers R and F (TICRR and TICRF)	317
	12.3.8	Timer Connection Register I (TCONRI)	318
	12.3.9	Timer XY Control Register (TCRXY)	319
12.4	Operat	ion	320
	12.4.1	Pulse Output	320
12.5	Operat	ion Timing	321
	12.5.1	TCNT Count Timing	321
	12.5.2	Timing of CMFA and CMFB Setting at Compare-Match	322
	12.5.3	Timing of Timer Output at Compare-Match	322
	12.5.4	Timing of Counter Clear at Compare-Match	323
	12.5.5	TCNT External Reset Timing	323
	12.5.6	Timing of Overflow Flag (OVF) Setting	324
12.6	TMR_0	0 and TMR_1 Cascaded Connection	325
		16-Bit Count Mode	
	12.6.2	Compare-Match Count Mode	325
12.7	TMR_	Y and TMR_X Cascaded Connection	326
	12.7.1	16-Bit Count Mode	326
	12.7.2	Compare-Match Count Mode	326
	12.7.3	Input Capture Operation	327
12.8	Interru	pt Sources	329
12.9	Usage	Notes	330
	12.9.1	Conflict between TCNT Write and Counter Clear	330
	12.9.2	Conflict between TCNT Write and Count-Up	330
	12.9.3	Conflict between TCOR Write and Compare-Match	331
	12.9.4	Conflict between Compare-Matches A and B	331
	12.9.5	Switching of Internal Clocks and TCNT Operation	332
	12.9.6	Mode Setting with Cascaded Connection	334
	12.9.7	Module Stop Mode Setting	334
Secti	ion 13	16-Bit Cycle Measurement Timer (TCM)	335
13.1	Feature	es	
13.2	Input/C	Output Pins	337
13.3	Registe	er Descriptions	338
	13.3.1	TCM Timer Counter (TCMCNT)	339

	13.3.2	TCM Cycle Upper Limit Register (TCMMLCM)	339
		TCM Cycle Lower Limit Register (TCMMINCM)	
		TCM Input Capture Register (TCMICR)	
	13.3.5	TCM Input Capture Buffer Register (TCMICRF)	340
	13.3.6	TCM Status Register (TCMCSR)	341
	13.3.7	TCM Control Register (TCMCR)	343
	13.3.8	TCM Interrupt Enable Register (TCMIER)	345
13.4	Operat	ion	347
	13.4.1	Timer Mode	347
	13.4.2	Cycle Measurement Mode	349
13.5	Interru	pt Sources	354
13.6	Usage	Notes	355
	13.6.1	Conflict between TCMCNT Write and Count-Up Operation	355
	13.6.2	Conflict between TCMMLCM Write and Compare Match	355
	13.6.3	Conflict between TCMICR Read and Input Capture	356
	13.6.4	Conflict between Edge Detection in Cycle Measurement Mode and	
		Writing to TCMMLCM or TCMMINCM	356
	13.6.5	Conflict between Edge Detection in Cycle Measurement Mode and Clearing of	of
		TCMMDS Bit in TCMCR	357
	13.6.6	Settings of TCMCKI and TCMMCI	357
	13.6.7	Setting for Module Stop Mode	357
Sect	ion 14	Watchdog Timer (WDT)	359
14.1	Feature	28	359
14.2	Input/C	Output Pins	361
14.3	Registe	er Descriptions	361
	14.3.1	Timer Counter (TCNT)	362
	14.3.2	Timer Control/Status Register (TCSR)	362
	14.3.3	Timer Clock Extended Selector (TCSRE)	366
14.4	Operat	ion	368
	14.4.1	Watchdog Timer Mode	368
	14.4.2	Interval Timer Mode	370
14.5	Interru	pt Sources	371
14.6	Usage	Notes	372
	14.6.1	Notes on Register Access	372
	14.6.2	Contention between Timer Counter (TCNT) Writing and Incrementation	373
	14.6.3	Changing Values of CKS2 to CKS0 Bits in TCSR or CKS3 to CKS0 Bits in	
		TCSRE	373
	14.6.4	Changing Value of PSS Bit	373
	14.6.5	Switching between Watchdog Timer Mode and Interval Timer Mode	373

	14.6.6	Accessing WDT_1 Registers On Release from Watch Mode or	
		Software Standby Mode	373
Sect	ion 15	Serial Communication Interface (SCI)	375
15.1		es	
15.2		Output Pins	
15.3	Registe	er Descriptions	377
	15.3.1	Receive Shift Register (RSR)	378
	15.3.2	Receive Data Register (RDR)	378
	15.3.3	Transmit Data Register (TDR)	378
	15.3.4	Transmit Shift Register (TSR)	378
	15.3.5	Serial Mode Register (SMR)	379
	15.3.6	Serial Control Register (SCR)	383
	15.3.7	Serial Status Register (SSR)	387
	15.3.8	Smart Card Mode Register (SCMR)	394
	15.3.9	Bit Rate Register (BRR)	396
	15.3.10	Serial Extended Mode Register (SEMR)	402
15.4	Operat	ion in Asynchronous Mode	403
	15.4.1	Data Transfer Format	404
	15.4.2	Receive Data Sampling Timing and Reception Margin in	
		Asynchronous Mode	405
	15.4.3	Clock	406
	15.4.4	Double-Speed Operation	406
	15.4.5	SCI Initialization (Asynchronous Mode)	407
	15.4.6	Serial Data Transmission (Asynchronous Mode)	408
	15.4.7	Serial Data Reception (Asynchronous Mode)	410
15.5	Multip	rocessor Communication Function	414
	15.5.1	Multiprocessor Serial Data Transmission	416
	15.5.2	Multiprocessor Serial Data Reception	417
15.6	Operat	ion in Clocked Synchronous Mode	420
	15.6.1	Clock	420
	15.6.2	SCI Initialization (Clocked Synchronous Mode)	421
	15.6.3	Serial Data Transmission (Clocked Synchronous Mode)	422
	15.6.4	Serial Data Reception (Clocked Synchronous Mode)	424
	15.6.5	Simultaneous Serial Data Transmission and Reception	
		(Clocked Synchronous Mode)	426
15.7	Smart (Card Interface Description	428
	15.7.1	Sample Connection	428
	15.7.2	Data Format (Except in Block Transfer Mode)	429
	1573	Rlock Transfer Mode	430

	15.7.4	Receive Data Sampling Timing and Reception Margin	431
	15.7.5	Initialization	432
	15.7.6	Serial Data Transmission (Except in Block Transfer Mode)	433
	15.7.7	Serial Data Reception (Except in Block Transfer Mode)	436
	15.7.8	Clock Output Control	438
15.8	Interruj	pt Sources	440
	15.8.1	Interrupts in Normal Serial Communication Interface Mode	440
	15.8.2	Interrupts in Smart Card Interface Mode	441
15.9	Usage 1	Notes	442
	15.9.1	Module Stop Mode Setting	442
	15.9.2	Break Detection and Processing	442
	15.9.3	Mark State and Break Sending	442
	15.9.4	Receive Error Flags and Transmit Operations	
		(Clocked Synchronous Mode Only)	442
	15.9.5	Relation between Writing to TDR and TDRE Flag	442
	15.9.6	Operation When Entering Power-Down Modes	443
	15.9.7	Note on Writing to Registers in Transmission, Reception, and Simultaneous	
		Transmission and Reception	446
Secti	ion 16	Serial Communication Interface with FIFO (SCIF)	447
16.1		es	
16.2		Output Pins	
16.3		er Descriptions	
	_	Receive Shift Register (FRSR)	
		Receive Buffer Register (FRBR)	
		Transmitter Shift Register (FTSR)	
		Transmitter Holding Register (FTHR)	
		Divisor Latch H, L (FDLH, FDLL)	
		Interrupt Enable Register (FIER)	
		Interrupt Identification Register (FIIR)	
		FIFO Control Register (FFCR)	
		Line Control Register (FLCR)	
		Modem Control Register (FMCR)	
		Line Status Register (FLSR)	
		Modem Status Register (FMSR)	
	16.3.13	Scratch Pad Register (FSCR)	465
		SCIF Control Register (SCIFCR)	
16.4		ion	
	16.4.1	Baud Rate	468
	16.4.2	Operation in Asynchronous Communication	469

	16.4.3	Initialization of the SCIF	470
	16.4.4	Data Transmission/Reception with Flow Control	473
	16.4.5	Data Transmission/Reception Through the LPC Interface	479
16.5	Interru	pt Sources	482
16.6	Usage	Note	483
	16.6.1	Power-Down Mode When LCLK Is Selected for SCLK	483
	16.6.2	Conflict between Character Timeout and Clearing the DR Bit in FLSR	483
Sect	ion 17	I ² C Bus Interface (IIC)	485
17.1	Feature	es	485
17.2	Input/C	Output Pins	489
17.3	Registe	er Descriptions	490
	17.3.1	I ² C Bus Data Register (ICDR)	492
		Slave Address Register (SAR)	
		Second Slave Address Register (SARX)	
		I ² C Bus Clock Selector Register (ICCKR)	
		I ² C Bus Mode Register (ICMR)	
		I ² C Bus Control Register (ICCR)	
		I ² C Bus Status Register (ICSR)	
		I ² C Bus Control Initialization Register (ICRES)	
		I ² C Bus Extended Control Register (ICXR)	
17.4	-	ion	
		I ² C Bus Data Format	
		Initialization	
		Master Transmit Operation	
		Master Receive Operation	
	17.4.5	1	
	17.4.6	- · · · · · · · · · · · · · · · · · · ·	
		IRIC Setting Timing and SCL Control	
		Noise Canceler	
		Initialization of Internal State	
17.5		pt Sources	
17.6	_	Notes	
	17.6.1	Module Stop Mode Setting	544
	ion 18	SMBus 2.0 Interface (SMBUS)	
18.1		es	
18.2	-	Output Pins	
18.3	_	er Descriptions	
	18.3.1	PEC Calculation Data Entry Register (PECX)	546

	18.3.2	PEC Calculation Data Re-entry Register (PECY)	547		
		PEC Calculation Result Output Register (PECZ)			
18.4	Operat	ion	548		
	18.4.1	SMBus 2.0 Data Format	548		
	18.4.2	Usage of PEC Calculation Module	550		
18.5		Notes			
	18.5.1	Module Stop Mode Setting	551		
Sect	ion 19	Keyboard Buffer Control Unit (PS2)	553		
19.1	Feature	es	553		
19.2	Input/C	Output Pins	555		
19.3	Registe	er Descriptions	556		
	19.3.1	Keyboard Control Register 1 (KBCR1)	557		
	19.3.2	Keyboard Buffer Control Register 2 (KBCR2)	559		
	19.3.3	Keyboard Control Register H (KBCRH)	560		
	19.3.4	Keyboard Control Register L (KBCRL)	562		
	19.3.5	Keyboard Data Buffer Register (KBBR)	564		
	19.3.6	Keyboard Buffer Transmit Data Register (KBTR)	564		
19.4	Operat	ion	565		
	19.4.1	Receive Operation			
		Transmit Operation			
		Receive Abort			
		KBF Setting Timing and KCLK Control			
		Operation during Data Reception			
		KCLK Fall Interrupt Operation			
		First KCLK Falling Interrupt			
	19.4.8	Noise canceling circuit	577		
19.5	Usage	Notes			
	19.5.1	KBIOE Setting and KCLK Falling Edge Detection			
		KD Output by KDO bit (KBCRL) and by Automatic Transmission			
		Module Stop Mode Setting			
	19.5.4	Medium-Speed Mode			
	19.5.5	Transmit Completion Flag (KBTE)	579		
Sect		LPC Interface (LPC)			
20.1		es			
20.2	-	nput/Output Pins58			
20.3	_	er Descriptions			
		Host Interface Control Registers 0 and 1 (HICR0 and HICR1)			
	20.3.2	Host Interface Control Registers 2 and 3 (HICR2 and HICR3)	595		

	20.3.3	Host Interface Control Register 4 (HICR4)	598
	20.3.4	Host Interface Control Register 5 (HICR5)	600
	20.3.5	Host Interface Control Register 6 (HICR6)	601
	20.3.6	LPC Channel 1 Address Registers H and L (LADR1H and LADR1L)	602
	20.3.7	LPC Channel 2 Address Registers H and L (LADR2H and LADR2L)	603
	20.3.8	LPC Channel 3 Address Registers H and L (LADR3H and LADR3L)	605
	20.3.9	LPC Channel 4 Address Registers H and L (LADR4H and LADR4L)	607
	20.3.10	LPC Channel A Address Registers H and L (LADRAH and LADRAL)	609
	20.3.11	Input Data Registers 1 to 4 and A (IDR1 to IDR4 and IDRA)	610
		2 Output Data Registers 1 to 4 and A (ODR1 to ODR4 and ODRA)	
	20.3.13	B Bidirectional Data Registers 0 to 15 (TWR0 to TWR15)	611
	20.3.14	4 CH4 Bidirectional Data Registers 0 to 31 (TWDR0 to TWDR31)	612
	20.3.15	5 Status Registers 1 to 4 and A (STR1 to STR4 and STRA)	612
		5 SERIRQ Control Register 0 (SIRQCR0)	
	20.3.17	7 SERIRQ Control Register 1 (SIRQCR1)	626
		S SERIRQ Control Register 2 (SIRQCR2)	
	20.3.19	SERIRQ Control Register 3 (SIRQCR3)	634
	20.3.20	SERIRQ Control Register 4 (SIRQCR4)	635
		SERIRQ Control Register 5 (SIRQCR5)	
	20.3.22	2 SCIF Address Register (SCIFADRH, SCIFADRL)	638
	20.3.23	B Host Interface Select Register (HISEL)	639
	20.3.24	Clock Run Control Register (CKRCR)	640
20.4		ion	
	20.4.1	LPC interface Activation	641
	20.4.2	LPC I/O Cycles	642
		Gate A20	
		LPC Interface Shutdown Function (LPCPD)	
	20.4.5	LPC Interface Serialized Interrupt Operation (SERIRQ)	652
		LPC Interface Clock Start Request	
		SCIF Control from LPC Interface	
20.5		pt Sources	
	20.5.1	IBFI1, IBFI2, IBFI3, IBFI4, IBFIA, OBEI, and ERRI	655
	20.5.2		
		HIRQ10, HIRQ11, HIRQ12, HIRQ13, HIRQ14, and HIRQ15	656
20.6	Usage	Note	660
	20.6.1	Data Conflict	660
Sect	ion 21	FSI Interface	665
21.1	Feature	es	665
21.2	Input/C	Output Pins	667

21.3	Register Description	668
	21.3.1 FSI Control Register 1 (FSICR1)	670
	21.3.2 FSI Control Register 2 (FSICR2)	671
	21.3.3 FSI Byte Count Register (FSIBNR)	673
	21.3.4 FSI Instruction Register (FSIINS)	674
	21.3.5 FSI Read Instruction Register (FSIRDINS)	675
	21.3.6 FSI Program Instruction Register (FSIPPINS)	675
	21.3.7 WRSR Instruction Register (WRSRINS)	675
	21.3.8 RDSR Instruction Register (RDSRINS)	676
	21.3.9 FSI Status Register (FSISTR)	
	21.3.10 FSI Transmit Data Registers 0 to 7 (FSITDR0 to FSITDR7)	677
	21.3.11 FSI Receive Data Register (FSIRDR)	678
	21.3.12 FSI Access Host Base Address Registers H and L	
	(FSIHBARH and FSIHBARL)	
	21.3.13 FSI Flash Memory Size Register (FSISR)	679
	21.3.14 FSI Command Host Base Address Registers H and L	
	(CMDHBARH and CMDHBARL)	679
	21.3.15 FSI Command Register (FSICMDR)	
	21.3.16 FSI LPC Command Status Register 1 (FSILSTR1)	
	21.3.17 FSI LPC Command Status Register 2 (FSILSTR2)	
	21.3.18 FSI General-Purpose Registers 1 to F (FSIGPR1 to FSIGPRF)	
	21.3.19 FSI LPC Control Register (SLCR)	
	21.3.20 FSI Address Registers H, M, and L (FSIARH, FSIARM, and FSIARL)	687
	21.3.21 FSI Write Data Registers HH, HL, LH, and LL	
	(FSIWDRHH, FSIWDRHL, FSIWDRLH, and FSIWDRLL)	
21.4	Operation	
	21.4.1 LPC/FW Memory Cycles	
	21.4.2 SPI Flash Memory Transfer	
	21.4.3 Flash Memory Instructions	
	21.4.4 FSI Memory Cycle (Direct Transfer between LPC and SPI)	
	21.4.5 FSI Memory Cycle (LPC-SPI Command Transfer)	
21.5	Reset Conditions	
21.6	Interrupt Sources	716
Sect	ion 22 Synchronous Serial Communication Unit (SSU)	
22.1	Features	
22.2	Input/Output Pins	
22.3	Register Descriptions	
	22.3.1 SS Control Register H (SSCRH)	
	22.3.2 SS Control Register L (SSCRL)	723

	22.3.3	SS Mode Register (SSMR)	724
	22.3.4	SS Enable Register (SSER)	725
	22.3.5	SS Status Register (SSSR)	726
	22.3.6	SS Control Register 2 (SSCR2)	729
	22.3.7	SS Transmit Data Registers 0 to 3 (SSTDR0 to SSTDR3)	731
	22.3.8	SS Receive Data Registers 0 to 3 (SSRDR0 to SSRDR3)	732
	22.3.9	SS Shift Register (SSTRSR)	732
22.4	Operat	ion	733
	22.4.1	Transfer Clock	733
	22.4.2	Relationship of Clock Phase, Polarity, and Data	733
	22.4.3	Relationship between Data Input/Output Pins and Shift Register	734
	22.4.4	Communication Modes and Pin Functions	735
	22.4.5	SSU Mode	737
	22.4.6	SCS Pin Control and Conflict Error	748
	22.4.7	Clock Synchronous Communication Mode	749
22.5	Interru	pt Requests	756
22.6	Usage	Note	757
	22.6.1	Setting of Module Stop Mode	757
Sect	ion 23	Platform Environment Control Interface (PECI)	759
23.1	Feature	es	759
23.2	Input/C	Output Pins	761
23.3	Registe	er Description	762
	23.3.1	PECI Control Register (PECR)	763
	23.3.2	PECI Status Register (PESTR)	765
	23.3.3	PECI Timing Count Pre-Register (PECNT0_PRE)	767
		PECI Timing Count General Register (PECNT0_GR)	
		PECI Timing Count Address General Register (PECNT0_GRA)	
	23.3.6	PECI Address Register (PEADD)	769
	23.3.7	PECI Write Byte Number Register (PEWBNR)	770
	23.3.8	PECI Read Byte Number Register (PERBNR)	770
	23.3.9	PECI Client Write Frame Check Sequence Register (PECWFCSR)	771
	23.3.10	PECI Client Read Frame Check Sequence Register (PECRFCSR)	771
		PECI First-In First-Out Register (PEFIFO)	
23.4	Operat	ion	772
	23.4.2	Configuring the PECI	773
		Commands	
	23.4.4	Abort	775
23.5		of Initialization by Various Resets	
	-	nt Sources	776

Sect	ion 24	A/D Converter	777		
24.1	Feature	atures			
24.2	.2 Input/Output Pins				
24.3	Registe	er Descriptions	780		
	24.3.1	A/D Data Registers A to H (ADDRA to ADDRH)	781		
	24.3.2	A/D Control/Status Register (ADCSR)	782		
	24.3.3	A/D Control Register (ADCR)	784		
24.4	Operat	ion	786		
	24.4.1	Single Mode	786		
	24.4.2	Scan Mode	788		
	24.4.3	Input Sampling and A/D Conversion Time	791		
24.5	Interru	pt Source	793		
24.6	A/D C	onversion Accuracy Definitions	794		
24.7	Usage	Notes	796		
	24.7.1	Module Stop Function Setting	796		
	24.7.2	A/D Input Hold Function in Software Standby Mode	796		
	24.7.3	Restarting the A/D Converter	796		
	24.7.4	Permissible Signal Source Impedance	797		
	24.7.5	Influences on Absolute Accuracy	797		
	24.7.6	Setting Range of Analog Power Supply and Other Pins	798		
	24.7.7	Notes on Board Design	798		
	24.7.8	Notes on Noise Countermeasures	799		
Sect	ion 25	Battery Backup RAM (BBR)	801		
25.1		es			
25.2	Register Descriptions				
	-	BBR Status Register (BBR0 to BBR63)			
		BBR Write Protection Register (BWPRT)			
25.3		ion			
25.4	_	Notes			
	25.4.1	Retaining BBR Registers by VBAT Power	804		
		Module Stop Mode Setting			
		Power Supply Setting			
Sect	ion 26	RAM	805		
Sect	ion 27	Flash Memory	807		
27.1		es			
27.2	Flash N	Memory Mat Configuration	810		
27.3	3 Block Structure 811				

27.4	Registe	er Descriptions	812		
	27.4.1	Flash Memory Control Register 1 (FLMCR1)	812		
	27.4.2	Flash Memory Data Block Protect Register (DFPR)	814		
	27.4.3	Flash Memory Status Register (FLMSTR)	815		
	27.4.4	Flash Mat Select Register (FMATS)	817		
27.5	Mode 7	Fransition Diagram	818		
27.6	On-Bo	ard Programming Mode	820		
	27.6.1	User Program Mode	820		
	27.6.2	EW0 Mode	822		
27.7	Softwa	re Commands	823		
	27.7.1	Read Array	825		
	27.7.2	Lock Bit Read Command	825		
	27.7.3	Clear Status Register	825		
	27.7.4	Program	826		
	27.7.5	Block Erase	828		
	27.7.6	Block Blank Check	829		
	27.7.7	Program Lock Bit	830		
	27.7.8	Sequencer Status (FMRDY Bit)	831		
	27.7.9	Erase Status (FMEBSF Bit)	831		
	27.7.10 Programming Status (FMPRSF Bit)				
27.8	Full Sta	atus Check	832		
27.9	Notes o	on User Program Mode	834		
	27.9.1	Prohibited Interrupts (EW0 Mode)	834		
	27.9.2	Access Method	834		
	27.9.3	Programming (EW0 Mode)	834		
	27.9.4	Writing Commands or Data	834		
	27.9.5	Software Standby Mode	834		
27.10	Boot N	lode	835		
	27.10.1	User Boot Mode	837		
27.11	Switch	ing between User Mat and User Boot Mat	842		
27.12	Protect	ion	843		
27.13	Softwa	re Protection	843		
27.14	Lock B	it Protection	843		
27.15	Program	mmer Mode	844		
		rd Serial Communication Interface Specifications for Boot Mode			
27.17	Usage	Notes	875		
Secti		Clock Pulse Generator			
28.1		tor			
	28.1.1	Connecting Crystal Resonator	878		

	28.1.2	External Clock Input Method	879	
28.2	Duty Correction Circuit			
28.3	Subclo	ck Input Circuit	882	
28.4	Clock Select Circuit			
28.5	Usage	Notes	884	
	28.5.1	Notes on Resonator	884	
	28.5.2	Notes on Board Design	884	
Sect	ion 29	Power-Down Modes	885	
29.1	Registe	er Descriptions	886	
	29.1.1	Standby Control Register (SBYCR)	886	
	29.1.2	Low-Power Control Register (LPWRCR)	888	
	29.1.3	Module Stop Control Registers H, L, A, and B		
		(MSTPCRH, MSTPCRL, MSTPCRA, MSTPCRB)	889	
29.2	Mode '	Transitions and LSI States	891	
29.3	Mediu	m-Speed Mode	893	
29.4	Sleep I	Mode	894	
29.5	_	re Standby Mode		
29.6	Watch	Mode	897	
29.7	Modul	e Stop Mode	898	
29.8	Usage	Notes	899	
	29.8.1	I/O Port Status	899	
	29.8.2	Current Consumption when Waiting for Oscillation Stabilization	899	
Sect	ion 30	List of Registers	901	
30.1		er Addresses (Address Order)		
30.2	Registe	er Bits	923	
30.3	Registe	er States in Each Operating Mode	944	
30.4	Registe	er Selection Condition	965	
30.5	Registe	er Addresses (Classification by Type of Module)	985	
Sect	ion 31	Electrical Characteristics	1005	
31.1	Absolu	te Maximum Ratings	1005	
31.2	DC Ch	aracteristics	1006	
31.3	AC Ch	aracteristics	1013	
	31.3.1	Clock Timing	1014	
	31.3.2	Control Signal Timing	1016	
		Timing of On-Chip Peripheral Modules		
31.4	A/D C	onversion Characteristics	1031	
31.5	Flash Memory Characteristics 1032			

31.6	Power-on Reset Characteristics	1034
	31.6.1 Power-on Reset/Low Voltage Detection Circuit 0 Characteristics	1034
	31.6.2 Low Voltage Detection Circuit 1 Characteristics	1036
31.7	Usage Notes	1038
App	endix	1039
	I/O Port States in Each Pin State	
B.		1040
C.	Package Dimensions	1041
D.	Treatment of Unused Pins	1044
Maiı	n Revisions and Additions in this Edition	1045
Inde	X	1049

Section 1 Overview

1.1 Features

The core of each product in the H8S/2113 Group of CISC (complex instruction set computer) microcomputers is an H8S/2000 CPU, which has an internal 16-bit architecture. The H8S/2000 CPU provides upward-compatibility with the CPUs of other Renesas original microcomputers: H8/300, H8/300H, and H8S.

As peripheral functions, each LSI of the group includes a serial communication interface with FIFO, an I²C bus interface, an A/D converter, and various types of timers. Together, the modules realize low-cost system configurations. The power consumption of these modules is kept down dynamically by power-down modes. The on-chip ROM is a flash memory (F-ZTATTM*) with a capacity of 128 Kbytes.

Note: * F-ZTAT[™] is a trademark of Renesas Electronics Corp.

1.1.1 Applications

Examples of the applications of this LSI include PC peripheral equipment, office automation equipment, and industrial equipment.

1.1.2 **Overview of Functions**

Table 1.1 lists the functions of this LSI in outline.

Table 1.1 **Overview of Functions**

Classification	Module/ Function	Description
Memory	ROM	ROM lineup: Flash memory version
		H8S/2113: 128 Kbytes
	RAM	RAM capacity: 12 Kbytes
CPU	CPU	16-bit high-speed H8S/2000 CPU (CISC type)
		Upward-compatibility with H8/300, H8/300H, and H8S CPUs at object level
		General-register architecture (sixteen 16-bit general registers)
		Eight addressing modes
		4-Gbyte address space
		Program: 4 Gbytes available
		Data: 4 Gbytes available
		65 basic instructions (bit manipulation instructions and others)
		 Minimum instruction execution time: 50.0 ns (for an ADD
		instruction while system clock φ = 20 MHz and
		$V_{cc} = 3.0 \text{ to } 3.6 \text{ V})$
	Operating mode	Advanced and single-chip modes

Classification	Module/ Function	Description
CPU	MCU operating mode	Mode 2: Single-chip mode (selected by driving the MD2 and MD0 pins low and MD1 pin high)
		Mode 4: Boot mode (selected by driving the MD2 high and MD1 and MD0 pins low)
		Mode 6: On-chip emulation mode (selected by driving the MD2 and MD1 pins high and the MD0 pin low)
		Note: MD0 is not available as a pin and is internally fixed to 0.
		 Power-down state (transition to the power-down state made by the SLEEP instruction)
Interrupt (source)	Interrupt controller	49 external interrupt pins (NMI, IRQ15 to IRQ0 (ExIRQ15 to ExIRQ7), KIN15 to KIN0, and WUE15 to WUE0)
		61 internal interrupt sources
		 Two interrupt control modes (specified by the system control register)
		• Two levels of interrupt priority orders specifiable (by setting the interrupt control register)
		Independent vector addresses
Clock	Clock pulse	Two clock generation circuits
	generator	Clock pulse generator and subclock input circuit
	(CPG)	System clock (φ) synchronization: 8 to 20 MHz
		• Five power-down modes: Medium-speed mode, sleep mode, watch mode, software standby mode, and module stop mode
A/D converter	A/D	• 10-bit resolution × 12 input channels
	converter (ADC)	Sample and hold function included
	(ADC)	 Conversion time: 4 μs per channel (with A/D conversion clock ADCLK at 10-MHz operation)
		Two operating modes: single mode and scan mode
		 Three methods to start A/D conversion: software and two timer (TPU/TMR) triggers

Section 1 Overview H8S/2113 Group

Classification	Module/ Function	Description			
Timer	8-bit PWM timer (PWMU)	•	8-bit timers A/B × six channels		
		•	Selectable from four clock sources		
		•	Cycle selectable for each channel		
		•	Supports 8-bit single pulse mode, 12-bit single pulse mode, 16-bit single pulse mode, and 8-bit pulse division mode.		
	16-bit timer pulse unit (TPU)	•	16 bits × three channels		
		•	Selectable from eight counter input clocks for each channel		
		•	Maximum 8-pulse inputs/outputs		
		•	The following operations can be set.		
			 Counter clear operation 		
			 Multiple timer counters (TCNT) can be written to simultaneously. 		
			 Simultaneous clearing by compare match and input capture possible 		
			 Register simultaneous input/output possible by counter synchronous operation 		
			 Maximum of 7-phase PWM output possible by combination with synchronous operation 		
		•	Supports buffer operation and phase counting mode (two- phase encoder input) for some channels		
		•	Supports input capture function		
			Supports output compare function (waveform output at compare match)		
	16-bit cycle measurem- ent timer (TCM)	•	16 bits × three channels		
		•	Selectable from seven clocks: six internal clocks and one		
			external clock		
		•	Capable of measuring the periods of input waveforms		
	8-bit timer (TMR)	•	8 bits \times four channels (also works as 16 bits \times two channels)		
		•	Selectable from seven clocks: six internal clocks and one external clock		
		•	Pulse output or PWM output with an arbitrary duty cycle		

Classification	Module/ Function	Description			
Watchdog timer	Watchdog timer (WDT)	 8 bits × two channels (selectable from eight counter input clocks) Switchable between watchdog timer mode and interval timer mode 			
Serial interface	Serial communication interface with FIFO (SCIF) Serial communication interface (SCI)	 One channel (asynchronous mode) 16-stage FIFO buffers for transmission and reception Full-duplex communication capability On-chip baud rate generator allows any bit rate to be selected Direct control from the LPC host One channel (choice of asynchronous or clocked synchronous serial communication mode) Full-duplex communication capability Selection of the desired bit rate and LSB-first or MSB-first transfer 			
Smart card/ SIM	_	The SCI module supports a smart card (SIM) interface.			
High- performance communication	I ² C bus interface (IIC)	 Three channels (one of two channels is switchable between input pin and output pin.) Capable of consecutive transmission and reception Two types of communication formats I²C bus format: addressing format with an acknowledge bit, for master/slave operation Clocked synchronous serial format: non-addressing format without an acknowledge bit, for master operation only 			
	SMBus 2.0 interface (SMBUS)	 Supports SMBus 2.0 interface Shares the communication function with IIC_0 On-chip PEC (Packet Error Checking multiplier) 			

Section 1 Overview H8S/2113 Group

Classification	Module/ Function	Description		
High- performance communication	Keyboard buffer control unit (PS2)	Three channels		
		Conforms to PS/2 interface specifications		
		Direct bus drive		
		Interrupt and error detection		
	LPC interface (LPC)	Four I/O channels		
		One POST code output channel		
		 Serial transfer of cycle type, address, and data in synchronization with the PCI clock 		
		 Supports LPC interface I/O read and I/O write cycles 		
		Supports the shutdown function (LPCPD) of the LPC interface		
	FSI interface (FSI)	One channel		
		 Supports communications between this LSI and SPI flash memory 		
		Capable of operating as a master		
		Supports LPC reset and LPC shut-down		
	Synchro-	One channel		
	nous serial	Choice of master mode and slave mode		
	communi- cation unit	Choice of standard mode and bidirectional mode		
	(SSU)	Full-duplex communication capability		
		Consecutive serial communication		
	PECI interface (PECI)	One channel		
		Supports PECI 3.0-compliant communication		
		Communication via a one-wire bus		
		Incorporates a cyclic redundancy check (CRC) calculator		
Battery backup F	RAM (BBR)	64-byte capacity		
		Data retained by VBAT power		
I/O ports		Input-only pins: 8 pins		
		 Input/output pins: 114 pins (TQFP-144V, TLP-145), 130 pins (BP-176V) 		
		88 pull-up resistors (TQFP-144V, TLP-145, BP-176V)		
		 40 pins with LED drive capability 		
		32 on-chip noise cancelers		

Classification	Module/ Function	De	escription
Package	,	•	144-pin thin QFP package (PTQP0144LC-A)
			(old code: TFP-144V, package dimensions: 16×16 mm, pin pitch: 0.40 mm)
		•	176-pin BGA package (PLBG0176GA-A)
			(old code: BP-176V, package dimensions: 13×13 mm, pin pitch: 0.80 mm)
		•	145-pin TLP package (PTLG0145JB-A)
			(package dimensions: 9×9 mm, pin pitch: 0.65 mm)
		•	Lead- (Pb-) free version
Operating frequency/		•	Operating frequency: 8 to 20 MHz
Power supply vo	oltage	Itage •	Power supply voltage: Vcc = 3.0 to 3.6 V, AVcc = 3.0 to 3.6 V
			Supply current:
			— 20 mA (typ.) (Vcc = 3.3 V, AVcc = 3.3 V, ϕ = 20 MHz)
Operating peripheral temperature (°C)		•	−20 to +75°C (regular specifications)

Section 1 Overview H8S/2113 Group

1.2 List of Products

Table 1.2 is the list of products, and figure 1.1 shows how to read the product name code.

Table 1.2 List of Products

Part No.	ROM Capacity	RAM Capacity	Package	Remarks
R4F2113	128 Kbytes	12 Kbytes	PTQP0144LC-A	Flash memory
			PLBG0176GA-A	version
			PTLG0145JB-A	

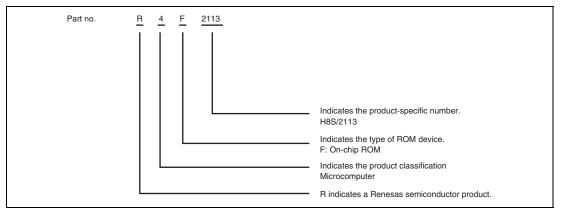


Figure 1.1 How to Read the Product Name Code

1.3 Block Diagram

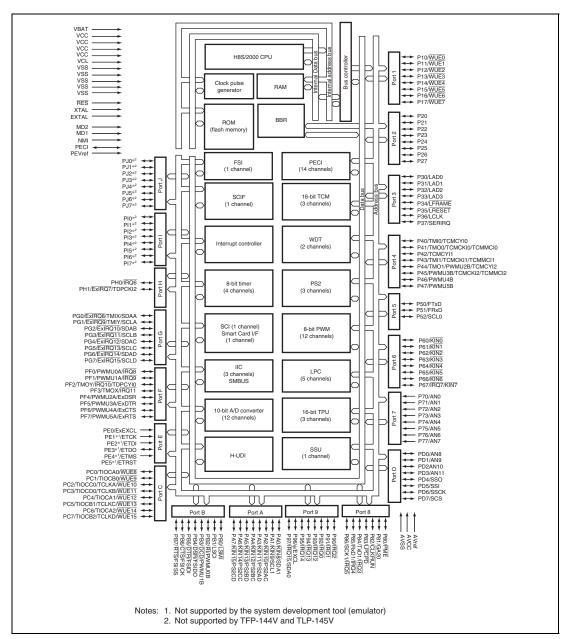


Figure 1.2 Internal Block Diagram

1.4 Pin Descriptions

1.4.1 Pin Assignments

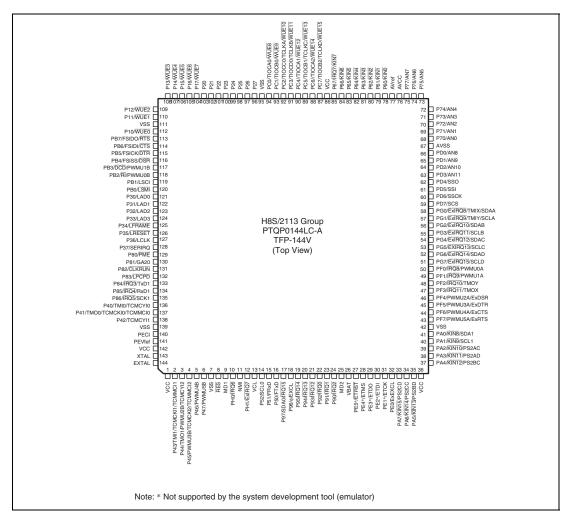


Figure 1.3 Pin Assignments (TFP-144V)

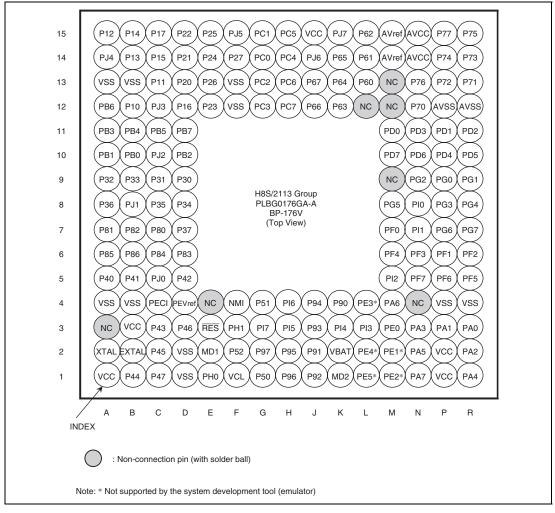


Figure 1.4 Pin Assignments (BP-176V)

RENESAS

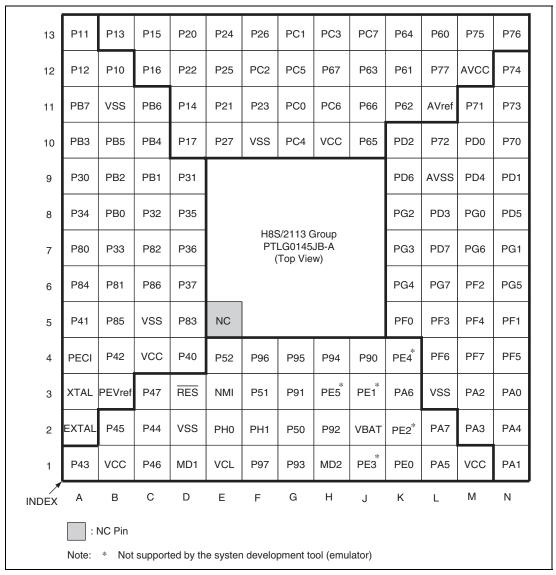


Figure 1.5 Pin Assignments (TLP-145V)

1.4.2 Pin Assignment in Each Operating Mode

Table 1.3 Pin Assignment in Each Operating Mode

TFP-		Pin No.		Pin Name				
1 A1 B1 VCC 2 C3 A1 P43/TMI1/TCMCKI1/TCMMCI1 3 B1 C2 P44/TMO1/PWMU2B/TCMCYI2 4 C2 B2 P45/PWMU3B/TCMCKI2/TCMMCI2 5 D3 C1 P46/PWMU4B 6 C1 C3 P47/PWMU5B 7 D2 D2 VSS E4 NC 8 E3 D3 RES D1 VSS 9 E2 D1 MD1 10 E1 E2 PH0/IRQ6 11 F4 E3 NMI 12 F3 F2 PH1/EXIRQ7 13 F1 E1 VCL 14 (T) F2 (T) E4 (T) P52/SCL0 15 G4 F3 P51/FRXD G3 (T) PI1 16 G1 G2 P50/FTXD 17 (T) G2 (T) F1 (T) P97/SDA0/IRQ15 H4 (T) PI6	TFP-	BP-	TLP-	Single-Chip Mode				
2 C3 A1 P43/TMI1/TCMCKI1/TCMMCI1 3 B1 C2 P44/TMO1/PWMU2B/TCMCYI2 4 C2 B2 P45/PWMU3B/TCMCKI2/TCMMCI2 5 D3 C1 P46/PWMU4B 6 C1 C3 P47/PWMU5B 7 D2 D2 VSS	144V	176V	145V	Mode 2 (EXPE = 0)				
3 B1 C2 P44/TMO1/PWMU2B/TCMCYI2 4 C2 B2 P45/PWMU3B/TCMCKI2/TCMMCI2 5 D3 C1 P46/PWMU4B 6 C1 C3 P47/PWMU5B 7 D2 D2 VSS	1	A1	B1	VCC				
4 C2 B2 P45/PWMU3B/TCMCKI2/TCMMCI2 5 D3 C1 P46/PWMU4B 6 C1 C3 P47/PWMU5B 7 D2 D2 VSS — E4 — NC 8 E3 D3 RES — D1 — VSS 9 E2 D1 MD1 10 E1 E2 PH0/IRQ6 11 F4 E3 NMI 12 F3 F2 PH1/ExIRQ7 13 F1 E1 VCL 14 (T) F2 (T) E4 (T) P52/SCL0 15 G4 F3 P51/FRxD — G3 (T) — PI1 16 G1 G2 P50/FTxD 17 (T) G2 (T) F1 (T) P97/SDA0/IRQ15 — H4 (T) — P16	2	C3	A1	P43/TMI1/TCMCKI1/TCMMCI1				
5 D3 C1 P46/PWMU4B 6 C1 C3 P47/PWMU5B 7 D2 D2 VSS — E4 — NC 8 E3 D3 RES — D1 — VSS 9 E2 D1 MD1 10 E1 E2 PH0/IRQ6 11 F4 E3 NMI 12 F3 F2 PH1/EXIRQ7 13 F1 E1 VCL 14 (T) F2 (T) E4 (T) P52/SCL0 15 G4 F3 P51/FRxD — G3 (T) — PI1 16 G1 G2 P50/FTxD 17 (T) G2 (T) F1 (T) P97/SDA0/IRQ15 — H4 (T) — PI6	3	B1	C2	P44/TMO1/PWMU2B/TCMCYI2				
6 C1 C3 P47/PWMU5B 7 D2 D2 VSS — E4 — NC 8 E3 D3 RES — D1 — VSS 9 E2 D1 MD1 10 E1 E2 PH0/IRQ6 11 F4 E3 NMI 12 F3 F2 PH1/ExIRQ7 13 F1 E1 VCL 14 (T) F2 (T) E4 (T) P52/SCL0 15 G4 F3 P51/FRxD — G3 (T) — PI1 16 G1 G2 P50/FTxD 17 (T) G2 (T) F1 (T) P97/SDA0/IRQ15 — H4 (T) — PI6	4	C2	B2	P45/PWMU3B/TCMCKI2/TCMMCI2				
7 D2 D2 VSS — E4 — NC 8 E3 D3 RES — D1 — VSS 9 E2 D1 MD1 10 E1 E2 PH0/IRQ6 11 F4 E3 NMI 12 F3 F2 PH1/ExIRQ7 13 F1 E1 VCL 14 (T) F2 (T) E4 (T) P52/SCL0 15 G4 F3 P51/FRxD — G3 (T) — PI1 16 G1 G2 P50/FTxD 17 (T) G2 (T) F1 (T) P97/SDA0/IRQ15 — H4 (T) — PI6	5	D3	C1	P46/PWMU4B				
— E4 — NC 8 E3 D3 RES — D1 — VSS 9 E2 D1 MD1 10 E1 E2 PH0/IRQ6 11 F4 E3 NMI 12 F3 F2 PH1/ExIRQ7 13 F1 E1 VCL 14 (T) F2 (T) E4 (T) P52/SCL0 15 G4 F3 P51/FRxD — G3 (T) — PI1 16 G1 G2 P50/FTxD 17 (T) G2 (T) F1 (T) P97/SDA0/IRQ15 — H4 (T) — P16	6	C1	C3	P47/PWMU5B				
8 E3 D3 RES — D1 — VSS 9 E2 D1 MD1 10 E1 E2 PH0/IRQ6 11 F4 E3 NMI 12 F3 F2 PH1/ExIRQ7 13 F1 E1 VCL 14 (T) F2 (T) E4 (T) P52/SCL0 15 G4 F3 P51/FRxD — G3 (T) — PI1 16 G1 G2 P50/FTxD 17 (T) G2 (T) F1 (T) P97/SDA0/IRQ15 — H4 (T) — PI6	7	D2	D2	VSS				
— D1 — VSS 9 E2 D1 MD1 10 E1 E2 PH0/IRQ6 11 F4 E3 NMI 12 F3 F2 PH1/ExIRQ7 13 F1 E1 VCL 14 (T) F2 (T) E4 (T) P52/SCL0 15 G4 F3 P51/FRxD — G3 (T) — PI1 16 G1 G2 P50/FTxD 17 (T) G2 (T) F1 (T) P97/SDA0/IRQ15 — H4 (T) — PI6		E4	_	NC				
9 E2 D1 MD1 10 E1 E2 PH0/IRQ6 11 F4 E3 NMI 12 F3 F2 PH1/ExIRQ7 13 F1 E1 VCL 14 (T) F2 (T) E4 (T) P52/SCL0 15 G4 F3 P51/FRxD — G3 (T) — PI1 16 G1 G2 P50/FTxD 17 (T) G2 (T) F1 (T) P97/SDA0/IRQ15 — H4 (T) — PI6	8	E3	D3	RES				
10 E1 E2 PH0/IRQ6 11 F4 E3 NMI 12 F3 F2 PH1/ExIRQ7 13 F1 E1 VCL 14 (T) F2 (T) E4 (T) P52/SCL0 15 G4 F3 P51/FRxD — G3 (T) — PI1 16 G1 G2 P50/FTxD 17 (T) G2 (T) F1 (T) P97/SDA0/IRQ15 — H4 (T) — PI6		D1	_	VSS				
11 F4 E3 NMI 12 F3 F2 PH1/ExIRQ7 13 F1 E1 VCL 14 (T) F2 (T) E4 (T) P52/SCL0 15 G4 F3 P51/FRxD — G3 (T) — PI1 16 G1 G2 P50/FTxD 17 (T) G2 (T) F1 (T) P97/SDA0/IRQ15 — H4 (T) — PI6	9	E2	D1	MD1				
12 F3 F2 PH1/ExIRQ7 13 F1 E1 VCL 14 (T) F2 (T) E4 (T) P52/SCL0 15 G4 F3 P51/FRxD — G3 (T) — PI1 16 G1 G2 P50/FTxD 17 (T) G2 (T) F1 (T) P97/SDA0/IRQ15 — H4 (T) — PI6	10	E1	E2	PH0/IRQ6				
13 F1 E1 VCL 14 (T) F2 (T) E4 (T) P52/SCL0 15 G4 F3 P51/FRxD — G3 (T) — PI1 16 G1 G2 P50/FTxD 17 (T) G2 (T) F1 (T) P97/SDA0/IRQ15 — H4 (T) — PI6	11	F4	E3	NMI				
14 (T) F2 (T) E4 (T) P52/SCL0 15 G4 F3 P51/FRxD — G3 (T) — PI1 16 G1 G2 P50/FTxD 17 (T) G2 (T) F1 (T) P97/SDA0/IRQ15 — H4 (T) — PI6	12	F3	F2	PH1/ExIRQ7				
15 G4 F3 P51/FRxD — G3 (T) — PI1 16 G1 G2 P50/FTxD 17 (T) G2 (T) F1 (T) P97/SDA0/IRQ15 — H4 (T) — PI6	13	F1	E1	VCL				
— G3 (T) — PI1 16 G1 G2 P50/FTxD 17 (T) G2 (T) F1 (T) P97/SDA0/IRQ15 — H4 (T) — PI6	14 (T)	F2 (T)	E4 (T)	P52/SCL0				
16 G1 G2 P50/FTxD 17 (T) G2 (T) F1 (T) P97/SDA0/IRQ15 — H4 (T) — PI6	15	G4	F3	P51/FRxD				
17 (T) G2 (T) F1 (T) P97/SDA0/IRQ15 — H4 (T) — PI6		G3 (T)	_	PI1				
— H4 (T) — PI6	16	G1	G2	P50/FTxD				
	17 (T)	G2 (T)	F1 (T)	P97/SDA0/IRQ15				
— H3 (T) — PI5		H4 (T)	_	PI6				
		H3 (T)	_	PI5				
18 H1 F4 P96/ø/EXCL	18	H1	F4	P96/ø/EXCL				
19 H2 G4 P95/ IRQ14	19	H2	G4	P95/IRQ14				
20 J4 H4 P94/IRQ13	20	J4	H4	P94/ĪRQ13				
21 J3 G1 P93/ IRQ 12	21	J3	G1	P93/IRQ12				

Pin No.			Pin Name
TFP-	BP-	TLP-	Single-Chip Mode
144V	176V	145V	Mode 2 (EXPE = 0)
22	J1	H2	P92/IRQ0
23	J2	G3	P91/ IRQ1
24	K4	J4	P90/IRQ2
_	K3 (T)	_	PI4
25	K1	H1	MD2
26	K2	J2	VBAT
_	L3 (T)	_	PI3
27	L1	НЗ	PE5*/ETRST
28	L2	K4	PE4*/ETMS
29	L4	J1	PE3*/ETDO
30	M1	K2	PE2*/ETDI
31	M2	J3	PE1*/ETCK
32	МЗ	K1	PE0/ExEXCL
33 (T)	N1 (T)	L2 (T)	PA7/KIN15/PS2CD
34 (T)	M4 (T)	K3 (T)	PA6/KIN14/PS2CC
35 (T)	N2 (T)	L1 (T)	PA5/KIN13/PS2BD
36	P1	M1	VCC
_	P2	_	VCC
37 (T)	R1 (T)	N2 (T)	PA4/KIN12/PS2BC
38 (T)	N3 (T)	M2 (T)	PA3/KIN11/PS2AD
39 (T)	R2 (T)	M3 (T)	PA2/KIN10/PS2AC
40 (T)	P3 (T)	N1 (T)	PA1/KIN9/SCL1
_	N4	_	NC
41 (T)	R3 (T)	N3 (T)	PA0/KIN8/SDA1
42	P4	L3	VSS
_	M5 (T)	_	Pl2
_	R4	_	VSS
43	N5	M4	PF7/PWMU5A/ExRTS
44	P5	L4	PF6/PWMU4A/ExCTS

Pin No.			Pin Name
TFP-	BP-	TLP-	Single-Chip Mode
144V	176V	145V	Mode 2 (EXPE = 0)
45	R5	N4	PF5/PWMU3A/ExDTR
46	M6	M5	PF4/PWMU2A/ExDSR
47	N6	L5	PF3/IRQ11/TMOX
48	R6	M6	PF2/IRQ10/TMOY
49	P6	N5	PF1/IRQ9/PWMU1A
50	M7	K5	PF0/IRQ8/PWMU0A
_	N7 (T)	_	PI1
51 (T)	R7 (T)	L6 (T)	PG7/ExIRQ15/SCLD
52 (T)	P7 (T)	M7 (T)	PG6/ExIRQ14/SDAD
53 (T)	M8 (T)	N6 (T)	PG5/ExIRQ13/SCLC
_	N8 (T)	_	PI0
54 (T)	R8 (T)	K6 (T)	PG4/ExIRQ12/SDAC
55 (T)	P8 (T)	K7 (T)	PG3/ExIRQ11/SCLB
_	M9	_	NC
56 (T)	N9 (T)	K8 (T)	PG2/ExIRQ10/SDAB
57 (T)	R9 (T)	N7 (T)	PG1/ExIRQ9/TMIY/SCLA
58 (T)	P9 (T)	M8 (T)	PG0/ExIRQ8/TMIX/SDAA
59	M10	L7	PD7/SCS
60	N10	K9	PD6/SSCK
61	R10	N8	PD5/SSI
62	P10	M9	PD4/SSO
63	N11	L8	PD3/AN11
64	R11	K10	PD2/AN10
65	P11	N9	PD1/AN9
66	M11	M10	PD0/AN8
67	R12	L9	AVSS
	P12	_	AVSS
68	N12	N10	P70/AN0
69	R13	M11	P71/AN1

Pin No.			Pin Name
TFP-	BP-	TLP-	Single-Chip Mode
144V	176V	145V	Mode 2 (EXPE = 0)
_	M12	_	NC
70	P13	L10	P72/AN2
71	R14	N11	P73/AN3
72	P14	N12	P74/AN4
73	R15	M13	P75/AN5
74	N13	N13	P76/AN6
75	P15	L12	P77/AN7
76	N14	M12	AVCC
_	M13	_	NC
_	N15	_	AVCC
77	M14	L11	AVref
_	L12	E5	NC
_	M15	_	AVref
78	L13	L13	P60/KIN0
79	L14	K12	P61/KIN1
80	L15	K11	P62/KIN2
81	K12	J12	P63/KIN3
82	K13	K13	P64/KIN4
_	K15 (T)	_	PJ7
83	K14	J10	P65/KIN5
84	J12	J11	P66/KIN6
85	J13	H12	P67/IRQ7/KIN7
86	J15	H10	VCC
_	J14 (T)	_	PJ6
87	H12	J13	PC7/TIOCB2/TCLKD/WUE15
88	H13	H11	PC6/TIOCA2/WUE14
89	H15	G12	PC5/TIOCB1/TCLKC/WUE13
90	H14	G10	PC4/TIOCA1/WUE12
91	G12	H13	PC3/TIOCD0/TCLKB/WUE11

Pin No.			Pin Name
TFP-	BP-	TLP-	Single-Chip Mode
144V	176V	145V	Mode 2 (EXPE = 0)
92	G13	F12	PC2/TIOCC0/TCLKA/WUE10
93	G15	G13	PC1/TIOCB0/WUE9
94	G14	G11	PC0/TIOCA0/WUE8
95	F12	F10	VSS
_	F13	_	VSS
_	F15 (T)	_	PJ5
96	F14	E10	P27
97	E13	F13	P26
98	E15	E12	P25
99	E14	E13	P24
100	E12	F11	P23
101	D15	D12	P22
102	D14	E11	P21
103	D13	D13	P20
104	C15	D10	P17/WUE7
105	D12	C12	P16/WUE6
106	C14	C13	P15/WUE5
107	B15	D11	P14/WUE4
108	B14	B13	P13/WUE3
109	A15	A12	P12/WUE2
110	C13	A13	P11/WUE1
_	A14 (T)	_	PJ4
111	B13	B11	VSS
_	C12 (T)	_	PJ3
_	A13	_	VSS
112	B12	B12	P10/WUE0
113	D11	A11	PB7/RTS/FSISS
114	A12	C11	PB6/CTS/FSICK
115	C11	B10	PB5/DTR/FSIDI

	Pin No.	ı	Pin Name
TFP-	BP-	TLP-	Single-Chip Mode
144V	176V	145V	Mode 2 (EXPE = 0)
116	B11	C10	PB4/DSR/FSIDO
117	A11	A10	PB3/DCD/PWMU1B
118	D10	В9	PB2/RI/PWMU0B
_	C10 (T)	_	PJ2
119	A10	C9	PB1/LSCI
120	B10	B8	PB0/LSMI
121	D9	A9	P30/LAD0
122	C9	D9	P31/LAD1
123	A9	C8	P32/LAD2
124	В9	B7	P33/LAD3
125	D8	A8	P34/LFRAME
126	C8	D8	P35/LRESET
127	A8	D7	P36/LCLK
_	B8 (T)	_	PJ1
128	D7	D6	P37/SERIRQ
129	C7	A7	P80/PME
130	A7	B6	P81/GA20
131	B7	C7	P82/CLKRUN
132	D6	D5	P83/LPCPD
133	C6	A6	P84/IRQ3/TxD1
134	A6	B5	P85/IRQ4/RxD1
135	B6	C6	P86/IRQ5/SCK1
_	C5 (T)	_	PJ0
136	A5	D4	P40/TMI0/TCMCYI0
137	B5	A5	P41/TMO0/TCMCKI0/TCMMCI0
138	D5	B4	P42/TCMCYI1
139	A4	C5	VSS
_	B4	_	VSS
140	C4	A4	PECI

	Pin No) .		Pin Name
TFP-	BP-	TLP-	Single-Chip Mode	
144V	176V	145V	Mode 2 (EXPE = 0)	
_	А3	_	NC	
141	D4	B3	PEVref	
142	В3	C4	VCC	
143	A2	A3	XTAL	
144	B2	A2	EXTAL	

Notes: (T) in Pin No. indicates the pin has 5 V input tolerance.

^{*} This pin is not supported by the system development tool (emulator).

1.4.3 Pin Functions

Table 1.4 Pin Functions

Pin No.	Ρ	in	Ν	ο.
---------	---	----	---	----

					_	
Туре	Symbol	TFP-144V	BP-176V	TLP-145V	I/O	Name and Function
Power supply	VCC	1, 36, 86, 142	A1, J15, P1, P2, B3	B1, M1, H10, C4	Input	Power supply pins. Connect all these pins to the system power supply. Connect the bypass capacitor between VCC and VSS (that is located near these pins).
	VCL	13	F1	E1	Input	External capacitance pin for internal step-down power. Connect this pin to VSS through an external capacitor (that is located near this pin) to stabilize internal step-down power.
	VSS	7, 42, 95, 111, 139	D1, D2, P4, R4, F12, F13, B13, A13, A4, B4	D2, L3, F10, B11, C5	Input	Ground pins. Connect all these pins to the system power supply (0 V).
	VBAT	26	K2	J2	Input	Power supply pin for the BBR. When the BBR is not used, connect this pin to VCC.
Clock	XTAL	143	A2	A3	Input	For connection to a crystal
	EXTAL	144	B2	A2	Input	resonator. An external clock can be supplied from the EXTAL pin. For an example of crystal resonator connection, see section 28, Clock Pulse Generator.
	ф	18	H1	F4	Output	Supplies the system clock to external devices.
	EXCL	18	H1	F4	Input	32.768 kHz external sub clock
	ExEXCL	32	M3	K1	Input	should be supplied. To which pin the external clock is input can be selected from the EXCL and ExEXCL pins.

			Pin No.			
Туре	Symbol	TFP-144V	BP-176V	TLP-145V	I/O	Name and Function
Operating mode control	MD2 MD1	25 9	K1 E2	H1 D1	Input	These pins set the operating mode. Inputs at these pins should not be changed during operation.
System control	RES	8	E3	D3	Input	Reset pin. When this pin is low, the chip is reset.
Interrupts	NMI	11	F4	E3	Input	Nonmaskable interrupt request input pin
	IRQ15 to IRQ0	17, 19 to 21, 47 to 50, 85, 10, 135 to 133, 24 to 22	G2, H2, J4, J3, N6, R6, P6, M7, J13, E1, B6, A6, C6, K4, J2, J1	F1, G4, H4, G1, L5, M6, N5, K5, H12, E2, C6, B5, A6, J4, G3, H2	Input	These pins request a maskable interrupt. To which pin an IRQ interrupt is input can be selected from the IRQn and ExIRQm pins. (n = 15 to 0, m = 15 to 7)
	ExIRQ15 to ExIRQ7	51 to 58, 12	R7, P7, M8, R8, P8, N9, R9, P9, F3	L6, M7, N6, K6, K7, K8, N7, M8, F2	Input	

Pin No.

			FIII NO.			
Туре	Symbol	TFP-144V	BP-176V	TLP-145V	I/O	Name and Function
H-UDI	ETRST*2	27	L1	H3	Input	Interface pins for emulator
	ETMS	28	L2	K4	Input	Reset by holding the ETRST pin to low level regardless of the H-UDI activation. At this
	ETDO	29	L4	J1	Output	
	ETDI	30	M1	K2	Input	time, the ETRST pin should
	ETCK	31	M2	J3	Input	be held low level for 20 clocks of ETCK. Then, to activate the H-UDI, the ETRST pin should be set to high level and the pins ETCK, ETMS, and ETDI should be set appropriately. In the normal operation without activating the H-UDI, pins ETCK, ETMS, ETDI, and ETDO should be pulled up to high level. The ETRST pin is pulled up inside the chip.
8-bit timer (TMR_0, TMR_1, TMR_X,	TMO0 TMO1 TMOX TMOY	137 3 47 48	B5 B1 N6 R6	A5 C2 L5 M6	Output	Waveform output pins with output compare function
TMR_Y)	TMI0 TMI1 TMIX TMIY	136 2 58 57	A5 C3 P9 R9	D4 A1 M8 N7	Input	Counter event input and count reset input pins

Pin No.						
Туре	Symbol	TFP-144V	BP-176V	TLP-145V	I/O	Name and Function
16-bit timer pulse unit (TPU)	TCLKA TCLKB TCLKC TCLKD	92 91 89 87	G13 G12 H15 H12	F12 H13 G12 J13	Input	Timer external clock input pins
	TIOCA0 TIOCB0 TIOCC0 TIOCD0	94 93 92 91	G14 G15 G13 G12	G11 G13 F12 H13	Input/ Output	Input capture input/output compare output/PWM output pins for TGRA_0 to TGRD_0
	TIOCA1 TIOCB1	90 89	H14 H15	G10 G12	Input/ Output	Input capture input/output compare output/PWM output pins for TGRA_1 and TGRB_1
	TIOCA2 TIOCB2	88 87	H13 H12	H11 J13	Input/ Output	Input capture input/output compare output/PWM output pins for TGRA_2 and TGRB_2
16-bit cycle measure- ment timer	TCMCKI2 to TCMCKI0	4, 2, 137	C2, C3, B5	B2, A1, A5	Input	Timer external clock input pins
(TCM)	TCMMCI2 to TCMMCI0	4, 2, 137	C2, C3, B5	B2, A1, A5	Input	Cycle measurement enable input pins
	TCMCYI2 to TCMCYI0	3, 138, 136	B1, D5, A5	C2, B4, D4	Input	Timer input capture input pins
8-bit PWM timer U (PWMU)	PWMU5A to PWMU0A PWMU5B to PWMU0B	49, 50,	N5, P5, R5, M6, P6, M7, C1, D3, C2, B1, A11, D10	M4, L4, N4, M5, N5, K5, C3, C1, B2, C2, A10, B9	Output	PWM timer pulse output pins
Serial	TxD1	133	C6	A6	Output	Transmit data output pins
communi- cation	RxD1	134	A6	B5	Input	Receive data input pins
interface (SCI_1)	SCK1	135	B6	C6	Input/ Output	Clock input/output pins

Pin No.

			Pin No.			
Туре	Symbol	TFP-144V	BP-176V	TLP-145V	I/O	Name and Function
Keyboard buffer control unit	PS2AC PS2BC PS2CC	39 37 34	R2 R1 M4	M3 N2 K3	Input/ Output	Synchronous clock input/output pins for the keyboard buffer control unit
(PS2)	PS2AD PS2BD PS2CD	38 35 33	N3 N2 N1	M2 L1 L2	Input/ Output	Data input/output pins for the keyboard buffer control unit
Keyboard control	KIN15 to KIN0	33 to 35, 37 to 41, 85 to 78	N1, M4, N2, R1, N3, R2, P3, R3, J13, J12, K14, K13, K12, L15, L14, L13	L2, K3, L1, N2, M2, M3, N1, N3, H12, J11, J10, K13, J12, K11, K12, L13	Input	Input pins for matrix keyboard. Normally, KIN15 to KIN0 function as key scan inputs, and P17 to P10 and P27 to P20 function as key scan outputs. Thus, composed with a maximum of 16 outputs x 16 inputs, a 256-key matrix can be configured.
	WUE15 to WUE0	87 to 94, 104 to 110, 112	H12, H13, H15, H14, G12, G13, G15, G14, C15,D12, C14, B15, B14, A15, C13, B12	J13, H11, G12, G10, H13, F12, G13, G11, D10,C12, C13, D11, B13, A12, A13, B12	Input	Wake-up event input pins. Same wake up as key wake up can be performed with various sources. These pins have interrupt request flags.
Serial .	FTxD	16	G1	G2	Output	Transmit data output pin
communi- cation	FRxD	15	G4	F3	Input	Receive data input pin
interface with FIFO (SCIF)	RI	118	D10	B9	Input	Ring indicator input pin
	DCD	117	A11	A10	Input	Data carrier detect input pin
	DSR	116	B11	C10	Input	Data set ready input pin
	DTR	115	C11	B10	Output	Data terminal ready output pin
	CTS	114	A12	C11	Input	Transmission permission input pin
	RTS	113	D11	A11	Output	Transmission request output pin

Pin No.

			Pin No.			
Туре	Symbol	TFP-144V	BP-176V	TLP-145V	I/O	Name and Function
Serial	ExDSR	46	M6	M5	Input	Data set ready input pin
communi- cation interface with FIFO (SCIF)	ExDTR	45	R5	N4	Output	Data terminal ready output pin
	ExCTS	44	P5	L4	Input	Transmission permission input pin
	ExRTS	43	N5	M4	Output	Transmission request output pin
LPC Interface	LAD3 to LAD0	124 to 121	B9, A9, C9, D9	B7, C8, D9, A9	Input/ Output	LPC command, address, and data input/output pins
(LPC)	LFRAME	125	D8	A8	Input	Input pin indicating LPC cycle start and forced termination of an abnormal LPC cycle
	LRESET	126	C8	D8	Input	Input pin indicating LPC reset
	LCLK	127	A8	D7	Input	LPC clock input pin
	SERIRQ	128	D7	D6	Input/ Output	LPC serial host interrupt (HIRQ1 to HIRQ15) input/output pin
	LSCI, LSMI, PME	119, 120, 129	A10, B10, C7	C9, B8, A7	Input/ Output	LPC auxiliary output pins. Functionally, they are general I/O ports.
	GA20	130	A7	B6	Input/ Output	GATE A20 control signal output pin. Output state monitoring input is possible.
	CLKRUN	CLKRUN 131 B7		C7	Input/ Output	Input/output pin that requests the start of LCLK operation when LCLK is stopped.
	LPCPD	132	D6	D5	Input	Input pin that controls LPC module shutdown.

			Pin No.			
Туре	Symbol	TFP- 144V	BP- 176V	TLP- 145V	I/O	Name and Function
FSI interface	FSISS	113	D11	A11	Output	FSI slave select pin
(FSI)	FSICK	114	A12	C11	Output	Clock output pin
	FSIDI	115	C11	B10	Input	Receive data input pin
	FSIDO	116	B11	C10	Output	Transmit data output pin
Synchronous serial	SSCK	59	M10	L7	Input/ Output	Clock input/output pin
communi- cation unit (SSU)	SSI	60	N10	K9	Input/ Output	Data input/output pin
	SSO	61	R10	N8	Input/ Output	Data input/output pin
	SCS	62	P10	M9	Input/ Output	Chip select input/output pin
A/D converter	AN11 to AN0	63 to 66, 75 to 68	R15, P14, R14, P13,	N9, M10, L12, N13, M13,	Input	Analog input pins
	AVCC	76	N14, N15	M12	Input	Analog power supply pin for the A/D converter
						When the A/D converter is not used, this pin should be connected to the system power supply (+3 V).
	AVref	77	M14, M15	L11	Input	Reference power supply pin for the A/D converter
						When the A/D converter is not used, this pin should be connected to the system power supply (+3 V).
	AVSS	67	R12, P12	L9	Input	Ground pin for the A/D converter. This pin should be connected to the system power supply (0 V).

			Pin No.			
Туре	Symbol	TFP- 144V	BP- 176V	TLP- 145V	I/O	Name and Function
I ² C/SMBus 2.0 bus interface (IIC_0/SMBUS)	SCL0	14	F2	E4	Input/ Output	IIC/SMBUS clock I/O pins The output type is NMOS open-drain.
	SDA0	17	G2	F1	Input/ Output	IIC/SMBUS data I/O pins The output type is NMOS open-drain.
I ² C bus interface (IIC1, IIC_2)	SCL1 SCLD SCLC	40 51 53	P3 R7 M8	N1 L6 N6	Input/ Output	I ² C clock I/O pins. The output type is NMOS opendrain.
	SCLB SCLA	55 57	P8 R9	K7 N7		To which pin the clock is input or output can be selected from the pins SCL1 or SCLD to SCLA.
	SDA1 SDAD SDAC	41 52 54	R3 P7 R8	N3 M7 K6	Input/ Output	I ² C data I/O pins. The output type is NMOS opendrain.
	SDAB SDAA	56 58	N8 P9	K8 M8		To which pin the clock is input or output can be selected from the pins SCL1 or SDAD to SDAA.
PECI	PECI	140	C4	A4	Input/ Output	PECI data input/output pin
	PEVref	141	D4	B3	Input	Power supply pin for the PECI

Pin No. Type TFP-144V **BP-176V** TLP-145V I/O Name and Function Symbol I/O port P17 to 104 to 110, C15, 12, D10, C12, Input/ 8-bit input/output pins P10 112 C14, B15, C13, D11, Output B14, A15, B13, A12, C13, B12 A13, B12 P27 to 96 to 103 F14, E13, E10, F13, Input/ 8-bit input/output pins P20 E15, E14, E12, E13, Output E12, D15, F11, D12, D14, D13 E11, D13 P37 to 128 to 121 D7, A8, D6, D7, Input/ 8-bit input/output pins P30 C8, D8, D8, A8, Output B9. A9. B7, C8, C9, D9 D9, A9 P47 to 8-bit input/output pins 6 to 2, C1, D3, C3, C1, Input/ P40 138 to 136 C2, B1, B2, C2, Output C3, D5, A1, B4, A5. D7 B5. A5 P52 to 14 to 16 F2. G4. E4. F3. Input/ 3-bit input/output pins P50 G1 G2 Output P67 to J13, J12, H12, J11, 85 to 78 Input/ 8-bit input/output pins P60 K14. K13. J10. K13. Output K12, L15, J12, K11, L14, L13 K12, L13 P77 to 75 to 68 P15, N13, L12, N13, Input 8-bit input pins P70 R15, P14, M13, N12, R14, P13, N11, L10, R13, N12 M11, N10 P86 to 135 to 129 B6, A6, C6, B5, Input/ 7-bit input/output pins P80 C6, D6, A6, D5, Output B7, A7, C7, B6, C7 Α7 17 to 24 P97 to G2, H1, F1, F4, Input/ 8-bit input/output pins P90 H2. J4. G4. H4. Output J3, J1, G1, H2, J2, K4 G3, J4 PA7 to 33 to 35, N1, M4, L2, K3, L1, Input/ 8-bit input/output pins PA0 37 to 41 Output N2, R1, N2, M2, M3, N1, N3 N3, R2, P3, R3

			Pin No.				
Туре	Symbol	TFP-144V	BP-176V	TLP-145V	I/O	Name and Function	
I/O port	PB7 to PB0	113 to 120				8-bit input/output pins	
	PC7 to PC0	87 to 94	H12, H13, H15, H14, G12, G13, G15, G14	J13, H11, G12, G10, H13, F12, G13, G11	Input/ Output	8-bit input/output pins	
	PD7 to PD0	59 to 66	M10, N10, R10, P10, N11, R11, P11, M11	N9, M10	Input/ Output	8-bit input/output pins	
	PE5 to PE0* ¹	27 to 32	L1, L2, L4, M1, M2, M3	H3, K4, J1, K2, J3, K1	Input/ Output	6-bit input/output pins	
	PF7 to PF0	43 to 50	N5, P5, R5, M6, N6, R6, P6, M7	M4, L4, N4, M5, L5, M6, N5, K5	Input/ Output	8-bit input/output pins	
	PG7 to PG0	51 to 58	R7, P7, M8, R8, P8, N9, R9, P9	L6, M7, N6, K6, K7, K8, N7, M8	Input/ Output	8-bit input/output pins	
	PH1, PH0	12, 10	F3, E1	F2, E2	Input/ Output	2-bit input/output pins	
	PI7 to PI0	_	G3, H4, H3, K3, L3, M5, N7, N8	_	Input/ Output	8-bit input/output pins	
	PJ7 to PJ0	_	B3, K15, J14, F15, A14, C12, C10, B8, C5	_	Input/ Output	8-bit input/output pins	

Notes: 1. Pins PE5 to PE1 are not supported by the system development tool (emulator).

2. Following precautions are required on the reset signal that is applied to the ETRST pin. The reset signal should be applied to ETRST pin on power supply if the input voltage of the RES pin is low.

Set apart the circuit from this LSI to prevent the ETRST pin of the emulator from affecting the operation of this LSI.

Set apart the circuit from this LSI to prevent the system reset of this LSI from affecting the $\overline{\text{ETRST}}$ pin of the emulator.

H8S/2113 Group Section 2 CPU

Section 2 CPU

The H8S/2000 CPU is a high-speed central processing unit with an internal 32-bit architecture that is upward-compatible with the H8/300 and H8/300H CPUs. The H8S/2000 CPU has sixteen 16-bit general registers, can address a 16-Mbyte linear address space, and provides maximum performance for realtime control.

2.1 Features

- Upward-compatible with H8/300 and H8/300H CPUs
 - Can execute H8/300 and H8/300H CPUs object programs
- · General-register architecture
 - Sixteen 16-bit general registers also usable as sixteen 8-bit registers or eight 32-bit registers
- Sixty-five basic instructions
 - 8/16/32-bit arithmetic and logic instructions
 - Multiply and divide instructions
 - Powerful bit-manipulation instructions
- Eight addressing modes
 - Register direct [Rn]
 - Register indirect [@ERn]
 - Register indirect with displacement [@(d:16,ERn) or @(d:32,ERn)]
 - Register indirect with post-increment or pre-decrement [@ERn+ or @-ERn]
 - Absolute address [@aa:8, @aa:16, @aa:24, or @aa:32]
 - Immediate [#xx:8, #xx:16, or #xx:32]
 - Program-counter relative [@(d:8,PC) or @(d:16,PC)]
 - Memory indirect [@@aa:8]
- 16-Mbyte address space
 - Program: 16 Mbytes
 - Data: 16 Mbytes

Section 2 CPU H8S/2113 Group

- High-speed operation
 - All frequently-used instructions execute in one or two states
 - 8/16/32-bit register-register add/subtract: 1 state
 - 8 × 8-bit register-register multiply: 12 states (MULXU.B), 13 states (MULXS.B)
 - 16 ÷ 8-bit register-register divide: 12 states (DIVXU.B)
 - 16 × 16-bit register-register divide: 20 states (MULXU.W), 21 states (MULXS.W)
 - 32 ÷ 16-bit register-register divide: 20 states (DIVXU.W)
- CPU operating mode
- Advanced mode
- Power-down state
 - Transition to power-down state by the SLEEP instruction
 - CPU clock speed selection

2.1.1 Differences between H8S/2600 CPU and H8S/2000 CPU

The differences between the H8S/2600 CPU and the H8S/2000 CPU are shown below.

- Register configuration
 - The MAC register is supported by the H8S/2600 CPU only.
- Basic instructions
 - The four instructions MAC, CLRMAC, LDMAC, and STMAC are supported by the H8S/2600 CPU only.
- The number of execution states of the MULXU and MULXS instructions;

Execution States

Instruction	Mnemonic	H8S/2600	H8S/2000
MULXU	MULXU.B Rs, Rd	3	12
	MULXU.W Rs, ERd	4	20
MULXS	MULXS.B Rs, Rd	4	13
	MULXS.W Rs, ERd	5	21

In addition, there are differences in address space, CCR and EXR register functions, and power-down modes, etc., depending on the model.

H8S/2113 Group Section 2 CPU

2.2 **CPU Operating Modes**

This LSI operates in normal mode, which supports a maximum 16-Mbyte address space. The mode is selected by the mode pins.

- Address Space
 - Linear access to a 16-Mbyte maximum address space is provided.
- Extended Registers (En)
 The extended registers (E0 to E7) can be used as 16-bit registers, or as the upper 16-bit segments of 32-bit registers.
- Instruction Set
 All instructions and addressing modes can be used.
- Exception Vector Table and Memory Indirect Branch Addresses
 In this LSI, the top area starting at H'00000000 is allocated to the exception vector table in 32-bit units. One branch address is stored per 24 bits, ignoring the upper 8 bits (see figure 2.1).
 For details of the exception vector table, see section 6, Exception Handling.

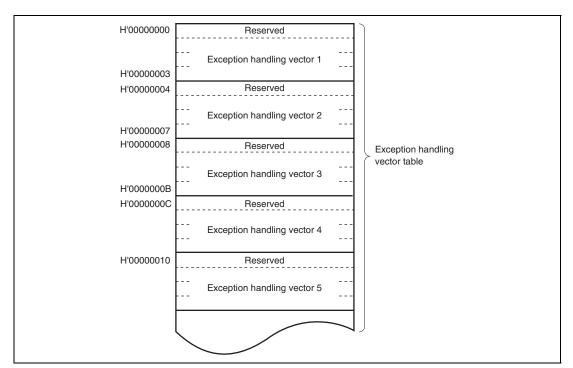


Figure 2.1 Exception Handling Vector Table

Section 2 CPU H8S/2113 Group

The memory indirect addressing mode (@@aa:8) employed in the JMP and JSR instructions uses an 8-bit absolute address included in the instruction code to specify a memory operand that contains a branch address. The operand is a 32-bit (longword), providing a 32-bit branch address. The upper 8 bits of these 32 bits is a reserved area that is regarded as H'00. Branch addresses can be stored in the area from H'000000000 to H'000000FF. Note that the first part of this range is also used for the exception handling vector table.

Stack Structure

Figure 2.4 shows the stack structure when the program counter (PC) is pushed onto the stack in a subroutine call and the stack structure when PC, condition-code register (CCR), and extended control register (EXR) are pushed onto the stack in exception handling. When EXR is not pushed onto the stack in interrupt control mode 0. For details on the interrupt control mode, see section 6, Exception Handling.

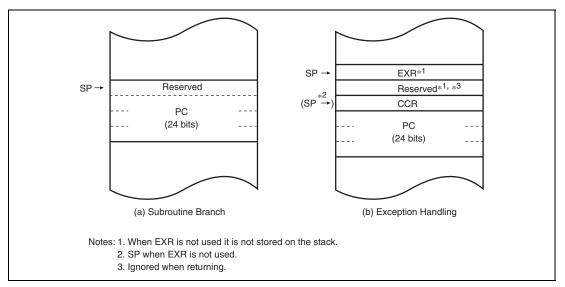


Figure 2.2 Stack Structure

H8S/2113 Group Section 2 CPU

2.3 Address Space

Figure 2.3 shows a memory map for the H8S/2000 CPU. The H8S/2000 CPU provides linear access to a maximum 16-Mbyte (architecturally 4-Gbyte) address space. For details, refer to section 3, MCU Operating Modes.

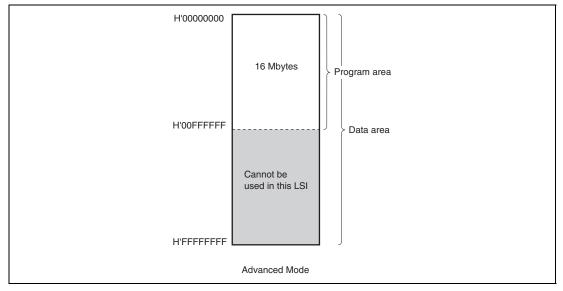


Figure 2.3 Memory Map

Section 2 CPU H8S/2113 Group

2.4 Registers

The H8S/2000 CPU has the internal registers shown in figure 2.4. There are two types of registers; general registers and control registers. The control registers are a 24-bit program counter (PC), an 8-bit extended control register (EXR), and an 8-bit condition code register (CCR).

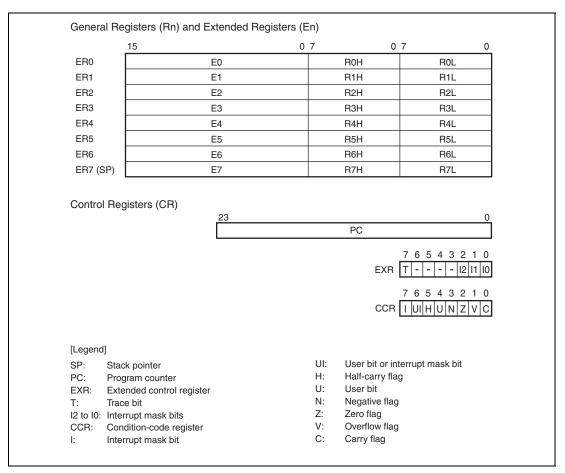


Figure 2.4 Registers in the CPU

H8S/2113 Group Section 2 CPU

2.4.1 General Registers

The H8S/2000 CPU has eight 32-bit general registers. These general registers are all functionally identical and can be used as both address registers and data registers. When a general register is used as a data register, it can be accessed as a 32-bit, 16-bit, or 8-bit register. Figure 2.5 illustrates the usage of the general registers. When the general registers are used as 32-bit registers or address registers, they are designated by the letters ER (ER0 to ER7).

The ER registers divide into 16-bit general registers designated by the letters E (E0 to E7) and R (R0 to R7). These registers are functionally equivalent, providing a maximum of sixteen 16-bit registers. The E registers (E0 to E7) are also referred to as extended registers.

The R registers divide into 8-bit general registers designated by the letters RH (R0H to R7H) and RL (R0L to R7L). These registers are functionally equivalent, providing a maximum of sixteen 8-bit registers.

The usage of each register can be selected independently.

General register ER7 has the function of stack pointer (SP) in addition to its general-register function, and is used implicitly in exception handling and subroutine calls. Figure 2.6 shows the stack.

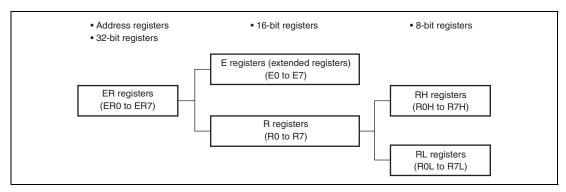


Figure 2.5 Usage of General Registers

Section 2 CPU H8S/2113 Group

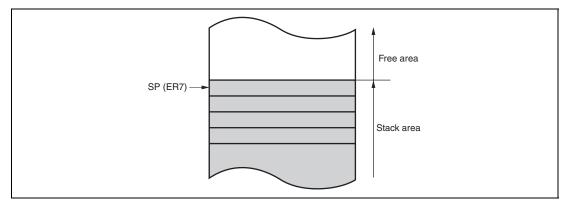


Figure 2.6 Stack

2.4.2 Program Counter (PC)

Page 38 of 1054

This 24-bit counter indicates the address of the next instruction the CPU will execute. The length of all CPU instructions is 2 bytes (one word), so the least significant PC bit is ignored. (When an instruction is fetched, the least significant PC bit is regarded as 0).

2.4.3 Extended Control Register (EXR)

This register does not affect the operation of this LSI.

Bit	Bit Name	Initial Value	R/W	Description
7	Т	0	R/W	Trace Bit
				This bit does not affect the operation of this LSI.
6 to 3	_	All 1	_	Reserved
				These bits are always read as 1.
2	12	1	R/W	These bits designate the interrupt mask level (0 to 7).
1	l1	1	R/W	These bits do not affect the operation of this LSI.
0	10	1	R/W	

H8S/2113 Group Section 2 CPU

2.4.4 Condition-Code Register (CCR)

This 8-bit register contains internal CPU status information, including an interrupt mask bit (I) and half-carry (H), negative (N), zero (Z), overflow (V), and carry (C) flags.

Operations can be performed on the CCR bits by the LDC, STC, ANDC, ORC, and XORC instructions. The N, Z, V, and C flags are used as branching conditions for conditional branch (Bcc) instructions.

Bit	Bit Name	Initial Value	R/W	Description
7	I	1	R/W	Interrupt Mask Bit
				Masks interrupts other than NMI when set to 1. NMI is accepted regardless of the I bit setting. The I bit is set to 1 at the start of an exception-handling sequence. For details, refer to section 7, Interrupt Controller.
6	UI	Undefined	R/W	User Bit or Interrupt Mask Bit
				Can be read or written by software using the LDC, STC, ANDC, ORC, and XORC instructions.
5	Н	Undefined	R/W	Half-Carry Flag
				When the ADD.B, ADDX.B, SUB.B, SUBX.B, CMP.B, or NEG.B instruction is executed, this flag is set to 1 if there is a carry or borrow at bit 3, and cleared to 0 otherwise. When the ADD.W, SUB.W, CMP.W, or NEG.W instruction is executed, the H flag is set to 1 if there is a carry or borrow at bit 11, and cleared to 0 otherwise. When the ADD.L, SUB.L, CMP.L, or NEG.L instruction is executed, the H flag is set to 1 if there is a carry or borrow at bit 27, and cleared to 0 otherwise.
4	U	Undefined	R/W	User Bit
				Can be read or written by software using the LDC, STC, ANDC, ORC, and XORC instructions.
3	N	Undefined	R/W	Negative Flag
				Stores the value of the most significant bit of data as a sign bit.
2	Z	Undefined	R/W	Zero Flag
				Set to 1 to indicate zero data, and cleared to 0 to indicate non-zero data.

Section 2 CPU H8S/2113 Group

Bit	Bit Name	Initial Value	R/W	Description
1	V	Undefined	R/W	Overflow Flag
				Set to 1 when an arithmetic overflow occurs, and cleared to 0 at other times.
0	С	Undefined	R/W	Carry Flag
				Set to 1 when a carry occurs, and cleared to 0 otherwise. Used by:
				Add instructions, to indicate a carry
				Subtract instructions, to indicate a borrow
				Shift and rotate instructions, to indicate a carry
				The carry flag is also used as a bit accumulator by bit manipulation instructions.

2.4.5 Initial Values of CPU Registers

Reset exception handling loads the CPU's program counter (PC) from the vector table, clears the trace bit in EXR to 0, and sets the interrupt mask bits in CCR and EXR to 1. The other CCR bits and the general registers are not initialized. In particular, the stack pointer (ER7) is not initialized. The stack pointer should therefore be initialized by an MOV.L instruction executed immediately after a reset.

H8S/2113 Group Section 2 CPU

2.5 Data Formats

The H8S/2000 CPU can process 1-bit, 4-bit (BCD), 8-bit (byte), 16-bit (word), and 32-bit (longword) data. Bit-manipulation instructions operate on 1-bit data by accessing bit n (n = 0, 1, 2, ..., 7) of byte operand data. The DAA and DAS decimal-adjust instructions treat byte data as two digits of 4-bit BCD data.

2.5.1 General Register Data Formats

Figure 2.7 shows the data formats in general registers.

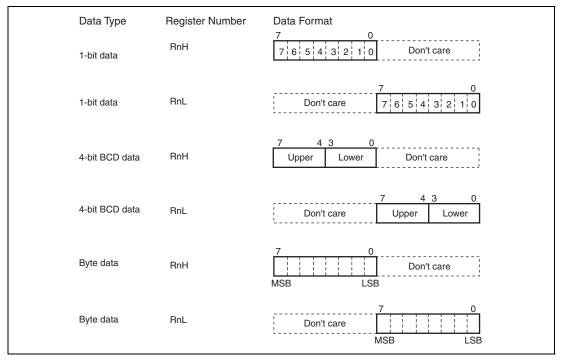


Figure 2.7 General Register Data Formats (1)

Section 2 CPU H8S/2113 Group

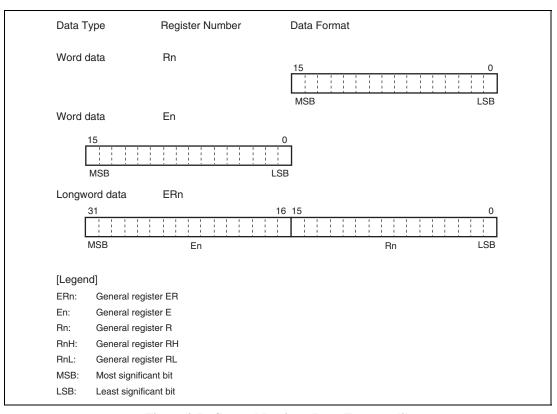


Figure 2.7 General Register Data Formats (2)

H8S/2113 Group Section 2 CPU

2.5.2 **Memory Data Formats**

Figure 2.8 shows the data formats in memory. The H8S/2000 CPU can access word data and longword data in memory, however word or longword data must begin at an even address. If an attempt is made to access word or longword data at an odd address, an address error does not occur, however the least significant bit of the address is regarded as 0, so access begins the preceding address. This also applies to instruction fetches.

When SR (ER7) is used as an address register to access the stack, the operand size should be word or longword.

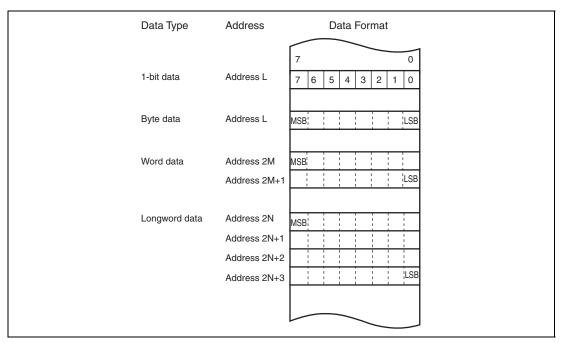


Figure 2.8 Memory Data Formats

Section 2 CPU H8S/2113 Group

2.6 Instruction Set

The H8S/2000 CPU has 65 instructions. The instructions are classified by function in table 2.1.

Table 2.1 Instruction Classification

Function	Instructions	Size	Types
Data transfer	MOV	B/W/L	5
	POP* ¹ , PUSH* ¹	W/L	_
	LDM* ⁵ , STM* ⁵	L	_
	MOVFPE*3, MOVTPE*3	В	_
Arithmetic	ADD, SUB, CMP, NEG	B/W/L	19
operation	ADDX, SUBX, DAA, DAS	В	_
	INC, DEC	B/W/L	_
	ADDS, SUBS	L	_
	MULXU, DIVXU, MULXS, DIVXS	B/W	_
	EXTU, EXTS	W/L	_
	TAS* ⁴	В	_
Logic operations	AND, OR, XOR, NOT	B/W/L	4
Shift	SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL, ROTXR	B/W/L	8
Bit manipulation	BSET, BCLR, BNOT, BTST, BLD, BILD, BST, BIST, BAND, BIAND, BOR, BIOR, BXOR, BIXOR	В	14
Branch	Bcc*², JMP, BSR, JSR, RTS	_	5
System control	TRAPA, RTE, SLEEP, LDC, STC, ANDC, ORC, XORC, NOP	_	9
Block data transfer	EEPMOV	_	1

Total: 65

Notes: B-byte; W-word; L-longword.

- POP.W Rn and PUSH.W Rn are identical to MOV.W @SP+,Rn and MOV.W Rn,@-SP. POP.L ERn and PUSH.L ERn are identical to MOV.L @SP+,ERn and MOV.L ERn,@-SP.
- 2. Bcc is the general name for conditional branch instructions.
- 3. Cannot be used in this LSI.
- 4. Only register ER0, ER1, ER4, or ER5 should be used when using the TAS instruction.
- 5. Since the register ER7 functions as the stack pointer in STM/LDM instruction, the register cannot be used to push data onto the stack for STM instruction or to pop data off the stack for LDM instruction.

2.6.1 Table of Instructions Classified by Function

Tables 2.3 to 2.10 summarize the instructions in each functional category. The notation used in tables 2.3 to 2.10 is defined below.

Table 2.2 Operation Notation

Symbol	Description
Rd	General register (destination)*
Rs	General register (source)*
Rn	General register*
ERn	General register (32-bit register)
(EAd)	Destination operand
(EAs)	Source operand
EXR	Extended control register
CCR	Condition-code register
N	N (negative) flag in CCR
Z	Z (zero) flag in CCR
V	V (overflow) flag in CCR
С	C (carry) flag in CCR
PC	Program counter
SP	Stack pointer
#IMM	Immediate data
disp	Displacement
+	Addition
_	Subtraction
×	Multiplication
÷	Division
٨	Logical AND
V	Logical OR
\oplus	Logical XOR
\rightarrow	Move
~	NOT (logical complement)
:8/:16/:24/:32	8-, 16-, 24-, or 32-bit length

Note: * General registers include 8-bit registers (R0H to R7H, R0L to R7L), 16-bit registers (R0 to R7, E0 to E7), and 32-bit registers (ER0 to ER7).

Data Transfer Instructions Table 2.3

Instruction	Size*1	Function	
MOV	B/W/L	$(EAs) \rightarrow Rd, Rs \rightarrow (EAd)$ Moves data between two general registers or between a general register and memory, or moves immediate data to a general register.	
MOVFPE	В	Cannot be used in this LSI.	
MOVTPE	В	Cannot be used in this LSI.	
POP	W/L	$@SP+ \rightarrow Rn$ Pops a general register from the stack. POP.W Rn is identical to MOV.W $@SP+$, Rn. POP.L ERn is identical to MOV.L $@SP+$, ERn.	
PUSH	W/L	$Rn \rightarrow @-SP$ Pushes a general register onto the stack. PUSH.W Rn is identical to MOV.W Rn, $@-SP$. PUSH.L ERn is identical to MOV.L ERn, $@-SP$.	
LDM* ²	L	$@SP+ \rightarrow Rn$ (register list) Pops two or more general registers from the stack.	
STM* ²	L	Rn (register list) \rightarrow @-SP Pushes two or more general registers onto the stack.	

Notes: 1. Refers to the operand size.

B: Byte W: Word Longword

2. Since the register ER7 functions as the stack pointer in STM/LDM instruction, the register cannot be used to push data onto the stack for STM instruction or to pop data off the stack for LDM instruction.

Table 2.4 Arithmetic Operations Instructions (1)

Instruction	Size*	Function	
ADD SUB	B/W/L	Rd \pm Rs \rightarrow Rd, Rd \pm #IMM \rightarrow Rd Performs addition or subtraction on data in two general registers, or on immediate data and data in a general register (immediate byte data cannot be subtracted from byte data in a general register. Use the SUBX or ADD instruction.)	
ADDX SUBX	В	Rd \pm Rs \pm C \rightarrow Rd, Rd \pm #IMM \pm C \rightarrow Rd Performs addition or subtraction with carry on byte data in two general registers, or on immediate data and data in a general register.	
INC DEC	B/W/L	Rd \pm 1 \rightarrow Rd, Rd \pm 2 \rightarrow Rd Increments or decrements a general register by 1 or 2. (Byte operands can be incremented or decremented by 1 only.)	
ADDS SUBS	L	$Rd \pm 1 \rightarrow Rd$, $Rd \pm 2 \rightarrow Rd$, $Rd \pm 4 \rightarrow Rd$ Adds or subtracts the value 1, 2, or 4 to or from data in a 32-bit register.	
DAA DAS	В	Rd decimal adjust \to Rd Decimal-adjusts an addition or subtraction result in a general register by referring to the CCR to produce 4-bit BCD data.	
MULXU	B/W	$Rd \times Rs \rightarrow Rd$ Performs unsigned multiplication on data in two general registers: either 8 bits \times 8 bits \rightarrow 16 bits or 16 bits \times 16 bits \rightarrow 32 bits.	
MULXS	B/W	$Rd \times Rs \rightarrow Rd$ Performs signed multiplication on data in two general registers: either 8 bits \times 8 bits \rightarrow 16 bits or 16 bits \times 16 bits \rightarrow 32 bits.	
DIVXU	B/W	Rd \div Rs \to Rd Performs unsigned division on data in two general registers: either 16 bits \div 8 bits \to 8-bit quotient and 8-bit remainder or 32 bits \div 16 bits \to 16-bit quotient and 16-bit remainder.	

Note: * Refers to the operand size.

B: ByteW: WordL: Longword

Table 2.4 Arithmetic Operations Instructions (2)

Instruction	Size*1	Function	
DIVXS	B/W	Rd \div Rs \to Rd Performs signed division on data in two general registers: either 16 bits \div 8 bits \to 8-bit quotient and 8-bit remainder or 32 bits \div 16 bits \to 16-bit quotient and 16-bit remainder.	
CMP	B/W/L	Rd – Rs, Rd – #IMM Compares data in a general register with data in another general register or with immediate data, and sets CCR bits according to the result.	
NEG	B/W/L	$0-Rd \rightarrow Rd$ Takes the two's complement (arithmetic complement) of data in a general register.	
EXTU	W/L	Rd (zero extension) → Rd Extends the lower 8 bits of a 16-bit register to word size, or the lower 16 bits of a 32-bit register to longword size, by padding with zeros on the left.	
EXTS	W/L	Rd (sign extension) → Rd Extends the lower 8 bits of a 16-bit register to word size, or the lower 16 bits of a 32-bit register to longword size, by extending the sign bit.	
TAS* ²	В	@ERd $-$ 0, 1 \rightarrow (<bit 7=""> of @ERd) Tests memory contents, and sets the most significant bit (bit 7) to 1.</bit>	

Notes: 1. Refers to the operand size.

B: ByteW: WordL: Longword

2. Only register ER0, ER1, ER4, or ER5 should be used when using the TAS instruction.

Table 2.5 Logic Operations Instructions

Instruction	Size*	Function	
AND	B/W/L	$Rd \wedge Rs \rightarrow Rd$, $Rd \wedge \#IMM \rightarrow Rd$ Performs a logical AND operation on a general register and another general register or immediate data.	
OR	B/W/L	$Rd \lor Rs \to Rd$, $Rd \lor \#IMM \to Rd$ Performs a logical OR operation on a general register and another general register or immediate data.	
XOR	B/W/L	$Rd \oplus Rs \rightarrow Rd$, $Rd \oplus \#IMM \rightarrow Rd$ Performs a logical exclusive OR operation on a general register and another general register or immediate data.	
NOT	B/W/L	$\sim\!(\text{Rd})\to(\text{Rd})$ Takes the one's complement (logical complement) of general register contents.	

Note: * Refers to the operand size.

B: ByteW: WordL: Longword

Table 2.6 Shift Instructions

Instruction	Size*	Function	
SHAL SHAR	B/W/L	Rd (shift) \rightarrow Rd Performs an arithmetic shift on general register contents. 1-bit or 2-bit shifts are possible.	
SHLL SHLR	B/W/L	Rd (shift) → Rd Performs a logical shift on general register contents. 1-bit or 2-bit shifts are possible.	
ROTL ROTR	B/W/L	Rd (rotate) → Rd Rotates general register contents. 1-bit or 2-bit rotations are possible.	
ROTXL ROTXR	B/W/L	Rd (rotate) → Rd Rotates general register contents through the carry flag. 1-bit or 2-bit rotations are possible.	

Note: * Refers to the operand size.

B: ByteW: WordL: Longword

Table 2.7 Bit Manipulation Instructions (1)

Instruction	Size*	Function	
BSET	В	1 → (<bit-no.> of <ead>) Sets a specified bit in a general register or memory operand to 1. The bit number is specified by 3-bit immediate data or the lower three bits of a general register.</ead></bit-no.>	
BCLR	В	$0 \rightarrow$ (<bit-no.> of <ead>) Clears a specified bit in a general register or memory operand to 0. The bit number is specified by 3-bit immediate data or the lower three bits of a general register.</ead></bit-no.>	
BNOT	В	~(<bit-no.> of <ead>) → (<bit-no.> of <ead>) Inverts a specified bit in a general register or memory operand. The bit number is specified by 3-bit immediate data or the lower three bits of a general register.</ead></bit-no.></ead></bit-no.>	
BTST	В	\sim (<bit-no.> of <ead>) \rightarrow Z Tests a specified bit in a general register or memory operand and sets or clears the Z flag accordingly. The bit number is specified by 3-bit immediate data or the lower three bits of a general register.</ead></bit-no.>	
BAND	В	$C \wedge (\text{sit-No.}) \circ (\text{EAd}) \rightarrow C$ ANDs the carry flag with a specified bit in a general register or memory operand and stores the result in the carry flag.	
BIAND	В	$C \wedge [\sim (< bit-No.> of < EAd>)] \rightarrow C$ ANDs the carry flag with the inverse of a specified bit in a general register or memory operand and stores the result in the carry flag. The bit number is specified by 3-bit immediate data.	
BOR	В	$C \lor (\mbox{\ensuremath{carry}}\mbox{\ensuremath{lag}}\mbox{\ensuremath{with}}\mbox{\ensuremath{a}}\mbox{\ensuremath{pecified}}\mbox{\ensuremath{bit}}\mbox{\ensuremath{in}}\mbox{\ensuremath{a}}\mbox{\ensuremath{general}}\mbox{\ensuremath{register}}\mbox{\ensuremath{general}}\mbox{\ensuremath{register}}\mbox{\ensuremath{general}}\mbox{\ensuremath{e}}\ensuremath{\mathsf{$	
BIOR	В	$C \vee [\sim (\text{-bit-No.} > \text{of })] \to C$ ORs the carry flag with the inverse of a specified bit in a general register or memory operand and stores the result in the carry flag. The bit number is specified by 3-bit immediate data.	

Note: * Refers to the operand size.

B: Byte

Table 2.7 Bit Manipulation Instructions (2)

Instruction	Size*	Function	
BXOR	В	$C \oplus (\text{shit-No.}) \text{ of } \text{EAd>}) \to C$ XORs the carry flag with a specified bit in a general register or memory operand and stores the result in the carry flag.	
BIXOR	В	$C \oplus [\sim (\text{-bit-No.} > \text{of } < \text{EAd>})] \to C$ XORs the carry flag with the inverse of a specified bit in a general register or memory operand and stores the result in the carry flag. The bit number is specified by 3-bit immediate data.	
BLD	В	(bit-No.> of <ead>) \rightarrow C Transfers a specified bit in a general register or memory operand to the carry flag.</ead>	
BILD	В	\sim (<bit-no.> of <ead>) \rightarrow C</ead></bit-no.>	
		Transfers the inverse of a specified bit in a general register or memory operand to the carry flag. The bit number is specified by 3-bit immediate data.	
BST	В	$C \rightarrow \text{(of)}$ Transfers the carry flag value to a specified bit in a general register or memory operand.	
BIST	В	\sim C \rightarrow (<bit-no.> of <ead>) Transfers the inverse of the carry flag value to a specified bit in a general register or memory operand. The bit number is specified by 3-bit immediate data.</ead></bit-no.>	

Note: * Refers to the operand size.

B: Byte

Table 2.8 Branch Instructions

14010 210				
Instruction	Size	Function		
Bcc	_	Branches to a specified address if a specified condition is true. The branching conditions are listed below.		
		Mnemonic	Description	Condition
		BRA(BT)	Always (true)	Always
		BRN(BF)	Never (false)	Never
		BHI	High	C ∨ Z = 0
		BLS	Low or same	C ∨ Z = 1
		BCC(BHS)	Carry clear (high or same)	C = 0
		BCS(BLO)	Carry set (low)	C = 1
		BNE	Not equal	Z = 0
		BEQ	Equal	Z = 1
		BVC	Overflow clear	V = 0
		BVS	Overflow set	V = 1
		BPL	Plus	N = 0
		ВМІ	Minus	N = 1
		BGE	Greater or equal	N ⊕ V = 0
		BLT	Less than	N ⊕ V = 1
		BGT	Greater than	$Z\vee(N\oplus V)=0$
		BLE	Less or equal	$Z_{\vee}(N \oplus V) = 1$
JMP		Branches unco	nditionally to a specified	d address.
BSR	_	Branches to a	subroutine at a specified	d address.
JSR	_	Branches to a	subroutine at a specified	d address.
RTS	_	Returns from a subroutine		

Table 2.9 System Control Instructions

Instruction	Size*	Function	
TRAPA	_	Starts trap-instruction exception handling.	
RTE	_	Returns from an exception-handling routine.	
SLEEP	_	Causes a transition to a power-down state.	
LDC	B/W	(EAs) → CCR, (EAs) → EXR Moves general register or memory contents or immediate data to CCR or EXR. Although CCR and EXR are 8-bit registers, word-size transfers are performed between them and memory. The upper 8 bits are valid.	
STC	B/W	CCR → (EAd), EXR → (EAd) Transfers CCR or EXR contents to a general register or memory. Although CCR and EXR are 8-bit registers, word-size transfers are performed between them and memory. The upper 8 bits are valid.	
ANDC	В		
ORC	В	$CCR \lor \#IMM \to CCR$, $EXR \lor \#IMM \to EXR$ Logically ORs the CCR or EXR contents with immediate data.	
XORC	В	$CCR \oplus \#IMM \to CCR, EXR \oplus \#IMM \to EXR$ Logically XORs the CCR or EXR contents with immediate data.	
NOP		$PC + 2 \rightarrow PC$ Only increments the program counter.	

Note: * Refers to the operand size.

B: Byte W: Word

Table 2.10 Block Data Transfer Instructions

Instruction	Size	Function
EEPMOV.B	_	if R4L \neq 0 then Repeat @ER5+ \rightarrow @ER6+ R4L-1 \rightarrow R4L Until R4L = 0 else next;
EEPMOV.W	_	if R4 \neq 0 then Repeat @ER5+ \rightarrow @ER6+ R4-1 \rightarrow R4 Until R4 = 0 else next;
		Transfers a data block. Starting from the address set in ER5, transfers data for the number of bytes set in R4L or R4 to the address location set in ER6.
		Execution of the next instruction begins as soon as the transfer is completed.

2.6.2 Basic Instruction Formats

The H8S/2000 CPU instructions consist of 2-byte (1-word) units. An instruction consists of an operation field (op field), a register field (r field), an effective address extension (EA field), and a condition field (cc).

Figure 2.9 shows examples of instruction formats.

· Operation Field

Indicates the function of the instruction, the addressing mode, and the operation to be carried out on the operand. The operation field always includes the first four bits of the instruction. Some instructions have two operation fields.

Register Field

Specifies a general register. Address registers are specified by 3 bits, and data registers by 3 bits or 4 bits. Some instructions have two register fields. Some have no register field.

Effective Address Extension

8, 16, or 32 bits specifying immediate data, an absolute address, or a displacement.

Condition Field

Specifies the branching condition of Bcc instructions.



Figure 2.9 Instruction Formats (Examples)

Page 55 of 1054

2.7 Addressing Modes and Effective Address Calculation

The H8S/2000 CPU supports the eight addressing modes listed in table 2.11. Each instruction uses a subset of these addressing modes. Arithmetic and logic instructions can use the register direct and immediate modes. Data transfer instructions can use all addressing modes except program-counter relative and memory indirect. Bit manipulation instructions use register direct, register indirect, or the absolute addressing mode to specify an operand, and register direct (BSET, BCLR, BNOT, and BTST instructions) or immediate (3-bit) addressing mode to specify a bit number in the operand.

Table 2.11 Addressing Modes

No.	Addressing Mode	Symbol
1	Register direct	Rn
2	Register indirect	@ERn
3	Register indirect with displacement	@(d:16,ERn)/@(d:32,ERn)
4	Register indirect with post-increment Register indirect with pre-decrement	@ERn+ @-ERn
5	Absolute address	@aa:8/@aa:16/@aa:24/@aa:32
6	Immediate	#xx:8/#xx:16/#xx:32
7	Program-counter relative	@(d:8,PC)/@(d:16,PC)
8	Memory indirect	@@aa:8

2.7.1 Register Direct—Rn

The register field of the instruction specifies an 8-, 16-, or 32-bit general register containing the operand. R0H to R7H and R0L to R7L can be specified as 8-bit registers. R0 to R7 and E0 to E7 can be specified as 16-bit registers. ER0 to ER7 can be specified as 32-bit registers.

2.7.2 Register Indirect—@ERn

The register field of the instruction code specifies an address register (ERn) which contains the address of the operand on memory. If the address is a program instruction address, the lower 24 bits are valid and the upper 8 bits are all assumed to be 0 (H'00).

2.7.3 Register Indirect with Displacement—@(d:16, ERn) or @(d:32, ERn)

A 16-bit or 32-bit displacement contained in the instruction is added to an address register (ERn) specified by the register field of the instruction, and the sum gives the address of a memory operand. A 16-bit displacement is sign-extended when added.

2.7.4 Register Indirect with Post-Increment or Pre-Decrement—@ERn+ or @-ERn

Register indirect with post-increment—@ERn+: The register field of the instruction code specifies an address register (ERn) which contains the address of a memory operand. After the operand is accessed, 1, 2, or 4 is added to the address register contents and the sum is stored in the address register. The value added is 1 for byte access, 2 for word transfer instruction, or 4 for longword transfer instruction. For the word or longword transfer instructions, the register value should be even.

Register indirect with pre-decrement—@-ERn: The value 1, 2, or 4 is subtracted from an address register (ERn) specified by the register field in the instruction code, and the result is the address of a memory operand. The result is also stored in the address register. The value subtracted is 1 for byte access, 2 for word transfer instruction, or 4 for longword transfer instruction. For the word or longword transfer instructions, the register value should be even.

2.7.5 Absolute Address—@aa:8, @aa:16, @aa:24, or @aa:32

The instruction code contains the absolute address of a memory operand. The absolute address may be 8 bits long (@aa:8), 16 bits long (@aa:16), 24 bits long (@aa:24), or 32 bits long (@aa:32). Table 2.12 indicates the accessible absolute address ranges.

To access data, the absolute address should be 8 bits (@aa:8), 16 bits (@aa:16), or 32 bits (@aa:32) long. For an 8-bit absolute address, the upper 24 bits are all assumed to be 1 (H'FFFF). For a 16-bit absolute address the upper 16 bits are a sign extension. A 32-bit absolute address can access the entire address space.

A 24-bit absolute address (@aa:24) indicates the address of a program instruction. The upper 8 bits are all assumed to be 0 (H'00).

Table 2.12 Absolute Address Access Ranges

Absolute Address		Advanced Mode		
Data address	8 bits (@aa:8)	H'FFFF00 to H'FFFFFF		
	16 bits (@aa:16)	H'000000 to H'007FFF, H'FF8000 to H'FFFFFF		
	32 bits (@aa:32)	H'000000 to H'FFFFFF		
Program instruction address	24 bits (@aa:24)	_		

2.7.6 Immediate—#xx:8, #xx:16, or #xx:32

The instruction contains 8-bit (#xx:8), 16-bit (#xx:16), or 32-bit (#xx:32) immediate data as an operand.

The ADDS, SUBS, INC, and DEC instructions contain immediate data implicitly. Some bit manipulation instructions contain 3-bit immediate data in the instruction code, specifying a bit number. The TRAPA instruction contains 2-bit immediate data in its instruction code, specifying a vector address.

2.7.7 Program-Counter Relative—@(d:8, PC) or @(d:16, PC)

This mode is used in the Bcc and BSR instructions. An 8-bit or 16-bit displacement contained in the instruction is sign-extended and added to the 24-bit PC contents to generate a branch address. Only the lower 24 bits of this branch address are valid; the upper 8 bits are all assumed to be 0 (H'00). The PC value to which the displacement is added is the address of the first byte of the next instruction, so the possible branching range is -126 to +128 bytes (-63 to +64 words) or -32766 to +32768 bytes (-16383 to +16384 words) from the branch instruction. The resulting value should be an even number.

2.7.8 Memory Indirect—@@aa:8

This mode can be used by the JMP and JSR instructions. The instruction code contains an 8-bit absolute address specifying a memory operand. This memory operand contains a branch address. The upper bits of the absolute address are all assumed to be 0, so the address range is 0 to 255 (H'000000 to H'0000FF). The memory operand is a longword operand, the first byte of which is assumed to be 0 (H'00).

Note that the first part of the address range is also the exception vector area. For further details, refer to section 6, Exception Handling.

If an odd address is specified in word or longword memory access, or as a branch address, the least significant bit is regarded as 0, causing data to be accessed or instruction code to be fetched at the address preceding the specified address. (For further information, see section 2.5.2, Memory Data Formats.)

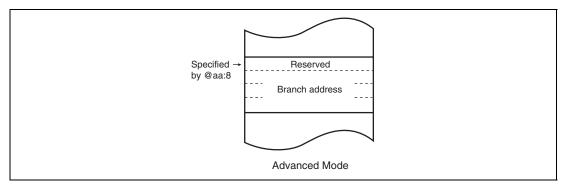
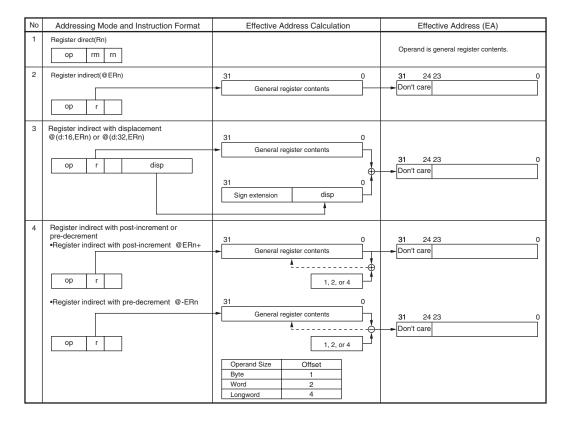



Figure 2.10 Branch Address Specification in Memory Indirect Mode

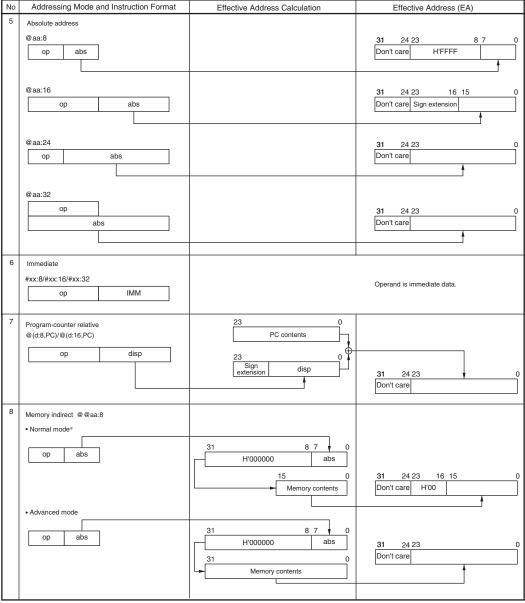

2.7.9 **Effective Address Calculation**

Table 2.13 indicates how effective addresses (EA) are calculated in each addressing mode.

Table 2.13 Effective Address Calculation (1)

Table 2.13 Effective Address Calculation (2)

Note: * Normal mode is not available in this LSI.

2.8 Processing States

The H8S/2000 CPU has four main processing states: the reset state, exception handling state, program execution state and power-down state. Figure 2.11 indicates the state transitions.

Reset State

In this state, the CPU and all on-chip peripheral modules are initialized and not operating. When the \overline{RES} input goes low, all current processing stops and the CPU enters the reset state. All interrupts are masked in the reset state. Reset exception handling starts when the \overline{RES} signal changes from low to high. For details, refer to section 6, Exception Handling. The reset state can also be entered by a watchdog timer overflow or low voltage detection in the low voltage detection circuit.

• Exception-Handling State

The exception-handling state is a transient state that occurs when the CPU alters the normal processing flow due to an exception source, such as a reset, trace, interrupt, or trap instruction. The CPU fetches a start address (vector) from the exception vector table and branches to that address. For further details, refer to section 6, Exception Handling.

- Program Execution State
 - In this state, the CPU executes program instructions in sequence.
- Program Stop State

This is a power-down state in which the CPU stops operating. The program stop state occurs when a SLEEP instruction is executed or the CPU enters software standby mode. For further details, refer to section 29, Power-Down Modes.

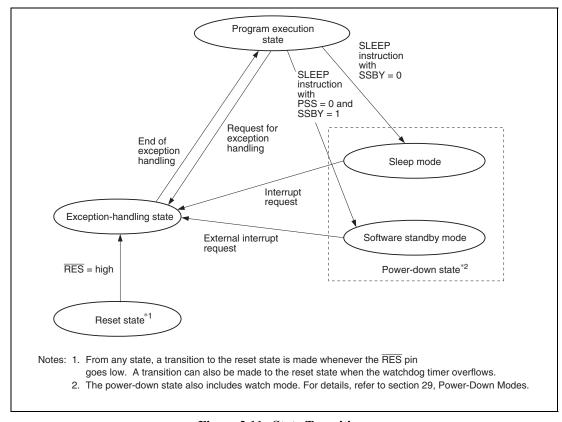


Figure 2.11 State Transitions

2.9 Usage Note

2.9.1 TAS Instruction

The registers ER0, ER1 ER4, and ER5b must be used when using the TAS instruction. Note that the TAS instruction is not generated in the Renesas H8S, H8S/300 series C/C++ Compiler. When using the TAS instruction as a user-defined built-in function, the registers ER0, ER1 ER4, and ER5b must be used.

2.9.2 STM/LDM Instruction

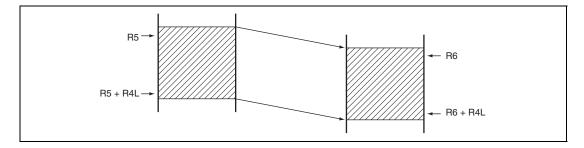
The register ER7 cannot be used to push data onto the stack for STM instruction or to pop data off the stack for LDM instruction stack. To push or pop data in one instruction, the registers that can be used are two, three, or four as shown in the list below.

Two registers: ER0 to ER1, ER2 to ER3, and ER4 to ER5

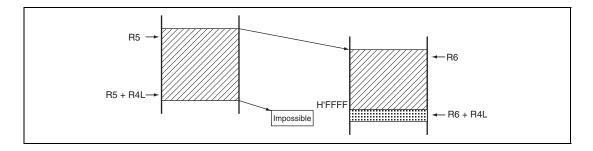
Three registers: ER0 to ER2, ER4 to ER6

Four registers: ER0 to ER3

Note that the STM/LDM instruction that contains ER is not generated in the Renesas H8S, H8S/300 series C/C++ Compiler


2.9.3 Notes on Using the Bit Operation Instruction

Instructions BSET, BCLR, BNOT, BST, and BIST read data in byte units, and write data in byte units after bit operation. Therefore, attention must be paid when these instructions are used for ports or registers including write-only bits.


Instruction BCLR can be used to clear the flag in the internal I/O register to 0. If it is obvious that the flag has been set to 1 by the interrupt processing routine, it is unnecessary to read the flag beforehand.

2.9.4 EEPMOV Instruction

1. The EEPMOV instruction is a block transfer instruction. The data with a start address shown in R5 and consists of bytes shown in R4L is transferred to the address shown in R6.

2. R4L and R6 must be set so that the last address of the destination (R6 +R4L) must be H'FFFF or lower. That is, the value of R6 in the middle of execution must not be H'FFFF \rightarrow H'0000.

Section 3 MCU Operating Modes

3.1 **Operating Mode Selection**

This LSI supports three operating modes (modes 2, 4, and 6). The operating mode is determined by the setting of the mode pins (MD2 and MD1). Table 3.1 shows the MCU operating mode selection.

Table 3.1 **MCU Operating Mode Selection**

MCU Operating Mode	MD2	MD1	MD0*	CPU Operating Mode	Description	On-Chip ROM
2	0	1	0	Advanced	Single-chip mode	Enabled
4	1	0	0	_	Flash memory programming/erasing	_
6	1	1	0	Emulation	On-chip emulation mode	Enabled

MD0 is not available as a pin and is internally fixed to 0. Note:

Modes 2 is single-chip mode.

Modes 0, 1, 3, 5 and 7 are not available in this LSI. Modes 4 and 6 are operating modes for a special purpose. Thus, mode pins should be set to enable mode 2 in the normal program execution state. Mode pin settings should not be changed during operation. After a reset is canceled, the mode pin inputs should be latched by reading MDCR.

Mode 4 is a boot mode for programming or erasing the flash memory. For details, see section 26, Flash Memory.

Mode 6 is an on-chip emulation mode. In this mode, this LSI is controlled by an on-chip emulator (E10A) via the JTAG, thus enabling on-chip emulation.

3.2 Register Descriptions

The following registers are related to the operating modes.

Table 3.2 Register Configuration

Register Name	Abbreviation	R/W	Initial Value	Address	Data Bus Width
Mode control register	MDCR	R/W	_	H'FF90	8
System control register	SYSCR	R/W	H'09	H'FF91	8
Serial/timer control register	STCR	R/W	H'00	H'FF9E	8

3.2.1 Mode Control Register (MDCR)

MDCR is used to set an operating mode and to monitor the current operating mode.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	EXPE	0	R/W	Reserved
				The initial value should not be changed.
6 to 4	_	All 0	R	Reserved
				These bits are always read as 0 and cannot be modified.
3	_	0	R/W	Reserved
				The initial value should not be changed.
2	MDS2	*	R	Mode Select 2 and 1
1	MDS1	*	R	These bits indicate the input levels at mode pins (MD2 and MD1) (the current operating mode). The MDS2 and MDS1 bits correspond to the MD2 and MD1 pins, respectively. These bits are read-only bits and cannot be written to.
				The input levels of the mode pins (MD2 and MD1) are latched into these bits when MDCR is read. These latches are canceled by a reset.
0	_	0	R	Reserved
				This bit is always read as 0 and cannot be modified.

Note: * The initial values are determined by the settings of the MD2 and MD1 pins.

3.2.2 System Control Register (SYSCR)

SYSCR monitors a reset source, selects the interrupt control mode and the detection edge for NMI, and enables or disables the on-chip RAM address space.

		Initial		
Bit	Bit Name	Value	R/W	Description
7, 6	_	All 0	R/W	Reserved
				The initial value should not be changed.
5	INTM1	0	R	Interrupt Control Select Mode 1 and 0
4	INTM0	0	R/W	These bits select the interrupt control mode of the interrupt controller.
				For details on the interrupt control modes, see section 7.6, Interrupt Control Modes and Interrupt Operation.
				00: Interrupt control mode 0
				01: Interrupt control mode 1
				10: Setting prohibited
				11: Setting prohibited
3	XRST	1	R	Reset Source
				Indicates the reset source. A reset is caused by a pin reset, power-on reset or when the watchdog timer overflows.
				0: A reset is caused when the watchdog timer overflows
				1: A reset is caused by a pin and the power-on.
2	NMIEG	0	R/W	NMI Edge Select
				Selects the valid edge of the NMI interrupt input.
				An interrupt is requested at the falling edge of NMI input
				An interrupt is requested at the rising edge of NMI input

Bit	Bit Name	Initial Value	R/W	Description
1	_	0	R/W	Reserved
				The initial value should not be changed.
0	RAME	1	R/W	RAM Enable
				Enables or disables on-chip RAM.
				0: On-chip RAM is disabled
				1: On-chip RAM is enabled

3.2.3 Serial/Timer Control Register (STCR)

STCR selects the input clock of the timer counter.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	IICX2*1	0	R/W	I ² C_2 Transfer Rate Select
				This bit controls the IIC_2 operation. This bit selects the transfer rate in master mode together with bits CKS2 to CKS0 in the I ² C_2 bus mode register (ICMR_2). For details on the transfer rate, see table 17.4.
6	IICX1*1	0	R/W	I ² C_1 Transfer Rate Select
				This bit controls the IIC_1 operation. This bit selects the transfer rate in master mode together with bits CKS2 to CKS0 in the I ² C_1 bus mode register (ICMR_1). For details on the transfer rate, see table 17.4.
5	IICX0*1	0	R/W	I ² C_0 Transfer Rate Select
				This bit controls the IIC_0 operation. This bit selects the transfer rate in master mode together with bits CKS2 to CKS0 in the I ² C_0 bus mode register (ICMR_0). For details on the transfer rate, see table 17.4.
4 to 2	_	All 0	R/W	Reserved
				The initial value should not be changed.
1	ICKS1*2	0	R/W	Internal Clock Source Select 1 and 0
0	ICKS0* ²	0	R/W	These bits select a clock to be input to the timer counter (TCNT) and a count condition together with bits CKS2 to CKS0 in TMR_0 or TMR_1 timer control register (TCR). For details, see section 12.3.4, Timer Control Register (TCR).

Notes: 1. Before accessing IICX2, IICX1, or IICX0, first clear the MSTPB4 bit in MSTPCRB, the MSTP3 bit in MSTPCRL, or the MSTP4 bit in MSTPCRL to 0, respectively.

2. Before accessing ICKS1 or ICKS0, first clear the MSTP12 bit in MSTPCRH to 0.

3.3 Operating Mode Descriptions

3.3.1 Mode 2

The CPU can access a 16-Mbyte address space in either advanced mode or single-chip mode. The on-chip ROM is enabled.

3.4 Address Map

Figures 3.1 shows the address map in each operating mode.

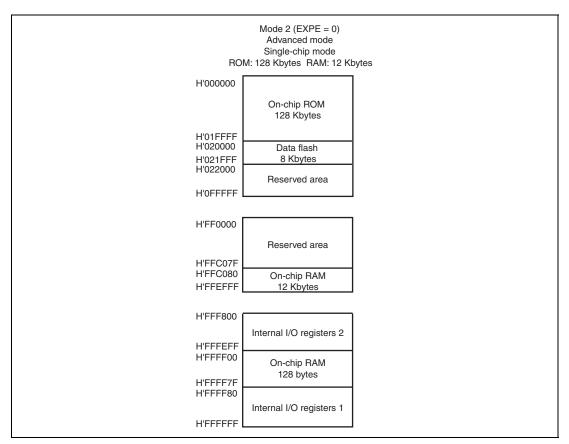


Figure 3.1 Address Map

H8S/2113 Group Section 4 Resets

Section 4 Resets

4.1 Types of Resets

There are four types of resets: pin reset, power-on reset/low-voltage detection reset 0, low-voltage detection reset 1, and watchdog timer reset.

Table 4.1 shows the reset names and sources.

The internal state and pins are initialized by a reset. Figure 4.1 shows the reset targets to be initialized.

The \overline{RES} pin should be fixed high when using the power-on reset.

Table 4.1 Reset Names and Sources

Reset Name	Source
Pin reset	Voltage input to the RES pin is driven low.
Power-on reset/low-voltage detection reset 0	Rise or fall in VCC (monitor voltage: Vdet0)
Low-voltage detection reset 1	Fall in VCC (monitor voltage: Vdet1)
Watchdog timer reset	The watchdog timer overflows.

Section 4 Resets H8S/2113 Group

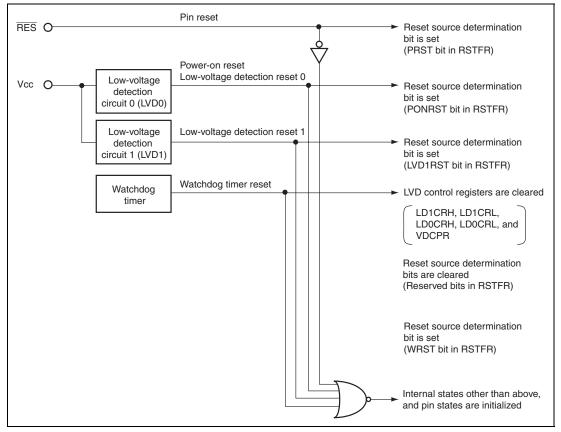


Figure 4.1 Block Diagram of Reset Circuit

Note that some registers are not initialized by any of the resets. The following describes the CPU internal registers.

The PC, one of the CPU internal registers, is initialized by loading the start address from vector addresses with the reset exception handling. At this time, the T bit in EXR is cleared to 0 and the I bits in EXR and CCR are set to 1. The general registers and other bits in CCR are not initialized. The initial value of the SP (ER7) is undefined. The SP should be initialized using the MOV.L instruction immediately after a reset. For details, see section 2, CPU. For other registers that are not initialized by a reset, see register descriptions in each section.

When a reset is canceled, the reset exception handling is started. For the reset exception handling, see section 6.3, Reset.

H8S/2113 Group Section 4 Resets

4.2 Input/Output Pins

Table 4.2 shows the pins related to resets.

Table 4.2 Pin Configuration

Pin Name	Symbol	I/O	Function
Reset	RES	Input	Reset input

4.3 Register Descriptions

This LSI has the following registers for resets.

 Table 4.3
 Register Configuration

Register Name	Abbreviation	R/W	Initial Value	Address	Data Bus Width
Reset source flag register	RSTFR	R/W	(H'10)*	H'FB40	8
System control register	SYSCR	R/W	H'09	H'FF91	8

Note: * Initial value when a reset by the RES pin has occurred.

Section 4 Resets H8S/2113 Group

4.3.1 Reset Source Flag Register (RSTFR)

RSTFR indicates the sources that generate internal resets.

Bit	Bit Name	Initial Value	R/W	Description
	Dit Name			·
7 to 5	_	All 0	R/W	Reserved
				These bits are always read as 0. The write value should always be 0.
4	PRST	(0)*1	R/(W)*2	RES Pin Reset Detection Flag
				1: Reset has occurred due to $\overline{\text{RES}}$ pin
				0: RES pin reset has not occurred
3	_	0	R/W	Reserved
				This bit is always read as 0. The write value should always be 0.
2	LVD1RST	(0)*1	R/(W)*2	Low-Voltage Detection Reset 1 Detection Flag
				Reset has occurred due to low-voltage detection reset 1
				0: Low-voltage detection reset 1 has not occurred
1	PONRST	(0)*1	R/(W)* ²	Power-on Reset/Low-Voltage Detection Reset 0 Detection Flag
				1: Reset has occurred due to power-on reset/low-voltage detection reset 0
				0: Power-on reset/low-voltage detection reset 0 has not occurred
0	WRST	(0)*1	R/(W)*2	Watchdog Timer Reset Detection Flag
				Reset has occurred due to an overflow of the watchdog timer
				0: Watchdog timer reset has not occurred

Notes: 1. The initial value of each bit differs depending on the reset type.

2. Each flag in this register can be cleared by writing 0 to the bit. When writing to this register, 0 must be written to the reserved bits.

H8S/2113 Group Section 4 Resets

4.3.2 System Control Register (SYSCR)

SYSCR monitors a reset source, selects the interrupt control mode and the detection edge for NMI, enables or disables access to the on-chip peripheral module registers, and enables or disables the on-chip RAM address space.

		Initial		
Bit	Bit Name	Value	R/W	Description
7, 6	_	All 0	R/W	Reserved
				The initial value should not be changed.
5	INTM1	0	R	Interrupt Control Select Mode 1 and 0
4	INTM0	0	R/W	These bits select the interrupt control mode of the interrupt controller.
				For details on the interrupt control modes, see section 7.6, Interrupt Control Modes and Interrupt Operation.
				00: Interrupt control mode 0
				01: Interrupt control mode 1
				10: Setting prohibited
				11: Setting prohibited
3	XRST	1	R	Reset Source
				Indicates the reset source. A reset is caused by a pin reset, power-on reset, low-voltage detection reset, or when the watchdog timer overflows.
				0: A reset is caused when the watchdog timer overflows
				1: A reset is caused by a pin, the power-on, or low-voltage detection.
2	NMIEG	0	R/W	NMI Edge Select
				Selects the valid edge of the NMI interrupt input.
				An interrupt is requested at the falling edge of NMI input
				An interrupt is requested at the rising edge of NMI input

Section 4 Resets H8S/2113 Group

Bit	Bit Name	Initial Value	R/W	Description
1	_	0	R/W	Reserved
				The initial value should not be changed.
0	RAME	1	R/W	RAM Enable
				Enables or disables on-chip RAM.
				0: On-chip RAM is disabled
				1: On-chip RAM is enabled

H8S/2113 Group Section 4 Resets

4.4 Pin Reset

This is a reset generated by the \overline{RES} pin.

When the \overline{RES} pin is driven low, all the processing in progress is aborted and the LSI enters a reset state.

In order to firmly reset the LSI by a pin reset, the \overline{RES} pin should be held low at least for 20 ms at a power-on. When a reset is input during operation, the \overline{RES} pin should be held low at least for 20 states. Resetting the LSI initializes the internal state of the CPU and the registers of the on-chip peripheral modules.

4.5 Power-on Reset/Low-voltage Detection Reset 0

This is an internal reset generated by low-voltage detection circuit 0 (LVD0).

A power-on with the \overline{RES} pin held high generates the power-on reset. When VCC exceeds the level of Vdet0, the power-on reset is canceled after the elapse of the specified time (the power-on reset time). The power-on reset time is the stabilization time for the external power supply and LSI.

When the power supply voltage falls down with the \overline{RES} pin held high and VCC becomes equal to or lower than the level of Vdet0, a low-voltage detection reset 0 is generated. Then when VCC rises to exceed the level of Vdet0, the low-voltage detection reset 0 is canceled after the elapse of the power-on reset time.

For details on the power-on reset/low-voltage detection reset 0, refer to section 5, Low-Voltage Detection Circuits (LVD), and section 31, Electrical Characteristics.

Figure 4.2 shows the operation of a power-on reset/low-voltage detection reset 0.

Section 4 Resets H8S/2113 Group

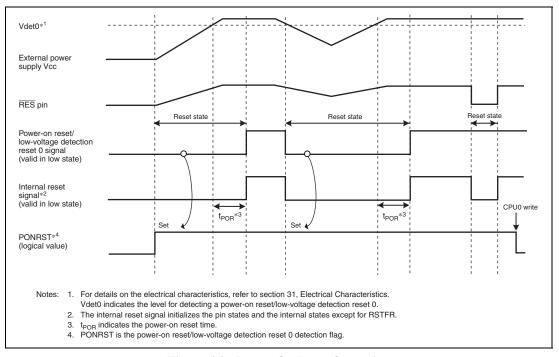


Figure 4.2 Power-On Reset Operation

H8S/2113 Group Section 4 Resets

4.6 Low-voltage Detection Reset 1

This is an internal reset generated by low-voltage detection circuit 1 (LVD1).

If VCC falls to become equal to or lower than the level of Vdet1 with the LD1E bit in LD1CRL set to 1 and the VD1RE bit in LD1CRH set to 1, a low-voltage detection reset 1 is generated. Then when VCC rises to exceed the level of Vdet1, the low-voltage detection reset 1 is canceled after the elapse of the power-on reset time.

For details on the low-voltage detection reset 1, refer to section 5, Low-Voltage Detection Circuits (LVD), and section 31, Electrical Characteristics.

4.7 Watchdog Timer Reset

This is an internal reset generated by the watchdog timer.

When the RST/NMI bit in TCSR is set to 1, if the TCNT overflows, a watchdog timer reset is issued.

For details on the watchdog timer reset, see section 14, Watchdog Timer (WDT).

Section 4 Resets H8S/2113 Group

4.8 Determination of Reset Generation Source

Reading RSTFR and SYSCR1 determines which reset generation has triggered execution of the reset exception handling. Figure 4.3 shows an example of a flow for identifying the reset generation source.

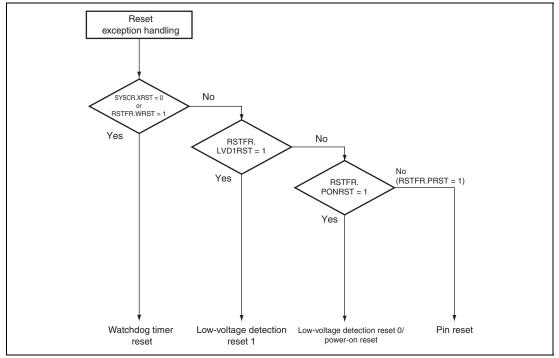


Figure 4.3 Example of Reset Generation Source Determination Flow

Section 5 Low-Voltage Detection Circuits (LVD)

This LSI includes a low-voltage detection module (LVD) consisting of two circuits, LVD0 and LVD1.

The LVD monitors the Vcc voltage. When Vcc falls below the voltage detection level, this module can reset the internal circuits of this LSI. It can also generate an interrupt when detecting a Vcc drop or rise.

5.1 **Features**

Power-on reset function

Generates an internal reset signal when power is first supplied.

Releases a reset when Vcc rises above the voltage detection level.

Low-voltage detection function

Reset function: Generates an internal reset signal when Vcc falls below the voltage detection

Interrupt function: Generates an interrupt when Vcc falls below or rises above the voltage detection level.

Detection levels: Two levels are available for LVD1 and two levels are available for LVD0.

Page 84 of 1054

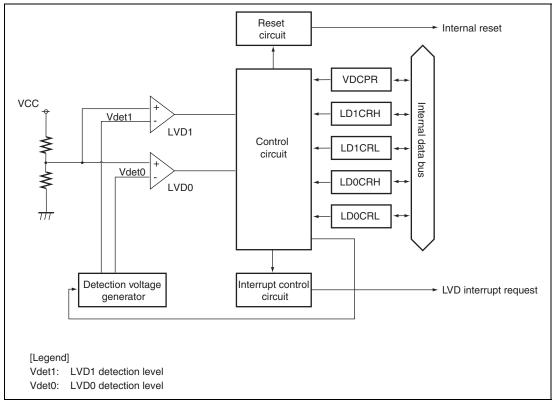


Figure 5.1 Block Diagram of Low-Voltage Detection Circuits

5.2 Register Descriptions

The LVD has the following registers.

Table 5.2 Register Configuration

Register Name	Abbreviation	R/W	Initial Value	Address	Data Bus Width
Low-voltage detection circuit control protect register	VDCPR	R/W	H'80	H'FB49	8
Low-voltage detection circuit 1 control register H	LD1CRH	R/W	H'00	H'FB44	8
Low-voltage detection circuit 1 control register L	LD1CRL	R/W	H'00	H'FB45	8
Low-voltage detection circuit 0 control register H	LD0CRH	R/W	H'01	H'FB46	8
Low-voltage detection circuit 0 control register L	LD0CRL	R/W	H'80	H'FB47	8

5.2.1 Low-Voltage Detection Circuit Control Protect Register (VDCPR)

VDCPR controls protection of the low-voltage detection circuits.

Bit	Bit Name	Initial Value	R/W	Description
7	WRI	1	R/W	VDCPR Write Disable
				0: Writing to the VDCPR bit is enabled.
				1: Writing to the VDCPR bit is disabled.
				Writing to this register is enabled only when 0 is written to this bit. This bit is always read as 1.
6 to 2	_	All 0	R/W	Reserved
				These bits are read as 0. The write value should always be 0.
1	_	0	R	Reserved
				This bit is read as 0. The write value should always be 0.
0	LDPRC	0	R/W	Low-Voltage Detection Circuit Control Register Write Enable
				Writing to the low-voltage detection circuit control registers is disabled.
				 Writing to the low-voltage detection circuit control registers is enabled.
				When the value of this bit is 1, writing to the low-voltage detection circuit control registers (LD1CRH, LD1CRL, LC0CRH, LD0CRL) is enabled.
				Writing to a low-voltage detection circuit control register clears the LDPRC bit to 0.

Note: Use a MOV instruction to modify this register.

5.2.2 Low-Voltage Detection Circuit 1 Control Register H (LD1CRH)

LD1CRH controls low-voltage detection circuit 1 (LVD1).

Bit	Bit Name	Initial Value	R/W	Description
7	VD1DF	0	R/W	LVD1 Power Supply Voltage Drop Flag
				[Setting condition]
				 When Vcc falls below Vdet1.
				[Clearing conditions]
				• When 1 is read from this bit and then 0 is written to.
				When the LVD1 circuit is in standby mode.
6	VD1UF	0	R/W	LVD1 Power Supply Voltage Rise Flag
				[Setting condition]
				 When Vcc falls below Vdet1 and rises to Vdet1 or higher before falling to Vdet0 or lower.
				[Clearing conditions]
				When 1 is read from this bit and then 0 is written to.
				When the LVD1 circuit is in standby mode.
5, 4	_	All 0	R/W	Reserved
				These bits are read as 0. The write value should always be 0.
3	_	0	R/W	Reserved
				This bit is read as 0. The write value should always be 0.
2	VD1IRCS	0	R/W	LVD1 Interrupt Request Generation Condition Select
				 Generates an interrupt request when Vcc rises to Vdet1 or higher.
				 Generates an interrupt request when Vcc falls to Vdet1 or lower.
				When VD1MS = 1, a reset request is generated when the voltage falls below Vdet1, regardless of this bit setting.

Bit	Bit Name	Initial Value	R/W	Description
1	VD1MS	0	R/W	LVD1 Mode Select
				 Generates an interrupt request when the voltage reaches Vdet1.
				1: Generates a reset request when the voltage reaches Vdet1.
0	LD1RE	0	R/W	LVD1 Interrupt/Reset Request Enable
				This bit is valid when the VD1E bit is 1.
				0: Disables interrupt/reset requests generated when the specified voltage level is detected.
				Enables interrupt/reset requests generated when the specified voltage level is detected.

Table 5.3 shows the relationship between the LD1CRH settings and selected functions. LD1CRH should be set according to table 5.3.

Table 5.3 LD1CRH Settings and Selected Functions

	LD1CRH		Selected Functions			
VD1MS	VD1IRCS	LVD1 Low- Voltage Detect Reset	LVD1 Voltage Drop Detect Interrupt	LVD1 Voltage Rise Detect Interrupt		
1	х	Selected	_	_		
0	1	_	Selected	_		
0	0	_		Selected		

[Legend]

x: Don't care.

5.2.3 Low-Voltage Detection Circuit 1 Control Register L (LD1CRL)

LD1CRL controls low-voltage detection circuit 1 (LVD1).

Bit	Bit Name	Initial Value	R/W	Description
7	VD1E	0	R/W	LVD1 Circuit Enable
				0: LVD1 is stopped
				1: LVD1 is started
6	_	0	R	Reserved
				This bit is read as 0. The write value should always be 0.
5 to 3	_	All 0	R/W	Reserved
				These bits are read as 0. The write value should always be 0.
2	VD1LS2	0	R/W	LVD1 Detection Voltage Level Select
1	VD1LS1	0	R/W	000: Setting prohibited
0	VD1LS0	0	R/W	001: Setting prohibited
				010: Setting prohibited
				011: 3.10 V
				100: 3.25 V
				101: Setting prohibited
				110: Setting prohibited
				111: Setting prohibited
				These values are falling detection voltages under typical conditions.
				Note: The LVD1 detection voltage should be higher than the LVD0 detection voltage.

5.2.4 Low-Voltage Detection Circuit 0 Control Register H (LD0CRH)

LD0CRH controls low-voltage detection circuit 0 (LVD0).

Bit	Bit Name	Initial Value	R/W	Description
7	_	0	R	Reserved
				This bit is read as 0. The write value should always be 0.
6	_	0	R/W	Reserved
				This bit is read as 0. The write value should always be 0.
5, 4	_	All 0	R/W	Reserved
				These bits are read as 0. The write value should always be 0.
3	_	0	R/W	Reserved
				This bit is read as 0. The write value should always be 0.
2, 1	_	All 0	R/W	Reserved
				These bits are read as 0. The write value should always be 0.
0	_	1	R	Reserved
				This bit is read as 1. The write value should always be 1.

Note: This register is not initialized by an LVD1 reset.

5.2.5 Low-Voltage Detection Circuit 0 Control Register L (LD0CRL)

LD0CRL controls low-voltage detection circuit 0 (LVD0).

Bit	Bit Name	Initial Value	R/W	Description
7	_	1	R	Reserved
				This bit is read as 1. The write value should always be 1.
6	_	0	R	Reserved
				This bit is read as 0. The write value should always be 0.
5 to 1	_	All 0	R/W	Reserved
				These bits are read as 0. The write value should always be 0.
0	VD0LS1	0	R/W	LVD0 Detection Voltage Level Select
				0: 2.35 V
				1: 2.85 V
				These values are detection voltages under typical conditions.
				The detection voltage at a power-on reset is 2.35 V.
				Note: The LVD0 detection voltage should be lower than the LVD1 detection voltage.

Note: This register is not initialized by an LVD1 reset.

5.3 Operation

5.3.1 Power-On Reset Function

A power-on reset initializes the entire LSI when the power supply is started; LVD0 monitors Vcc to detect the start of power supply.

Supplying power while the $\overline{\text{RES}}$ signal is driven to a high level generates a power-on reset. When a specified time (the power-on reset period) has passed after Vcc rises above Vdet0 (2.35 V for a power-on reset), the power-on reset is cancelled. The power-on reset period is necessary for the external power supply and this LSI to stabilize.

Figure 5.2 shows the operation timing of the power-on reset function.

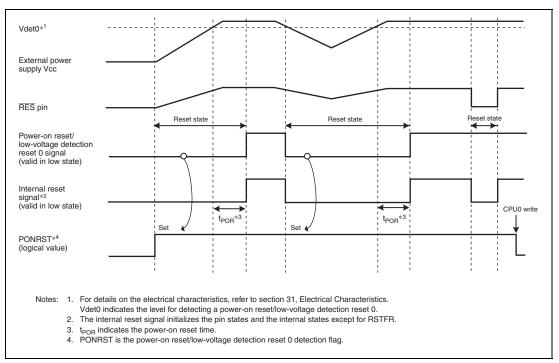


Figure 5.2 Operational Timing of Power-On Reset

5.3.2 Low-Voltage Detection Circuit

(1) Low Voltage Detect Reset 1 (LVDR1)

LVDR1 is a reset generated by the LVD1 circuit. Figure 5.3 shows the operation timing of the LVDR1.

The LVD1 enters the stopped state after a power-on reset is canceled. To operate the LVDR1, set the VD1E bit in LD1CRL to 1, wait for T_{Ivd1on} until the detection voltage and the low-voltage detection circuit 1 operation have stabilized, then set the VD1MS and VD1RE bits in LD1CRH to 1. To cancel the LVDR1, first the VD1RE bit in LD1CRH should be cleared to 0 and then the VD1E bit in LD1CRL should be cleared to 0. Figure 5.4 shows the procedure to set the LVDR1.

When Vcc falls below Vdet1, low-voltage detect reset 1 occurs. The low-voltage detect reset 1 state remains in place until a power-on reset is generated. When a specified period (low-voltage detect reset 1 period) has passed since Vcc rises above the Vdet1 voltage again, low-voltage detect reset 1 is released.

If Vcc falls below Vdet0, a power-on reset occurs.

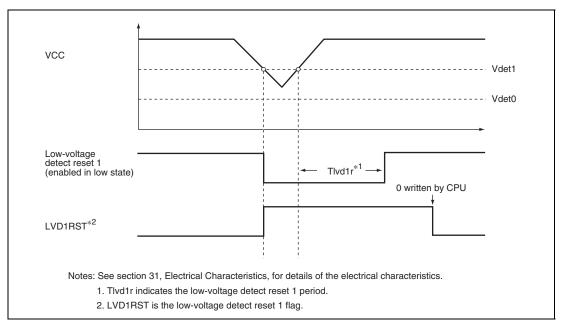


Figure 5.3 Operation Timing of LVDR1

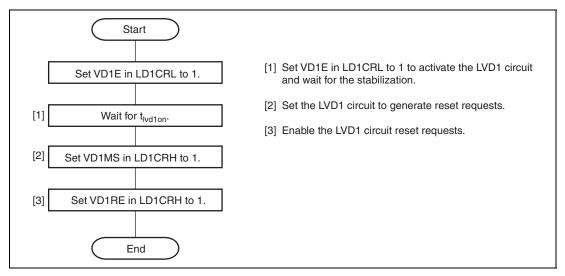


Figure 5.4 Procedure to Set LVDR1

(2) Low Voltage Detect Interrupt 1 (LVDI1)

LVDI1 is an interrupt generated by the LVD1 circuit. Figure 5.5 shows the operation timing of LVDI1.

The LVD1 enters the stopped state after a power-on reset is canceled. To operate the LVDI1, set the VD1E bit in LD1CRL to 1, wait for T_{lvdlon} until the detection voltage and the low-voltage detection circuit 1 operation have stabilized, then clear the VD1MS bit to 0 and set the VD1RE bit to 1 in LD1CRH. To cancel the LVDI1, first the VD1RE bit in LD1CRH should be cleared to 0 and then the VD1E bit in LD1CRL should be cleared to 0. Figure 5.6 shows the procedure to set the LVDI1.

When Vcc falls below Vdet1, the VD1DF bit in LD1CRH is set to 1. If the VD1IRCS bit in LD1CRH is 1 at this time, an LVD1 interrupt request is simultaneously generated.

When Vcc does not fall below Vdet0 but rises above Vdet1 again, the VD1UF bit in LD1CRH is set to 1. If the VD1IRCS bit in LD1CRH is 0 at this time, an LVD1 interrupt request is simultaneously generated.

If Vcc falls below Vdet0, a power-on reset occurs.

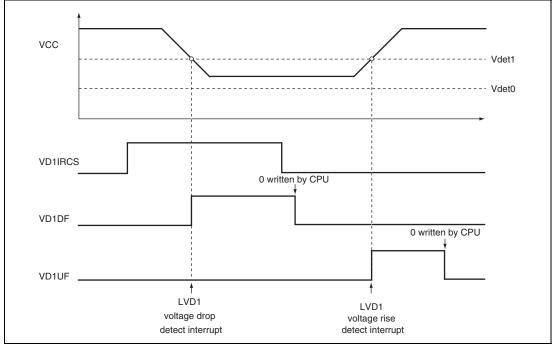


Figure 5.5 Operational Timing of LVDI1

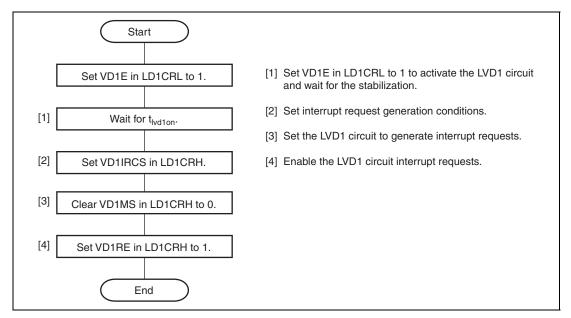


Figure 5.6 Procedure to Set LVDI1

(3) Low Voltage Detect Reset 0 (LVDR0)

LVDR0 is a reset generated by the LVD0 circuit. Figure 5.7 shows the operation timing of the LVDR0.

After a power-on reset is released, LVDR0 is always enabled.

When Vcc falls below Vdet0, a power-on reset is generated. When the power-on reset period has passed since Vcc rises above the Vdet0 voltage again, the internal reset is released.

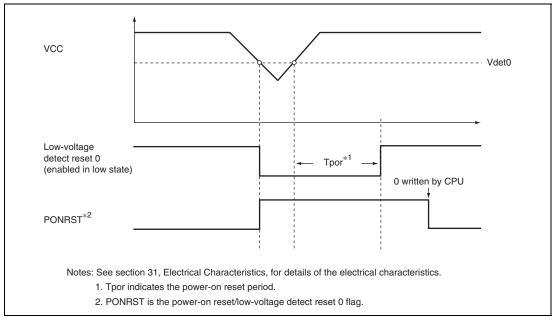


Figure 5.7 Operation Timing of LVDR0

Section 6 Exception Handling

6.1 **Exception Handling Types and Priority**

As table 6.1 indicates, exception handling may be caused by a reset, interrupt, or trap instruction. Exception handling is prioritized as shown in table 6.1. If two or more exceptions occur simultaneously, they are accepted and processed in order of priority.

Exception Types and Priority Table 6.1

Priority	Exception Type	Start of Exception Handling			
High	Reset	Starts immediately after a low-to-high transition of the RES pin, when the watchdog timer overflows, by power-on reset, low-voltage detection reset 0, or low-voltage detection reset 1.			
	Interrupt	Starts when execution of the current instruction or exception handling ends, if an interrupt request has been issued. Interrupt detection is not performed on completion of ANDC, ORC, XORC, or LDC instruction execution, or on completion of reset exception handling.			
Low	Trap instruction	Started by execution of a trap (TRAPA) instruction. Trap instruction exception handling requests are accepted at all times in the program execution state.			

6.2 Exception Sources and Exception Vector Table

Different vector addresses are assigned to exception sources. Table 6.2 list the exception sources and their vector addresses.

Table 6.2 Exception Handling Vector Table

		Vector	Vector Addresses
Exception Source	e	Number	Advanced Mode
Reset		0	H'000000 to H'000003
Reserved for syst	em use	1	H'000004 to H'000007
		6	H'000018 to H'00001B
External interrupt	(NMI)	7	H'00001C to H'00001F
Trap instruction (f	our sources)	8	H'000020 to H'000023
		9	H'000024 to H'000027
		10	H'000028 to H'00002B
		11	H'00002C to H'00002F
Reserved for syst	em use	12	H'000030 to H'000033
		15	H'00003C to H'00003F
External interrupt	IRQ0	16	H'000040 to H'000043
	IRQ1	17	H'000044 to H'000047
	IRQ2	18	H'000048 to H'00004B
	IRQ3	19	H'00004C to H'00004F
	IRQ4	20	H'000050 to H'000053
	IRQ5	21	H'000054 to H'000057
	IRQ6	22	H'000058 to H'00005B
	IRQ7	23	H'00005C to H'00005F
Internal interrupt*		24	H'000060 to H'000063
		29	H'000074 to H'000077

		Vector	Vector Addresses
Exception Source	Exception Source		Advanced Mode
External interrupt	KIN7 to KIN0	30	H'000078 to H'00007B
	KIN15 to KIN8	31	H'00007C to H'00007F
	WUE7 to WUE0	32	H'000080 to H'000083
	WUE15 to WUE8	33	H'000084 to H'000087
Internal interrupt*		34	H'000088 to H'00008B
		55	H'0000DC to H'0000DF
External interrupt	IRQ8	56	H'0000E0 to H'0000E3
	IRQ9	57	H'0000E4 to H'0000E7
	IRQ10	58	H'0000E8 to H'0000EB
	IRQ11	59	H'0000EC to H'0000EF
	IRQ12	60	H'0000F0 to H'0000F3
	IRQ13	61	H'0000F4 to H'0000F7
	IRQ14	62	H'0000F8 to H'0000FB
	IRQ15	63	H'0000FC to H'0000FF
Internal interrupt*		64	H'000100 to H'000103
		127	H'0001FC to H'0001FF

Note: * For details on the internal interrupt vector table, see section 7.5, Interrupt Exception Handling Vector Tables.

6.3 Reset

A reset has the highest exception priority. When the \overline{RES} pin goes low, all processing halts and this LSI enters the reset state. To ensure that this LSI is reset by a pin, hold the \overline{RES} pin low for at least 20 ms at power-on. When a reset is input during operation, hold the \overline{RES} pin low for at least 20 states. A reset initializes the internal state of the CPU and the registers of on-chip peripheral modules. The chip can also be reset by overflow of the watchdog timer or by the low voltage detection at a power-on reset circuit. For details, see section 4, Resets or section 14, Watchdog Timer (WDT).

6.3.1 Reset Exception Handling

When the RES pin goes high or the power-on reset is canceled after being held low for the necessary time, this LSI starts reset exception handling as follows:

- 1. The internal state of the CPU and the registers of the on-chip peripheral modules are initialized and the L bit in CCR is set to 1.
- 2. The reset exception handling vector address is read and transferred to the PC, and then program execution starts from the address indicated by the PC.

Figure 6.1 shows an example of the reset sequence.

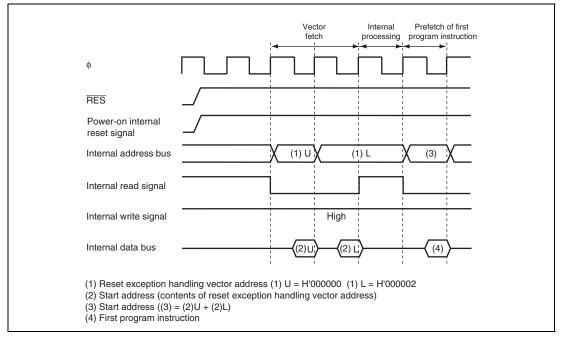


Figure 6.1 Reset Sequence (Mode 2)

6.3.2 Interrupts Immediately after Reset

If an interrupt is accepted immediately after a reset and before the stack pointer (SP) is initialized, the PC and CCR will not be saved correctly, leading to a program crash. To prevent this, all interrupt requests, including NMI, are disabled immediately after a reset. Since the first instruction of a program is always executed immediately after a reset, make sure that this instruction initializes the SP (example: MOV.L #xx: 32, SP).

6.3.3 On-Chip Peripheral Modules after Reset Is Cancelled

After a reset is cancelled, the module stop control registers (MSTPCRH, MSTPCRL, MSTPCRA, MSTPCRB) are initialized, and all modules except the DTC operate in module stop mode. Therefore, the registers of on-chip peripheral modules cannot be read from or written to. To read from and write to these registers, clear module stop mode. For details on module stop mode, see section 29, Power-Down Modes.

6.4 Interrupt Exception Handling

Interrupts are controlled by the interrupt controller. The sources to start interrupt exception handling are external interrupt sources (NMI, IRQ15 to IRQ0, KIN15 to KIN0, and WUE15 to WUE0) and internal interrupt sources from the on-chip peripheral modules. NMI is an interrupt with the highest priority. For details, see section 7, Interrupt Controller.

Interrupt exception handling is conducted as follows:

- The values in the program counter (PC) and condition code register (CCR) are saved in the stack.
- 2. A vector address corresponding to the interrupt source is generated, the start address is loaded from the vector table to the PC, and program execution starts from that address.

6.5 Trap Instruction Exception Handling

Trap instruction exception handling starts when a TRAPA instruction is executed. Trap instruction exception handling can be executed at all times in the program execution state.

Trap instruction exception handling is conducted as follows:

- The values in the program counter (PC) and condition code register (CCR) are saved in the stack.
- 2. A vector address corresponding to the interrupt source is generated, the start address is loaded from the vector table to the PC, and program execution starts from that address.

The TRAPA instruction fetches a start address from a vector table corresponding to a vector number from 0 to 3, as specified in the instruction code.

Table 6.3 shows the status of CCR after execution of trap instruction exception handling.

Table 6.3 Status of CCR after Trap Instruction Exception Handling

		CCR		
Interrupt Control Mode	I	UI		
0	Set to 1	Retains value prior to execution		
1	Set to 1	Set to 1		

6.6 **Stack Status after Exception Handling**

Figure 6.2 shows the stack after completion of trap instruction exception handling and interrupt exception handling.

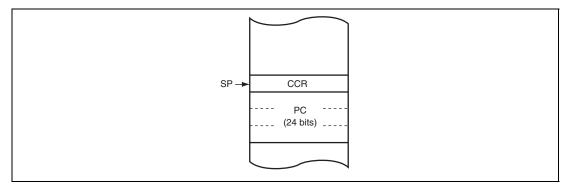


Figure 6.2 Stack Status after Exception Handling

6.7 Usage Note

When accessing word data or longword data, this LSI assumes that the lowest address bit is 0. The stack should always be accessed in words or longwords, and the value of the stack pointer (SP: ER7) should always be kept even.

Use the following instructions to save registers:

```
PUSH.W Rn (or MOV.W Rn, @-SP)
PUSH.L ERn (or MOV.L ERn, @-SP)
```

Use the following instructions to restore registers:

```
POP.W Rn (or MOV.W @SP+, Rn)
POP.L ERn (or MOV.L @SP+, ERn)
```

Setting SP to an odd value may lead to a malfunction. Figure 6.3 shows an example of what occurs when the SP value is odd.

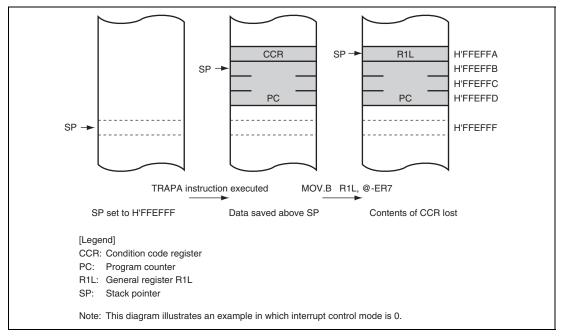


Figure 6.3 Operation when SP Value Is Odd

Section 7 Interrupt Controller

7.1 Features

• Two interrupt control modes

Two interrupt control modes can be set by means of the INTM1 and INTM0 bits in the system control register (SYSCR).

• Priorities settable with ICR

An interrupt control register (ICR) is provided for setting in each module interrupt priority levels for all interrupt requests excluding NMI and address breaks.

• Three-level interrupt mask control

By means of the interrupt control mode, I and UI bits in CCR and ICR, 3-level interrupt mask control is performed.

• Forty-nine external interrupt pins

NMI is the highest-priority interrupt, and is accepted at all times. Rising edge or falling edge detection can be selected for NMI. Falling-edge, rising-edge, or both-edge detection, or level sensing, can be independently selected for $\overline{IRQ15}$ to $\overline{IRQ0}$. Either of falling-edge or rising-edge detection can be independently selected for $\overline{WUE15}$ to $\overline{WUE0}$. Interrupts are requested on the falling edge of $\overline{KIN15}$ to $\overline{KIN0}$.

• General ports for $\overline{IRQ15}$ to $\overline{IRQ7}$ and $\overline{ExIRQ15}$ to $\overline{ExIRQ7}$ input are selectable

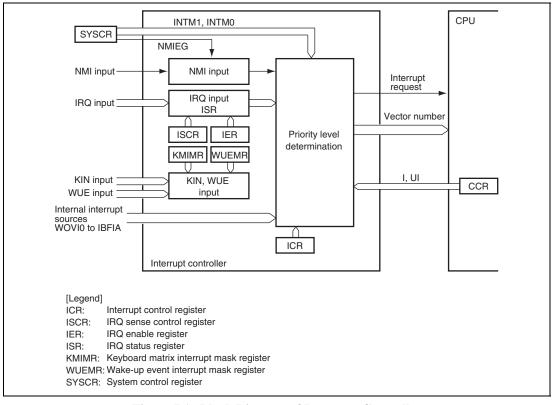


Figure 7.1 Block Diagram of Interrupt Controller

7.2 Input/Output Pins

Table 7.1 summarizes the pins of the interrupt controller.

Table 7.1 Pin Configuration

Pin Name	I/O	Function		
NMI	Input	Nonmaskable external interrupt pin		
		Rising edge or falling edge can be selected		
IRQ15 to IRQ0,	Input	Maskable external interrupt pins		
ExIRQ15 to ExIRQ7		Rising-edge, falling-edge, or both-edge detection, or level- sensing, can be selected individually for each pin. To which pin the IRQ15 to IRQ7 interrupt is input can be selected from the $\overline{\text{IRQm}}$ and $\overline{\text{ExIRQm}}$ pins. (n = 15 to 7)		
KIN15 to KIN0	Input	Maskable external interrupt pins		
		An interrupt is requested at the falling edge.		
WUE15 to WUE0	Input	Maskable external interrupt pins		
		Either rising edge or falling edge detection can be selected for each pin.		

7.3 Register Descriptions

The interrupt controller has the following registers. For details on the system control register (SYSCR), see section 3.2.2, System Control Register (SYSCR).

Table 7.2 Register Configuration

Register Name	Abbreviation	R/W	Initial Value	Address	Data Bus Width
Interrupt control registers A	ICRA	R/W	H'00	H'FEE8	8
Interrupt control registers B	ICRB	R/W	H'00	H'FEE9	8
Interrupt control registers C	ICRC	R/W	H'00	H'FEEA	8
Interrupt control registers D	ICRD	R/W	H'00	H'FE87	8
Address break control register	ABRKCR	R/W	_	H'FEF4	8
Break address registers A	BARA	R/W	H'00	H'FEF5	8
Break address registers B	BARB	R/W	H'00	H'FEF6	8
Break address registers C	BARC	R/W	H'00	H'FEF7	8
IRQ sense control register 16H	ISCR16H	R/W	H'00	H'FEFA	8
IRQ sense control register 16L	ISCR16L	R/W	H'00	H'FEFB	8
IRQ sense control register H	ISCRH	R/W	H'00	H'FEEC	8
IRQ sense control register L	ISCRL	R/W	H'00	H'FEED	8
IRQ enable register 16	IER16	R/W	H'00	H'FEF8	8
IRQ enable register	IER	R/W	H'00	H'FFC2	8
IRQ status register 16	ISR16	R/W	H'00	H'FEF9	8
IRQ status register	ISR	R/W	H'00	H'FEEB	8
IRQ sense port select register 16	ISSR16	R/W	H'00	H'FEFC	8
IRQ sense port select register	ISSR	R/W	H'00	H'FEFD	8
Keyboard matrix interrupt mask register A	KMIMRA	R/W	H'FF	H'FE83	8
Keyboard matrix interrupt mask register B	KMIMRB	R/W	H'FF	H'FE81	8
Wake-up event interrupt mask register A	WUEMRA	R/W	H'FF	H'FE45	8

Register Name	Abbreviation	R/W	Initial Value	Address	Data Bus Width
Wake-up event interrupt mask register B	WUEMRB	R/W	H'FF	H'FE44	8
Wake-up sense control register A (WUE15 to WUE8)	WUESCRA	R/W	H'00	H'FE84	8
Wake-up sense control register B (WUE7 to WUE0)	WUESCRB	R/W	H'00	H'FE96	8
Wake-up input interrupt status register A (WUE15 to WUE8)	WUESRA	R/W	H'00	H'FE85	8
Wake-up input interrupt status register B (WUE7 to WUE0)	WUESRB	R/W	H'00	H'FE97	8
Wake-up enable register	WUEER	R/W	H'00	H'FE86	8

7.3.1 **Interrupt Control Registers A to D (ICRA to ICRD)**

The ICR registers set interrupt control levels for interrupts other than NMI. The correspondence between interrupt sources and ICRA to ICRD settings is shown in table 7.3.

Bit	Bit Name	Initial Value	R/W	Description
7 to 0	ICRn7 to ICRn0	All 0	R/W	Interrupt Control Level
				Corresponding interrupt source is interrupt control level 0 (no priority)
				Corresponding interrupt source is interrupt control level 1 (priority)

Note: n: A to D

Table 7.3 Correspondence between Interrupt Source and ICR

Register

Bit	Bit Name	ICRA	ICRB	ICRC	ICRD
7	ICRn7	IRQ0	A/D converter	SCIF	IRQ8 to IRQ11
6	ICRn6	IRQ1	TCM_0, TCM_1, TCM_2	SCI_1	IRQ12 to IRQ15
5	ICRn5	IRQ2, IRQ3	SSU	_	KIN0 to KIN15
4	ICRn4	IRQ4, IRQ5	_	IIC_0 (SMBUS)	WUE0 to WUE15
3	ICRn3	IRQ6, IRQ7	TMR_0	IIC_1, IIC_2	TPU_0
2	ICRn2	LVD1	TMR_1	FSI	TPU_1
1	ICRn1	WDT_0	TMR_X, TMR_Y	LPC	TPU_2
0	ICRn0	WDT_1	PS2	PECI	_

Notes: n: A to D

^{—:} Reserved. The initial value should not be changed.

7.3.2 Address Break Control Register (ABRKCR)

ABRKCR controls the address breaks. When both the CMF flag and BIE bit are set to 1, an address break is requested.

Bit	Bit Name	Initial Value	R/W	Description
7	CMF	0	R	Condition Match Flag
				Address break source flag. Indicates that an address specified by BARA to BARC is prefetched.
				[Clearing condition]
				When an exception handling is executed for an address break interrupt.
				[Setting condition]
				When an address specified by BARA to BARC is prefetched while the BIE bit is set to 1.
6 to 1	_	All 0	R/W	Reserved
				The initial value should not be changed.
0	BIE	0	R/W	Break Interrupt Enable
				Enables or disables address break.
				0: Disabled
				1: Enabled

7.3.3 Break Address Registers A to C (BARA to BARC)

The BAR registers specify an address that is to be a break address. An address in which the first byte of an instruction exists should be set as a break address.

BARA

Bit	Bit Name	Initial Value	R/W	Description
7 to 0	A23 to A16	All 0	R/W	Addresses 23 to 16
				The A23 to A16 bits are compared with A23 to A16 in the internal address bus.

BARB

Bit	Bit Name	Initial Value	R/W	Description
7 to 0	A15 to A8	All 0	R/W	Addresses 15 to 8
				The A15 to A8 bits are compared with A15 to A8 in the internal address bus.

BARC

Bit	Bit Name	Initial Value	R/W	Description
7 to 1	A7 to A1	All 0	R/W	Addresses 7 to 1
				The A7 to A1 bits are compared with A7 to A1 in the internal address bus.
0	_	0	R	Reserved
				This bit is always read as 0 and cannot be modified.

7.3.4 IRQ Sense Control Registers (ISCR16H, ISCR16L, ISCRH, ISCRL)

The ISCR registers select the source that generates an interrupt request at pins $\overline{IRQ15}$ to $\overline{IRQ0}$ or pins $\overline{ExIRQ15}$ to $\overline{ExIRQ6}$.

• ISCR16H

Bit	Bit Name	Initial Value	R/W	Description
7	IRQ15SCB	0	R/W	IRQn Sense Control B
6	IRQ15SCA	0	R/W	IRQn Sense Control A
5	IRQ14SCB	0	R/W	BA
4	IRQ14SCA	0	R/W	00: Interrupt request generated at low level of IRQn
3	IRQ13SCB	0	R/W	or ExIRQn input
2	IRQ13SCA	0	R/W	01: Interrupt request generated at falling edge of IRQn or ExIRQn input
1	IRQ12SCB	0	R/W	•
0	IRQ12SCA	0	R/W	 Interrupt request generated at rising edge of IRQn or ExIRQn input
				11: Interrupt request generated at both falling and rising edges of IRQn or ExIRQn input
				(n = 15 to 12)
				Note: The IRQn or ExIRQn pin is selected by IRQ sense port select register 16 (ISSR16).

• ISCR16L

Bit	Bit Name	Initial Value	R/W	Description
7	IRQ11SCB	0	R/W	IRQn Sense Control B
6	IRQ11SCA	0	R/W	IRQn Sense Control A
5	IRQ10SCB	0	R/W	BA
4	IRQ10SCA	0	R/W	00: Interrupt request generated at low level of IRQn
3	IRQ9SCB	0	R/W	or ExIRQn input
2	IRQ9SCA	0	R/W	O1: Interrupt request generated at falling edge of IRQn or ExIRQn input
1	IRQ8SCB	0	R/W	1
0	IRQ8SCA	0	R/W	 Interrupt request generated at rising edge of IRQn or ExIRQn input
				11: Interrupt request generated at both falling and rising edges of IRQn or ExIRQn input
				(n = 11 to 8)
				Note: The IRQn or ExIRQn pin is selected by IRQ sense port select register 16 (ISSR16).

• ISCRH

Bit	Bit Name	Initial Value	R/W	Description
7	IRQ7SCB	0	R/W	IRQn Sense Control B
6	IRQ7SCA	0	R/W	IRQn Sense Control A
5	IRQ6SCB	0	R/W	BA
4	IRQ6SCA	0	R/W	00: Interrupt request generated at low level of IRQn
3	IRQ5SCB	0	R/W	or ExIRQn input
2	IRQ5SCA	0	R/W	01: Interrupt request generated at falling edge of IRQn or ExIRQn input
1	IRQ4SCB	0	R/W	10: Interrupt request generated at rising edge of
0	IRQ4SCA	0	R/W	IRQn or ExIRQn input
				11: Interrupt request generated at both falling and rising edges of IRQn or ExIRQn input
				(n = 7 to 4)
				Note: The IRQn or ExIRQn pin is selected by the IRQ sense port select register (ISSR). The ExIRQ6, ExIRQ5, and ExIRQ4 pins are not supported.

• ISCRL

Bit	Bit Name	Initial Value	R/W	Description
7	IRQ3SCB	0	R/W	IRQn Sense Control B
6	IRQ3SCA	0	R/W	IRQn Sense Control A
5	IRQ2SCB	0	R/W	BA
4	IRQ2SCA	0	R/W	00: Interrupt request generated at low level of IRQn
3	IRQ1SCB	0	R/W	- input
2	IRQ1SCA	0	R/W	01: Interrupt request generated at falling edge of IRQn input
1	IRQ0SCB	0	R/W	10: Interrupt request generated at rising edge of
0	IRQ0SCA	0	R/W	IRQn input
				11: Interrupt request generated at both falling and rising edges of IRQn input
				(n = 3 to 0)

7.3.5 IRQ Enable Registers (IER16, IER)

The IER registers enable and disable interrupt requests IRQ15 to IRQ0.

• IER16

Bit	Bit Name	Initial Value	R/W	Description
7	IRQ15E	0	R/W	IRQn Enable
6	IRQ14E	0	R/W	The IRQn interrupt request is enabled when this bit
5	IRQ13E	0	R/W	is 1.
4	IRQ12E	0	R/W	(n = 15 to 8)
3	IRQ11E	0	R/W	
2	IRQ10E	0	R/W	
1	IRQ9E	0	R/W	
0	IRQ8E	0	R/W	

IER

Bit	Bit Name	Initial Value	R/W	Description
7	IRQ7E	0	R/W	IRQn Enable
6	IRQ6E	0	R/W	The IRQn interrupt request is enabled when this bit
5	IRQ5E	0	R/W	is 1.
4	IRQ4E	0	R/W	(n = 7 to 0)
3	IRQ3E	0	R/W	
2	IRQ2E	0	R/W	
1	IRQ1E	0	R/W	
0	IRQ0E	0	R/W	

7.3.6 IRQ Status Registers (ISR16, ISR)

The ISR registers are flag registers that indicate the status of IRQ15 to IRQ0 interrupt requests.

• ISR16

Bit	Bit Name	Initial Value	R/W	Description
7	IRQ15F	0	R/(W)*	[Setting condition]
6	IRQ14F	0	R/(W)*	When the interrupt source selected by the ISCR16
5	IRQ13F	0	R/(W)*	registers occurs
4	IRQ12F	0	R/(W)*	[Clearing conditions]
3	IRQ11F	0	R/(W)*	When writing 0 to IRQnF flag after reading
2	IRQ10F	0	R/(W)*	IRQnF = 1
1	IRQ9F	0	R/(W)*	When interrupt exception handling is executed
0	IRQ8F	0	R/(W)*	when low-level detection is set and IRQn or ExIRQn input is high
				When IRQn interrupt exception handling is
				executed when falling-edge, rising-edge, or
				both-edge detection is set
				(n = 15 to 8)
				Note: The IRQn or ExIRQn pin is selected by the IRQ sense port select register 16 (ISSR16).

Note: * Only 0 can be written for clearing the flag.

• ISR

Bit	Bit Name	Initial Value	R/W	Description
7	IRQ7F	0	R/(W)*	[Setting condition]
6	IRQ6F	0	R/(W)*	When the interrupt source selected by the ISCR
5	IRQ5F	0	R/(W)*	registers occurs
4	IRQ4F	0	R/(W)*	[Clearing conditions]
3	IRQ3F	0	R/(W)*	When writing 0 to IRQnF flag after reading
2	IRQ2F	0	R/(W)*	IRQnF = 1
1	IRQ1F	0	R/(W)*	When interrupt exception handling is executed
0	IRQ0F	0	R/(W)*	when low-level detection is set and IRQn or ExIRQn input is high
				When IRQn interrupt exception handling is
				executed when falling-edge, rising-edge, or
				both-edge detection is set
				(n = 7 to 0)
				Note: The IRQn or ExIRQn pin is selected by the IRQ sense port select register (ISSR). The ExIRQ6 to ExIRQ0 pins are not supported.

Note: * Only 0 can be written for clearing the flag.

7.3.7 IRQ Sense Port Select Registers 16 (ISSR16) IRQ Sense Port Select Registers (ISSR)

The ISSR16 and ISSR registers select the external interrupt input for IRQ15 to IRQ0 from the pins $\overline{IRQ15}$ to $\overline{IRQ7}$ and $\overline{ExIRQ15}$ to $\overline{ExIRQ7}$.

• ISSR16

Bit	Bit Name	Initial Value	R/W	Description
7	ISS15	0	R/(W)	0: Selects P97/IRQ15
				1: Selects PG7/ExIRQ15
6	ISS14	0	R/(W)	0: Selects P95/IRQ14
				1: Selects PG6/ExIRQ14
5	ISS13	0	R/(W)	0: Selects P94/IRQ13
				1: Selects PG5/ExIRQ13
4	ISS12	0	R/(W)	0: Selects P93/IRQ12
				1: Selects PG4/ExIRQ12
3	ISS11	0	R/(W)	0: Selects PF3/IRQ11
				1: Selects PG3/ExIRQ11
2	ISS10	0	R/(W)	0: Selects PF2/IRQ10
				1: Selects PG2/ExIRQ10
1	ISS9	0	R/(W)	0: Selects PF1/IRQ9
				1: Selects PG1/ExIRQ9
0	ISS8	0	R/(W)	0: Selects PF0/IRQ8
				1: Selects PG0/ExIRQ8

ISSR

Bit	Bit Name	Initial Value	R/W	Description
7	ISS7	0	R/(W)	0: Selects P67/IRQ7
				1: Selects PH1/ExIRQ7
6 to 0	_	All 0	R/(W)	Reserved
				The initial value should not be changed.

7.3.8 Keyboard Matrix Interrupt Mask Registers (KMIMRA, KMIMRB) Wake-up Event Interrupt Mask Registers (WUEMRA, WUEMRB)

The KMIMR and WUEMR registers enable or disable key-sensing interrupt inputs ($\overline{\text{KIN15}}$ to $\overline{\text{KIN0}}$) and wake-up event interrupt inputs ($\overline{\text{WUE15}}$ to $\overline{\text{WUE0}}$).

KMIMRA

Bit	Bit Name	Initial Value	R/W	Description
7	KMIMR15	1	R/W	Keyboard Matrix Interrupt Mask
6	KMIMR14	1	R/W	These bits enable or disable a key-sensing input
5	KMIMR13	1	R/W	interrupt request (KIN15 to KIN8).
4	KMIMR12	1	R/W	0: Enables a key-sensing input interrupt request
3	KMIMR11	1	R/W	1: Disables a key-sensing input interrupt request
2	KMIMR10	1	R/W	
1	KMIMR9	1	R/W	
0	KMIMR8	1	R/W	

KMIMRB

Bit	Bit Name	Initial Value	R/W	Description
7	KMIMR7	1	R/W	Keyboard Matrix Interrupt Mask
6	KMIMR6	1	R/W	These bits enable or disable a key-sensing input
5	KMIMR5	1	R/W	interrupt request (KIN7 to KIN0).
4	KMIMR4	1	R/W	0: Enables a key-sensing input interrupt request
3	KMIMR3	1	R/W	1: Disables a key-sensing input interrupt request
2	KMIMR2	1	R/W	
1	KMIMR1	1	R/W	
0	KMIMR0	1	R/W	

WUEMRA

Bit	Bit Name	Initial Value	R/W	Description
7	WUEMR15	1	R/W	Wake-Up Event Interrupt Mask
6	WUEMR14	1	R/W	These bits enable or disable a wake-up event input
5	WUEMR13	1	R/W	interrupt request (WUE15 to WUE8).
4	WUEMR12	1	R/W	0: Enables a wake-up event input interrupt request
3	WUEMR11	1	R/W	1: Disables a wake-up event input interrupt request
2	WUEMR10	1	R/W	
1	WUEMR9	1	R/W	
0	WUEMR8	1	R/W	

• WUEMRB

Bit	Bit Name	Initial Value	R/W	Description
7	WUEMR7	1	R/W	Wake-Up Event Interrupt Mask
6	WUEMR6	1	R/W	These bits enable or disable a wake-up event input
5	WUEMR5	1	R/W	interrupt request (WUE7 to WUE0).
4	WUEMR4	1	R/W	0: Enables a wake-up event input interrupt request
3	WUEMR3	1	R/W	1: Disables a wake-up event input interrupt request
2	WUEMR2	1	R/W	
1	WUEMR1	1	R/W	
0	WUEMR0	1	R/W	

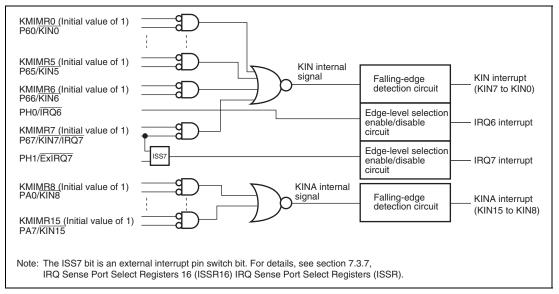


Figure 7.2 Relation between IRQ7 and IRQ6 Interrupts, KIN15 to KIN0 Interrupts, KMIMRA, and KMIMRB

7.3.9 Wake-Up Sense Control Register (WUESCRA, WUESCRB) Wake-Up Input Interrupt Status Register (WUESRA, WUESRB) Wake-Up Enable Register (WUEER)

WUESCR, WUESR, and WUEER select the interrupt source of the wake-up event interrupt inputs (WUE15 to WUE0) and enable or disable the interrupt request flag registers and interrupts.

WUESCRA

Bit	Bit Name	Initial Value	R/W	Description
7	WUE15SC	0	R/W	Wake-Up Event Interrupt Source Select
6	WUE14SC	0	R/W	These bits select the source that generates an
5	WUE13SC	0	R/W	interrupt request at wake-up event interrupt inputs (WUE15 to WUE0).
4	WUE12SC	0	R/W	,
3	WUE11SC	0	R/W	O: Interrupt request generated at falling edge of WUEn input
2	WUE10SC	0	R/W	Interrupt request generated at rising edge of
1	WUE9SC	0	R/W	WUEn input
0	WUE8SC	0	R/W	(n = 15 to 8)

WUESCRB

Bit	Bit Name	Initial Value	R/W	Description
7	WUE7SC	0	R/W	Wake-Up Event Interrupt Source Select
6	WUE6SC	0	R/W	These bits select the source that generates an
5	WUE5SC	0	R/W	interrupt request at wake-up event interrupt inputs (WUE7 to WUE0).
4	WUE4SC	0	R/W	· ·
3	WUE3SC	0	R/W	Interrupt request generated at falling edge of WUEn input
2	WUE2SC	0	R/W	Interrupt request generated at rising edge of
1	WUE1SC	0	R/W	WUEn input
0	WUE0SC	0	R/W	(n = 7 to 0)

WUESRA

Bit	Bit Name	Initial Value	R/W	Description
7	WUE15F	0	R/(W)*	, , , , , , , , , , , , , , , , , , , ,
6	WUE14F	0	R/(W)*	Request Flag Register
5	WUE13F	0	R/(W)*	These bits are status flags that indicate that wake-
4	WUE12F	0	R/(W)*	up input interrupts (WUE15 to WUE8) are requested.
3	WUE11F	0	R/(W)*	[Setting condition]
2	WUE10F	0	R/(W)*	When a wake-up input interrupt is generated
1	WUE9F	0	R/(W)*	[Clearing condition]
0	WUE8F	0	R/(W)*	When 0 is written after reading 1

Note: * Only 0 can be written to clear the flag.

• WUESRB

Bit	Bit Name	Initial Value	R/W	Description
7	WUE7F	0	R/(W)*	Wake-Up Input Interrupt (WUE7 to WUE0) Request
6	WUE6F	0	R/(W)*	Flag Register
5	WUE5F	0	R/(W)*	These bits are status flags that indicate that wake- up input interrupts (WUE7 to WUE0) are requested.
4	WUE4F	0	R/(W)*	
3	WUE3F	0	R/(W)*	[Setting condition]
2	WUE2F	0	R/(W)*	When a wake-up input interrupt is generated [Classing and thin]
1	WUE1F	0	R/(W)*	[Clearing condition]
0	WUE0F	0	R/(W)*	When 0 is written after reading 1

Note: * Only 0 can be written to clear the flag.

WUEER

Bit	Bit Name	Initial Value	R/W	Description
7	WUEAE	0	R/W	WUE15 to WUE8 Enable
				The WUE interrupt request is enabled when this bit is 1.
				0: Wake-up input interrupt request is disabled
				1: Wake-up input interrupt request is enabled
6	WUEBE	0	R/W	WUE7 to WUE0 Enable
				The WUE interrupt request is enabled when this bit is 1.
				0: Wake-up input interrupt request is disabled
				1: Wake-up input interrupt request is enabled
5 to 0	_	All 0		Reserved
				The initial values should not be changed

7.4 Interrupt Sources

7.4.1 External Interrupt Sources

The interrupt sources of external interrupts are NMI, IRQ15 to IRQ0, KIN15 to KIN0 and WUE15 to WUE0. These interrupts can be used to restore this LSI from software standby mode.

(1) NMI Interrupt

The nonmaskable external interrupt NMI is the highest-priority interrupt, and is always accepted regardless of the interrupt control mode or the status of the CPU interrupt mask bits. The NMIEG bit in SYSCR can be used to select whether an interrupt is requested at a rising edge or falling edge on the NMI pin.

(2) IRQ15 to IRQ0 Interrupts:

Interrupts IRQ15 to IRQ0 are requested by an input signal at pins $\overline{IRQ15}$ to $\overline{IRQ0}$ or pins $\overline{ExIRQ15}$ to $\overline{ExIRQ7}$. Interrupts IRQ15 to IRQ0 have the following features:

- The interrupt exception handling for interrupt requests IRQ15 to IRQ0 can be started at an independent vector address.
- Using ISCR, it is possible to select whether an interrupt is generated by a low level, falling edge, rising edge, or both edges, at pins IRQ15 to IRQ0 or pins ExIRQ15 to ExIRQ7.
- Enabling or disabling of interrupt requests IRQ15 to IRQ0 can be selected with IER.
- The status of interrupt requests IRQ15 to IRQ0 is indicated in ISR. ISR flags can be cleared to 0 by software.

When the interrupts are requested while IRQ15 to IRQ0 interrupt requests are generated at low level of \overline{IRQn} input, hold the corresponding \overline{IRQ} input at low level until the interrupt handling starts. Then put the relevant \overline{IRQ} input back to high level within the interrupt handling routine and clear the IRQnF bit (n = 15 to 0) in ISR to 0. If the relevant IRQ input is put back to high level before the interrupt handling starts, the relevant interrupt may not be executed.

The detection of IRQ15 to IRQ0 interrupts does not depend on whether the relevant pin has been set for input or output. Therefore, when a pin is used as an external interrupt input pin, clear the DDR bit of the corresponding port to 0 so it is not used as an I/O pin for another function.

A block diagram of interrupts IRQ15 to IRQ0 is shown in figure 7.3

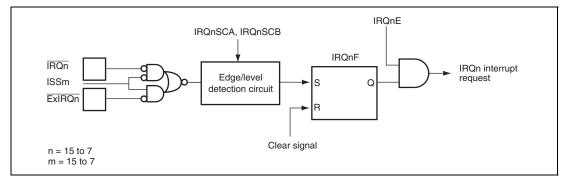


Figure 7.3 Block Diagram of Interrupts IRQ15 to IRQ0

(3) KIN15 to KIN0 Interrupts

Interrupts KIN15 to KIN0 are requested by the input signals on pins $\overline{\text{KIN15}}$ to $\overline{\text{KIN0}}$. Interrupts KIN15 to KIN0 have the functions listed below.

- Interrupts KIN15 to KIN8 and KIN7 to KIN0, each form a group. The interrupt exception handling for an interrupt request from the same group is started at the same vector address.
- Interrupt requests are generated on the falling edge of pins $\overline{\text{KIN15}}$ to $\overline{\text{KIN0}}$.
- Interrupt requests KIN15 to KIN0 can be masked by using KMIMRA and KMIMRB.
- The status of interrupt requests KIN15 to KIN0 are not indicated.
 For the IRQ7 interrupt, either the IRQ7 pin or ExIRQ7 pin can be selected as the input pin using the ISS7 bit. The IRQ7 interrupt is not affected by the settings of bits KMIMR15 to KMIMR8. The detection of interrupts KIN15 to KIN0 does not depend on whether the relevant pin has been set for input or output. Therefore, when a pin is used as an external interrupt input pin, clear the DDR bit of the corresponding port to 0 so it is not used as an I/O pin for another function.

(4) WUE15 to WUE0 Interrupts

Interrupts WUE15 to WUE0 are requested by an input signal at pins $\overline{\text{WUE15}}$ to $\overline{\text{WUE0}}$. Interrupts WUE15 to WUE0 have the following features:

- WUE15 to WUE8 and WUE7 to WUE0, each form a group. The interrupt exception handling for an interrupt request from the same group is started at the same vector address
- Selecting either of the falling edge or the rising edge for interrupt request at pins WUE15 to WUE0 can be made with WUESCR.
- Interrupt requests WUE15 to WUE0 can be masked by using WUEER.
- The status of interrupt requests WUE15 to WUE0 is indicated in WUESR. WUESR flags can be cleared to 0 by software

The detection of interrupts WUE15 to WUE0 does not depend on whether the relevant pin has been set for input or output. Therefore, when a pin is used as an external interrupt input pin, clear the DDR bit of the corresponding port to 0 so it is not used as an I/O pin for another function.

A block diagram of interrupts WUE15 to WUE0 is shown in figure 7.4

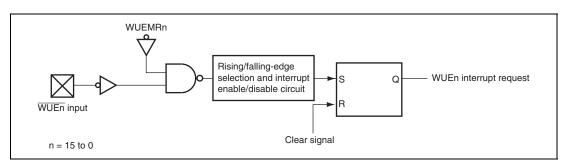


Figure 7.4 Block Diagram of Interrupts WUE15 to WUE0

7.4.2 Internal Interrupt Sources

Internal interrupts issued from the on-chip peripheral modules have the following features:

- For each on-chip peripheral module there are flags that indicate the interrupt request status, and enable bits that individually select enabling or disabling of these interrupts. When the enable bit for a particular interrupt source is set to 1, an interrupt request is sent to the interrupt controller.
- The control level for each interrupt can be set by ICR.

7.5 Interrupt Exception Handling Vector Tables

Table 7.4 lists interrupt exception handling sources, vector addresses, and interrupt priorities.

For default priorities, the lower the vector number, the higher the priority. Modules set at the same priority will conform to their default priorities. Priorities within a module are fixed.

An interrupt control level can be specified for a module to which an ICR bit is assigned. Interrupt requests from modules that are set to interrupt control level 1 (priority) by the interrupt control level and the I and UI bits in CCR are given priority and processed before interrupt requests from modules that are set to interrupt control level 0 (no priority).

Table 7.4 Interrupt Sources, Vector Addresses, and Interrupt Priorities

Origin of			Vector Address		
Interrupt Source	Name	Vector Number	Advanced Mode	ICR	Priority
External pin	NMI	7	H'00001C	_	High
	IRQ0	16	H'000040	ICRA7	_ 🛉
	IRQ1	17	H'000044	ICRA6	_
	IRQ2 IRQ3	18 19	H'000048 H'00004C	ICRA5	_
	IRQ4 IRQ5	20 21	H'000050 H'000054	ICRA4	
	IRQ6 IRQ7	22 23	H'000058 H'00005C	ICRA3	_
_	Reserved for system use	24	H'000060	_	_
WDT_0	WOVI0 (Interval timer)	25	H'000064	ICRA1	_
WDT_1	WOVI1 (Interval timer)	26	H'000068	ICRA0	_
_	Address break	27	H'00006C	_	_
A/D converter	ADI (A/D conversion end)	28	H'000070	ICRB7	_
LVD	LVD1	29	H'000074	ICRA2	_
External pin	KIN7 to KIN0 KIN15 to KIN8	30 31	H'000078 H'00007C	ICRD5	_
	WUE7 to WUE0 WUE15 to WUE8	32 33	H'000080 H'000084	ICRD4	
TPU_0	TGI0A (TGR0A input capture/compare match)	34	H'000088	ICRD3	_
	TGI0B (TGR0B input capture/compare match)	35	H'00008C		
	TGI0C (TGR0C input capture/compare match)	36	H'000090		
	TGI0D (TGR0D input capture/compare match)	37	H'000094		
	TCI0V (Overflow 0)	38	H'000098	1005-	_
TPU_1	TGI1A (TGR1A input capture/compare match) TGI1B (TGR1B input	39 40	H'00009C H'0000A0	ICRD2	
	capture/compare match) TCI1V (Overflow 1) TCI1U (Underflow 1)	41 42	H'0000A4 H'0000A8		 Low

Origin of			Vector Address		
Interrupt Source	Name	Vector Number	Advanced Mode	ICR	Priority
TPU_2	TGI2A (TGR2A input capture/compare match)	43	H'0000AC	ICRD1	High
	TGI2B (TGR2B input capture/compare match)	44	H'0000B0		↑
	TCI2V (Overflow 2) TCI2U (Underflow 2)	45 46	H'0000B4 H'0000B8		
_	Reserved for system use	47	H'0000BC	_	_
TCM_0	TICIO (Input capture) TCMIO (Compare match) TOVMIO (Cycle overflow) TUDIO (Cycle underflow) TOVIO (Overflow)	48	H'0000C0	ICRB6	
TCM_1	TICI1 (Input capture) TCMI1 (Compare match) TOVMI1 (Cycle overflow) TUDI1 (Cycle underflow) TOVI1 (Overflow)	49	H'0000C4		
TCM_2	TICI2 (Input capture) TCMI2 (Compare match) TOVMI2 (Cycle overflow) TUDI2 (Cycle underflow) TOVI2 (Overflow)	50	H'0000C8		
_	Reserved for system use	51	H'0000CC		_
SSU_2	SSER (Receive error) SSRX (Receive completed) SSTX (Transmit data empty)	52 53 54	H'0000D0 H'0000D4 H'0000D8	ICRB5	_
_	Reserved for system use	55	H'0000DC	_	_
External pin	IRQ8 IRQ9 IRQ10 IRQ11	56 57 58 59	H'0000E0 H'0000E4 H'0000E8 H'0000EC	ICRD7	_
	IRQ12 IRQ13 IRQ14 IRQ15	60 61 62 63	H'0000F0 H'0000F4 H'0000F8 H'0000FC	ICRD6	
TMR_0	CMIA0 (Compare match A) CMIB0 (Compare match B) OVI0 (Overflow)	64 65 66	H'000100 H'000104 H'000108	ICRB3	
_	Reserved for system use	67	H'00010C		
TMR_1	CMIA1 (Compare match A) CMIB1 (Compare match B) OVI1 (Overflow)	68 69 70	H'000110 H'000114 H'000118	ICRB2	Low

Origin of Interrupt		Vector	Vector Address		
Source	Name	Number	Advanced Mode	ICR	Priority
_	Reserved for system use	71	H'00011C	_	High -
TMR_X	CMIAY (Compare match A)	72	H'000120	ICRB1	
TMR_Y	CMIBY (Compare match B)	73	H'000124		
	OVIY (Overflow)	74 75	H'000128		
	ICIX (Input capture)	75 70	H'00012C		
	CMIAX (Compare match A) CMIBX (Compare match B)	76 77	H'000130 H'000134		
	OVIX (Overflow)	77 78	H'000134 H'000138		
FSI	FSII (Transmission/reception completion)	79	H'00013C	ICRC2	-
_	Reserved for system use	80	H'000140	_	-
	,	81	H'000144		
SCIF	SCIF (SCIF interrupt)	82	H'000148	ICRC7	-
PECI	PETEI (PECI transfer end) PEWFCEI (Write-FCS error) PERFCEI (Read-FCS error)	83	H'00014C	ICRC0	_
SCI_1	ERI1 (Reception error 1)	84	H'000150	ICRC6	_
	RXI1 (Reception completion 1)	85	H'000154		
	TXI1 (Transmission data empty 1)	86	H'000158		
	TEI1 (Transmission end 1)	87	H'00015C		_
_	Reserved for system use	88	H'000160	_	
		91	H'00016C		
IIC_0 (SMBUS)	IICI0 (1-byte transmission/reception completion)	92	H'000170	ICRC4	
	Reserved for system use	93	H'000174	_	_
IIC_1	IICI1 (1-byte transmission/reception completion)	94	H'000178	ICRC3	
IIC_2	IICI2 (1-byte transmission/reception completion)	95	H'00017C		_
PS2	KBIA (Reception completion A)	96	H'000180	ICRB0	
	KBIB (Reception completion B)	97	H'000184		
	KBIC (Reception completion C)	98	H'000188		
	KBTIA (Transmission completion A)/ KBCA (1st KCLKA)	99	H'00018C		
	KBTIB (Transmission completion B)/ KBCB (1st KCLKB)	100	H'000190		
	KBTIC (Transmission completion C)/ KBCC (1st KCLKC)	101	H'000194		
	Reserved for system use	102	H'000198	_	
		103	H'00019C		Low

Origin of			Vector Address		
Interrupt Source	Name	Vector Number	Advanced Mode	ICR	Priority
FSI	LFSII (Command reception)/(Write reception)	104	H'0001A0	ICRC1	High ♠
_	Reserved for system use	105	H'0001A4	_	-
LPC	OBEI (ODR1 to 4 transmission completion)	106	H'0001A8	ICRC1	_
	IBFI4 (IDR4 reception completion)	107	H'0001AC		
	ERRI (Transfer error, etc.)	108	H'0001B0		
	IBFI1 (IDR1 reception completion)	109	H'0001B4		
	IBFI2 (IDR2 reception completion)	110	H'0001B8		
	IBFI3 (IDR3 reception completion)	111	H'0001BC		
	IBFIA (IDRA reception competition)	112	H'0001C0		
_	Reserved for system use	113 	H'0001C4	_	
		127	H'0001FC		Low

7.6 Interrupt Control Modes and Interrupt Operation

The interrupt controller has two modes: interrupt control mode 0 and interrupt control mode 1. Interrupt operations differ depending on the interrupt control mode. NMI and address break interrupts are always accepted except for in the reset state. The interrupt control mode is selected by SYSCR. Table 7.5 shows the interrupt control modes.

Table 7.5 Interrupt Control Modes

Interrupt	SYSCR		Priority	1		
Control Mode	INTM1	INTM0	[─] Setting Registers	Interrupt Mask Bits	Description	
0	0	0	ICR	I	Interrupt mask control is performed by the I bit. Priority levels can be set with ICR.	
1	0	1	ICR	I, UI	3-level interrupt mask control is performed by the I and UI bits. Priority levels can be set with ICR.	

Figure 7.5 shows a block diagram of the priority determination circuit.

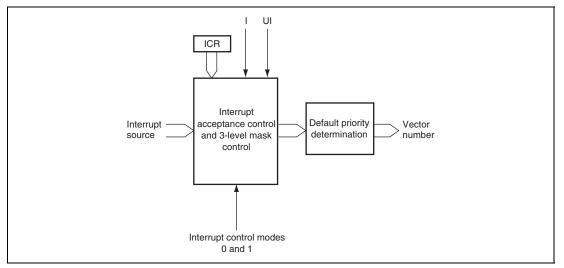


Figure 7.5 Block Diagram of Interrupt Control Operation

(1) Interrupt Acceptance Control and 3-Level Control

In interrupt control modes 0 and 1, interrupt acceptance control and 3-level mask control is performed by means of the I and UI bits in CCR and ICR (control level).

Table 7.6 shows the interrupts selected in each interrupt control mode.

Table 7.6 Interrupts Selected in Each Interrupt Control Mode

	Interrupt Mask Bits		_		
Interrupt Control Mode	I	UI	Selected Interrupts		
0	0	*	All interrupts (interrupt control level 1 has priority)		
	1	*	NMI and address break interrupts		
1	0	*	All interrupts (interrupt control level 1 has priority)		
	1	0	NMI, address break, and interrupt control level 1 interrupts		
		1	NMI and address break interrupts		

[Legend]

*: Don't care

(2) Default Priority Determination

The priority is determined for the selected interrupt, and a vector number is generated.

If the same value is set for ICR, acceptance of multiple interrupts is enabled, and so only the interrupt source with the highest priority according to the preset default priorities is selected and has a vector number generated.

Interrupt sources with a lower priority than the accepted interrupt source are held pending.

Table 7.7 shows operations and control signal functions in each interrupt control mode.

Table 7.7 Operations and Control Signal Functions in Each Interrupt Control Mode

Interrupt	Se	etting			errupt Ac Conti 3-Level C	_ Default Priority	
Control Mode	INTM1	INTM0	_	ī	UI	ICR	Determination
0	0	0	O	IM	_	PR	0
1	_	1	О	IM	IM	PR	0

[Legend]

O: Interrupt operation control is performed

IM: Used as an interrupt mask bit

PR: Priority is set

—: Not used

7.6.1 Interrupt Control Mode 0

In interrupt control mode 0, interrupt requests other than NMI and address break are masked by ICR and the I bit of CCR in the CPU. Figure 7.6 shows a flowchart of the interrupt acceptance operation.

- 1. If an interrupt source occurs when the corresponding interrupt enable bit is set to 1, an interrupt request is sent to the interrupt controller.
- 2. According to the interrupt control level specified in ICR, the interrupt controller only accepts an interrupt request with interrupt control level 1 (priority), and holds pending an interrupt request with interrupt control level 0 (no priority). If several interrupt requests are issued, an interrupt request with the highest priority is accepted according to the priority order, an interrupt handling is requested to the CPU, and other interrupt requests are held pending.
- 3. If the I bit in CCR is set to 1, the interrupt controller holds pending interrupt requests other than NMI and address break. If the I bit is cleared to 0, any interrupt request is accepted.
- 4. When the CPU accepts an interrupt request, it starts interrupt exception handling after execution of the current instruction has been completed.
- 5. The PC and CCR are saved to the stack area by interrupt exception handling. The PC saved on the stack shows the address of the first instruction to be executed after returning from the interrupt handling routine.
- 6. Next, the I bit in CCR is set to 1. This masks all interrupts except for NMI and address break interrupts.

The CPU generates a vector address for the accepted interrupt request and starts execution of
the interrupt handling routine at the address indicated by the contents of the vector address in
the vector table.

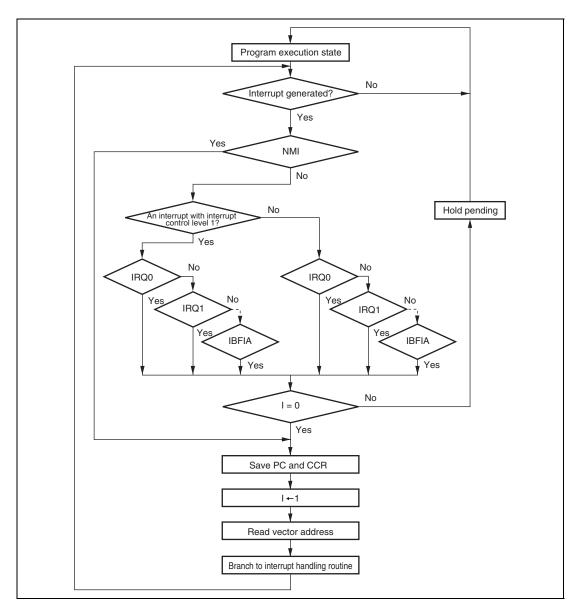


Figure 7.6 Flowchart of Procedure up to Interrupt Acceptance in Interrupt Control Mode 0

7.6.2 Interrupt Control Mode 1

In interrupt control mode 1, mask control is applied to three levels for interrupt requests other than NMI and address break by comparing the I and UI bits in CCR in the CPU, and the ICR setting.

- An interrupt request with interrupt control level 0 is accepted when the I bit in CCR is cleared to 0. When the I bit is set to 1, the interrupt request is held pending.
- An interrupt request with interrupt control level 1 is accepted when the I bit or UI bit in CCR is cleared to 0. When both the I and UI bits are set to 1, the interrupt request is held pending.

For instance, the state transition when the interrupt enable bit corresponding to each interrupt is set to 1, and ICRA to ICRD are set to H'20, H'00, H'00, and H'00, respectively (IRQ2 and IRQ3 interrupts are set to interrupt control level 1, and other interrupts are set to interrupt control level 0) is shown below. Figure 7.7 shows a state transition diagram.

- All interrupt requests are accepted when I = 0. (Priority order: NMI > IRQ2 > IRQ3 > address break > IRQ0 > IRQ1 ...)
- Only NMI, IRQ2, IRQ3, and address break interrupt requests are accepted when I = 1 and UI = 0.
- Only NMI and address break interrupt requests are accepted when I = 1 and UI = 1.

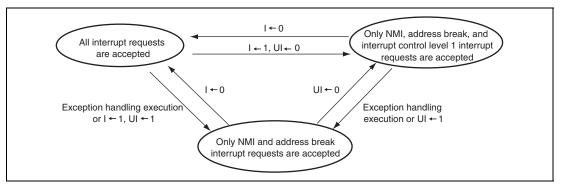


Figure 7.7 State Transition in Interrupt Control Mode 1

Figure 7.8 shows a flowchart of the interrupt acceptance operation.

- 1. If an interrupt source occurs when the corresponding interrupt enable bit is set to 1, an interrupt request is sent to the interrupt controller.
- 2. According to the interrupt control level specified in ICR, the interrupt controller only accepts an interrupt request with interrupt control level 1 (priority), and holds pending an interrupt request with interrupt control level 0 (no priority). If several interrupt requests are issued, an interrupt request with the highest priority is accepted according to the priority order, an interrupt handling is requested to the CPU, and other interrupt requests are held pending.
- 3. An interrupt request with interrupt control level 1 is accepted when the I bit is cleared to 0, or when the I bit is set to 1 while the UI bit is cleared to 0.
 - An interrupt request with interrupt control level 0 is accepted when the I bit is cleared to 0. When both the I and UI bits are set to 1, only NMI and address break interrupt requests are accepted, and other interrupts are held pending.
 - When the I bit is cleared to 0, the UI bit does not affect acceptance of interrupt requests.
- 4. When the CPU accepts an interrupt request, it starts interrupt exception handling after execution of the current instruction has been completed.
- 5. The PC and CCR are saved to the stack area by interrupt exception handling. The PC saved on the stack shows the address of the first instruction to be executed after returning from the interrupt handling routine.
- 6. The I and UI bits in CCR are set to 1. This masks all interrupts except for NMI and address break interrupts.
- 7. The CPU generates a vector address for the accepted interrupt request and starts execution of the interrupt handling routine at the address indicated by the contents of the vector address in the vector table.

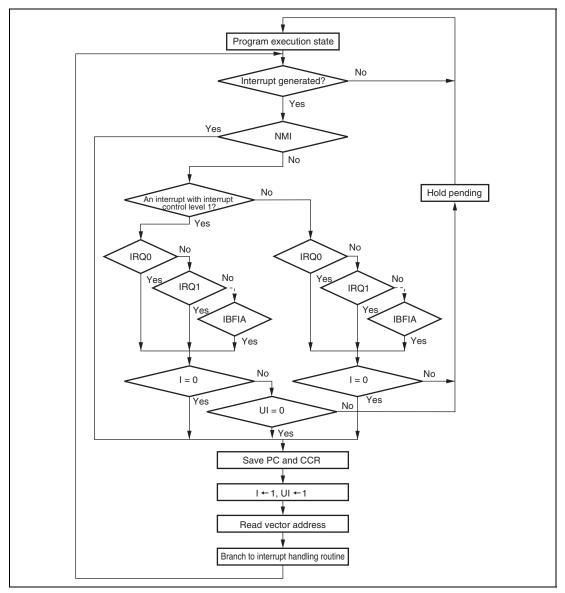


Figure 7.8 Flowchart of Procedure up to Interrupt Acceptance in Interrupt Control Mode 1

7.6.3 Interrupt Exception Handling Sequence

Figure 7.9 shows the interrupt exception handling sequence. The example shown is for the case where interrupt control mode 0 is set in advanced mode, and the program area and stack area are in on-chip memory.

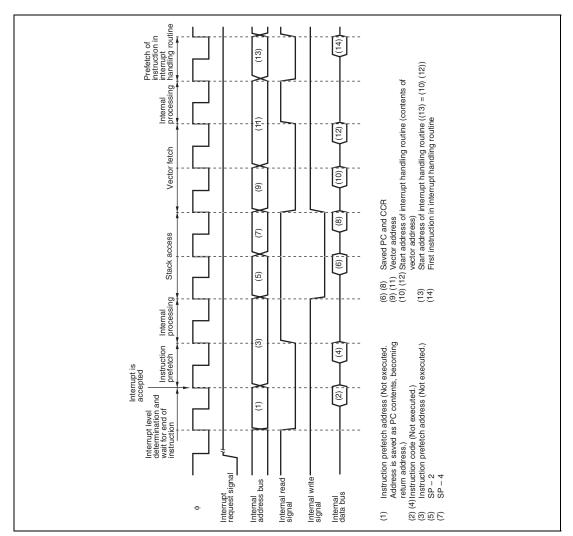


Figure 7.9 Interrupt Exception Handling

7.6.4 Interrupt Response Times

Table 7.8 shows interrupt response times – the intervals between generation of an interrupt request and execution of the first instruction in the interrupt handling routine.

Table 7.8 Interrupt Response Times

No.	Execution Status	Advanced Mode
1	Interrupt priority determination*1	3
2	Number of wait states until executing instruction ends*2	1 to 21
3	Saving of PC and CCR in stack	2
4	Vector fetch	2
5	Instruction fetch*3	2
6	Internal processing*4	2
	Total (using on-chip memory)	12 to 32

Notes: 1. Two states in case of internal interrupt.

- 2. Refers to MULXS and DIVXS instructions.
- 3. Prefetch after interrupt acceptance and prefetch of interrupt handling routine.
- 4. Internal processing after interrupt acceptance and internal processing after vector fetch.

Page 145 of 1054

7.7 Address Breaks

7.7.1 Features

With this LSI, it is possible to identify the prefetch of a specific address by the CPU and generate an address break interrupt, using the ABRKCR and BAR registers. When an address break interrupt is generated, address break interrupt exception handling is executed.

This function can be used to detect the beginning of execution of a bug location in the program, and branch to a correction routine.

7.7.2 Block Diagram

Figure 7.10 shows a block diagram of the address break function.

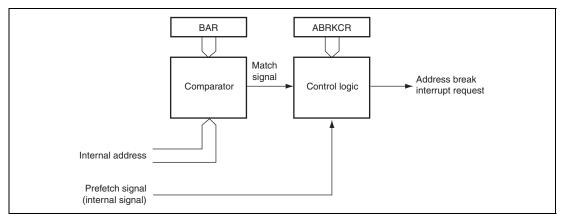


Figure 7.10 Block Diagram of Address Break Function

7.7.3 Operation

ABRKCR and BAR settings can be made so that an address break interrupt is generated when the CPU prefetches the address set in BAR. This address break function issues an interrupt request to the interrupt controller when the address is prefetched, and the interrupt controller determines the interrupt priority. When the interrupt is accepted, interrupt exception handling is started on completion of the currently executing instruction. With an address break interrupt, interrupt mask control by the I and UI bits in the CPU's CCR is ineffective.

The register settings when the address break function is used are as follows.

- 1. Set the break address in bits A23 to A1 in BAR.
- 2. Set the BIE bit in ABRKCR to 1 to enable address breaks. An address break will not be requested if the BIE bit is cleared to 0.

When the setting condition occurs, the CMF flag in ABRKCR is set to 1 and an interrupt is requested. If necessary, the source should be identified in the interrupt handling routine.

7.7.4 Usage Notes

- With the address break function, the address at which the first instruction byte is located should be specified as the break address. Occurrence of the address break condition may not be recognized for other addresses.
- If a branch instruction (Bcc, BSR) jump instruction (JMP, JSR), RTS instruction, or RTE instruction is located immediately before the address set in BAR, execution of this instruction will output a prefetch signal for that address, and an address break may be requested. This can be prevented by not making a break address setting for an address immediately following one of these instructions, or by determining within the interrupt handling routine whether interrupt handling was initiated by a genuine condition occurrence.
- As an address break interrupt is generated by a combination of the internal prefetch signal and address, the timing of the start of interrupt exception handling depends on the content and execution cycle of the instruction at the set address and the preceding instruction. Figure 7.11 shows some address timing examples.

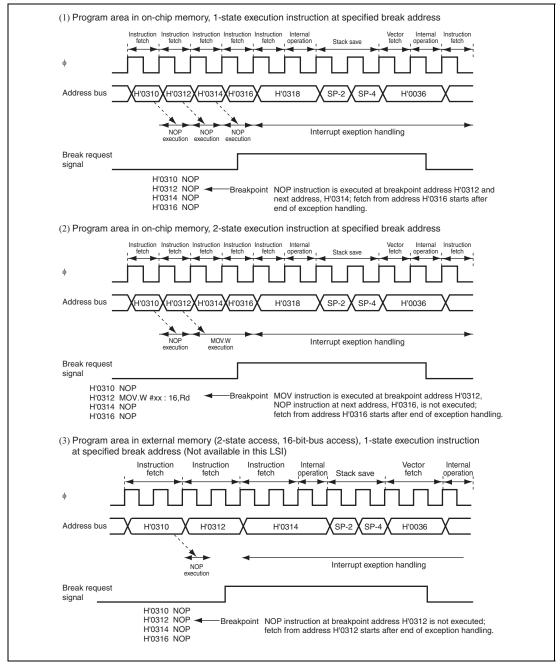


Figure 7.11 Examples of Address Break Timing

7.8 Usage Notes

7.8.1 Conflict between Interrupt Generation and Disabling

When an interrupt enable bit is cleared to 0 to disable interrupt requests, the disabling becomes effective after execution of the instruction. When an interrupt enable bit is cleared to 0 by an instruction such as BCLR or MOV, and if an interrupt is generated during execution of the instruction, the interrupt concerned will still be enabled on completion of the instruction, so interrupt exception handling for that interrupt will be executed on completion of the instruction. However, if there is an interrupt request of higher priority than that interrupt, interrupt exception handling will be executed for the higher-priority interrupt, and the lower-priority interrupt will be ignored. The same rule is also applied when an interrupt source flag is cleared to 0. Figure 7.12 shows an example where the CMIEA bit in TCR of the TMR is cleared to 0. The above conflict will not occur if an interrupt enable bit or interrupt source flag is cleared to 0 while the interrupt is disabled.

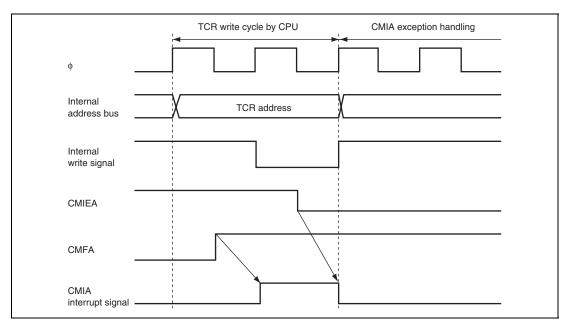


Figure 7.12 Conflict between Interrupt Generation and Disabling

7.8.2 Instructions for Disabling Interrupts

The instructions that disable interrupts are LDC, ANDC, ORC, and XORC. After any of these instructions are executed, all interrupts including NMI are disabled and the next instruction is always executed. When the I bit or UI bit is set by one of these instructions, the new value becomes valid two states after execution of the instruction ends.

7.8.3 Interrupts during Execution of EEPMOV Instruction

Interrupt operation differs between the EEPMOV.B instruction and the EEPMOV.W instruction.

With the EEPMOV.B instruction, an interrupt request including NMI issued during data transfer is not accepted until data transfer is completed.

With the EEPMOV.W instruction, if an interrupt request is issued during data transfer, interrupt exception handling starts at a break in the transfer cycles. The PC value saved on the stack in this case is the address of the next instruction. Therefore, if an interrupt is generated during execution of an EEPMOV.W instruction, the following coding should be used.

L1: EEPMOV.W

MOV.W R4,R4

BNE L1

7.8.4 External Interrupt Pin in Software Standby Mode and Watch Mode

- When the pins (IRQ15 to IRQ0, ExIRQ15 to ExIRQ7, KIN15 to KIN0, and WUE15 to WUE0) are used as external input pins in software standby mode or watch mode, the pins should not be left floating.
- When the external interrupt pins (IRQ7, IRQ6, ExIRQ15 to ExIRQ8, KIN7 to KIN0, and WUE15 to WUE8) are used in software standby and watch modes, the noise canceler should be disabled.

7.8.5 Noise Canceler Switching

The noise canceler should be switched when the external input pins $(\overline{IRQ7}, \overline{ExIRQ15} \text{ to } \overline{ExIRQ8}, \overline{KIN7} \text{ to } \overline{KIN0}, \text{ and } \overline{WUE15} \text{ to } \overline{WUE8})$ are high.

7.8.6 IRQ Status Register (ISR)

Since IRQnF may be set to 1 according to the pin state after reset, the ISR should be read after reset, and then write 0 in IRQnF (n = 15 to 0).

Section 8 Bus Controller (BSC)

Since this LSI does not have an externally extended function, it does not have an on-chip bus controller (BSC). Considering the software compatibility with similar products, you must be careful to set appropriate values to the control registers for the bus controller.

8.1 Register Descriptions

The bus controller has the following registers.

Table 8.1 Register Configuration

Register Name	Abbreviation	R/W	Initial Value	Address	Data Bus Width
Bus control register	BCR	R/W	H'D3	H'FF9A	8
Wait state control register	WSCR	R/W	H'F3	H'FF9B	8

8.1.1 Bus Control Register (BCR)

Bit	Bit Name	Initial Value	R/W	Description
7	_	1	R/W	Reserved
				The initial value should not be changed.
6	ICIS0	1	R/W	Idle Cycle Insertion
				The initial value should not be changed.
5	BRSTRM	0	R/W	Burst ROM Enable
				The initial value should not be changed.
4	BRSTS1	1	R/W	Burst Cycle Select 1
				The initial value should not be changed.
3	BRSTS0	0	R/W	Burst Cycle Select 0
				The initial value should not be changed.
2	_	0	R/W	Reserved
				The initial value should not be changed.
1	IOS1	1	R/W	IOS Select 1 and 0
0	IOS0	1	R/W	The initial value should not be changed.

8.1.2 Wait State Control Register (WSCR)

Bit	Bit Name	Initial Value	R/W	Description
7, 6	_	All 1	R/W	Reserved
				The initial value should not be changed.
5	ABW	1	R/W	Bus Width Control
				The initial value should not be changed.
4	AST	1	R/W	Access State Control
				The initial value should not be changed.
3	WMS1	0	R/W	Wait Mode Select 1 and 0
2	WMS0	0	R/W	The initial value should not be changed.
1	WC1	1	R/W	Wait Count 1 and 0
0	WC0	1	R/W	The initial value should not be changed.

Section 9 I/O Ports

Table 9.1 lists the port functions. The pins of each port also have other functions such as input/output pins of on-chip peripheral modules or interrupt input pins. Each I/O port includes a data direction register (DDR) that controls input/output, a data register (ODR) that stores output data, and a port input data register (PIN) used to read the pin states.

Ports 1 to 4, 6, 8, 9, B to F, and H have internal input pull-up MOSs and a pull-up MOS control register (PCR) controls the on/off state of the input pull-up MOSs.

In addition, ports 1 to 3, C, and D can drive a LED (5 mA sink current). P52, P97, ports A, G, I, and J are 5-V tolerant inputs.

Table 9.1 Port Functions

				Function			LED Drive Capability	On-Chip
Port	Description	Bit	1/0	Input	Output	Input Pull- up MOS Function	(5 mA Sink Current)	Noise Canceler
Port 1	ort 1 General I/O	7	P17	WUE7	_	0	0	_
	port also functioning as	6	P16	WUE6	_	_		
	wake-up input	5	P15	WUE5	_	_		
		4	P14	WUE4	_	<u>-</u>		
		3	P13	WUE3	_	_		
		2	P12	WUE2	_	=		
		1	P11	WUE1	_	=		
		0	P10	WUE0	_	_		
Port 2	General I/O	7	P27	_	_	0	0	_
	port	6	P26	_	_	_		
		5	P25	_	_	_		
		4	P24	_	_	=		
		3	P23	_	_	=		
		2	P22	_	_	_		
		1	P21	_	_			
		0	P20	_	_	_		
	· ·		1	'	Ų.		,	

				Function		Input Pull- up MOS	LED Drive Capability (5 mA Sink	-
Port	Description	Bit	1/0	Input	Output	Function	Current)	Canceler
Port 3	General I/O	7	P37/SERIRQ	_	_	0	0	_
	port also functioning as	6	P36	LCLK	_			
	LPC	5	P35	LRESET	_			
	input/output	4	P34	LFRAME	_			
		3	P33/LAD3	_	_			
		2	P32/LAD2	_	_			
		1	P31/LAD1	_	_			
		0	P30/LAD0	_	_			
Port 4	General I/O	7	P47	_	PWMU5B	0	_	0
	port also functioning as PWMU_B output, TCM	6	P46	_	PWMU4B			
		5	P45	TCMCKI2/ TCMMCI2	PWMU3B			
	input, and TMR_0 and	4	P44	TCMCYI2	PWMU2B/ TMO1	_		
	TMR_1 inputs	3	P43	TMI1/TCMCKI1/ TCMMCI1	_	_		
		2	P42	TCMCYI1	_			
		1	P41	TCMCKI0/ TCMMCI0	TMO0	_		
		0	P40	TMI0/TCMCYI0	_	_		
Port 5	General I/O	2	P52/SCL0	_	_	_	_	_
	port also	1	P51	FRxD	_	0	_	
	functioning as SMBUS/IIC_0 and SCIF inputs/outputs	0	P50	_	FTxD	0		

				Function			LED Drive Capability (5 mA Sink	-
Port	Description	Bit	I/O	Input	Output	up MOS Function	Current)	Canceler
Port 6	General I/O	7	P67	ĪRQ7/KIN7	_	0	_	0
	port also functioning as	6	P66	KIN6	_	-		
	interrupt input	5	P65	KIN5	_	-		
	and keyboard	4	P64	KIN4	_	-		
	input	3	P63	KIN3	_	-		
		2	P62	KIN2	_	-		
		1	P61	KIN1	_	-		
		0	P60	KIN0	_	-		
Port 7	General input	7	_	P77/AN7	_	_	_	_
	port also functioning as	6	_	P76/AN6	_	-		
	A/D converter	5	_	P75/AN5	_	-		
	analog input	4	_	P74/AN4	_	-		
		3	_	P73/AN3	_	-		
		2	_	P72/AN2	_	-		
		1	_	P71/AN1	_	-		
		0	_	P70/AN0	_	-		
Port 8	General I/O	6	P86/SCK1	ĪRQ5	_	_	_	_
	port also functioning as	5	P85	IRQ4/RxD1	_	-		
	interrupt input,	4	P84	ĪRQ3	TxD1	-		
	and SCI_1 and	3	P83	LPCPD	_	-		
	LPC inputs/outputs	2	P82/CLKRUN	_	_	-		
		1	P81/GA20	_	_	-		
		0	P80/PME	_	_	-		
	-			-		-		

				Function		Input Pull-	LED Drive Capability (5 mA Sink	-
Port	Description	Bit	I/O	Input	Output	Function	Current)	Canceler
Port 9	General I/O	7	P97/SDA0	IRQ15	_	_	_	_
	port also functioning as external sub-	6	_	P96/EXCL	ф	_		
		5	P95	IRQ14	_	0	•	
	clock and interrupt inputs,	4	P94	IRQ13	_	_		
	SMBUS/IIC_0	3	P93	IRQ12	_	_		
	input/output, and system	2	P92	ĪRQ0	_	_		
	clock output	1	P91	ĪRQ1	_	_		
		0	P90	ĪRQ2	_	_		
Port A		7	PA7/PS2CD	KIN15	_	_	_	_
	port also functioning as	6	PA6/PS2CC	KIN14	_	_		
	keyboard input,	5	PA5/PS2BD	KIN13	_	_		
	PS2 input/output,	4	PA4/PS2BC	KIN12	_	_		
	and IIC_1	3	PA3/PS2AD	KIN11	_	_		
	input/output	2	PA2/PS2AC	KIN10	_	_		
		1	PA1/SCL1	KIN9	_	_		
		0	PA0/SDA1	KIN8	_	-		
Port B		7	PB7	_	RTS/FSISS	0	_	_
	port also functioning as	6	PB6	CTS	FSICK	_		
	LPC, SCIF and	5	PB5	FSIDI	DTR	-		
	FSI inputs/outputs	4	PB4	DSR	FSIDO	-		
	and PWMU_B	3	PB3	DCD	PWMU1B	-		
	output	2	PB2	RĪ	PWMU0B	-		
		1	PB1/LSCI	_	_	-		
		0	PB0/LSMI	_	_	-		
	")		0	•				

				Function		_Input Pull- up MOS	LED Drive Capability (5 mA Sink	-
Port	Description	Bit	I/O	Input	Output	Function	Current)	Canceler
Port C	General I/O	7	PC7/TIOCB2	WUE15/TCLKD	_	0	0	0
	port also functioning as	6	PC6/TIOCA2	WUE14	_	_		
	wake-up input	5	PC5/TIOCB1	WUE13/TCLKC	_	_		
	and TPU input/output	4	PC4/TIOCA1	WUE12	_	_		
	F	3	PC3/TIOCD0	WUE11/TCLKB	_	_		
		2	PC2/TIOCC0	WUE10/TCLKA	_	_		
		1	PC1/TIOCB0	WUE9	_	_		
		0	PC0/TIOCA0	WUE8	_	_		
Port D	General I/O	7	PD7/SSCS	_	_	0	0	_
	port also functioning as	6	PD6/SSCK	_	_	_		
	A/D converter	5	PD5/SSI	_	_	_		
	analog input and SSU	4	PD4/SSO	_	_	_		
	input/output	3	PD3	AN11	_	_		
		2	PD2	AN10	_	_		
		1	PD1	AN9	_	_		
		0	PD0	AN8	_	_		
Port E	General I/O	5	PE5*1	ETRST	_	0	_	_
	port also functioning as	4	PE4*1	ETMS	_	_		
	external sub-	3	PE3*1	_	ETDO	_		
	clock input and emulator	2	PE2*1	ETDI	_	_		
	input/output	1	PE1*1	ETCK	_	_		
		0	PE0*1	ExEXCL	_	_		
	_	,——				-		

				Function			LED Drive	•
Port	Description	Bit	I/O	Input	Output	up MOS Function	(5 mA Sink Current)	Noise Canceler
Port F	Port F General I/O port also		PF7	_	PWMU5A/ ExRTS	0	_	_
	functioning as interrupt input,	6	PF6	ExCTS	PWMU4A	_		
	TMR_X, TMR_Y, and	5	PF5	_	PWMU3A/ ExDTR			
	PWMU_A outputs, and	4	PF4	ExDSR	PWMU2A	-		
	SCIF extended	3	PF3	IRQ11	TMOX	_		
	input/output	2	PF2	IRQ10	TMOY	-		
		1	PF1	IRQ9	PWMU1A	-		
		0	PF0	IRQ8	PWMU0A	_		
Port G		7	PG7/SCLD	ExIRQ15	_	_	_	0
	port also functioning as	6	PG6/SDAD	ExIRQ14	_	_		
	interrupt, TMR_X, and	5	PG5/SCLC	ExIRQ13	_	_		
	TMR_Y inputs,	4	PG4/SDAC	ExIRQ12	_	_		
	and IIC_2 input/output	3	PG3/SCLB	ExIRQ11	_	_		
		2	PG2/SDAB	ExIRQ10	_	_		
		1	PG1/SCLA	ExIRQ9/TMIY	_	_		
		0	PG0/SDAA	ExIRQ8/TMIX	_	_		
Port H		1	PH1	ExIRQ7		0	_	_
	port also functioning as interrupt input	0	PH0	ĪRQ6	_			

				Function			LED Drive Capability	On-Chin
						Input Pull- up MOS	(5 mA Sink	
Port	Description	Bit	I/O	Input	Output	Function	Current)	Canceler
Port I		7	PI7* ²	_	_	_	_	_
	port	6	PI6*2	_	_			
		5	PI5*2	_	_			
		4	PI4*2	_	_			
		3	PI3*2	_	_			
		2	PI2*2	_	_			
		1	PI1*2	_	_			
		0	PI0*2	_	_			
Port J	General I/O	7	PJ7*²	_	_	_	_	_
	port	6	PJ6* ²	_	_			
		5	PJ5*²	_	_			
		4	PJ4* ²	_	_			
		3	PJ3*²	_	_			
		2	PJ2* ²	_	_			
		1	PJ1* ²	_	_			
		0	PJ0* ²	_	_			

Notes: *1 Not supported by the system development tool (emulator).

^{*2} Not supported by the TFP-144V and TLP-145V.

9.1 Register Descriptions

Table 9.2 lists each port registers.

Table 9.2 Register Configuration in Each Port

	Number				Reg				
Port	of Pins	DDR	ODR	PIN	PCR	NCE	NCMC	NCCS	NOCR
Port 1	8	0	0	0	0	_	_	_	_
Port 2	8	0	0	0	0	_	_	_	
Port 3	8	0	0	0	0	_	_	_	_
Port 4	8	0	0	0	0	0	0	0	
Port 5	3	0	0	0	0	_	_	_	
Port 6	8	0	0	0	0	0	0	0	
Port 7	8	_	_	0	_	_	_	_	
Port 8	7	0	0	0	0	_	_	_	
Port 9	8	0	0	0	0	_	_	_	
Port A	8	0	0	0	_	_	_	_	0
Port B	8	0	0	0	0	_	_	_	
Port C	8	0	0	0	0	0	0	0	0
Port D	8	0	0	0	0	_	_	_	0
Port E	6	0	0	0	0	_	_	_	0
Port F	8	0	0	0	0	_	_	_	0
Port G	8	0	0	0	_	0	0	0	0
Port H	2*	0	0	0	0	_	_	_	0
Port I	8*	0	0	0	_	_	_	_	0
Port J	8*	0	0	0			_		0

[Legend]

O: Register exists

—: No register exists

Note: * Ports I and J are not supported by the TFP-144V and TLP-145V.

9.1.1 Data Direction Register (PnDDR) (n = 1 to 6, 8, 9, A to J)

DDR specifies the port input or output for each bit.

The upper five bits in P5DDR, the upper one bit in P8DDR, the upper two bits in PEDDR, and the upper six bits in PHDDR are reserved.

Bit	Bit Name	Initial Value	R/W	Description
7	Pn7DDR	0	R/W	The corresponding pins act as output ports when
6	Pn6DDR	0	R/W	these bits are set to 1 and act as input ports when leared to 0.
5	Pn5DDR	0	R/W	
4	Pn4DDR	0	R/W	
3	Pn3DDR	0	R/W	
2	Pn2DDR	0	R/W	-
1	Pn1DDR	0	R/W	_
0	Pn0DDR	0	R/W	

9.1.2 Data Register (PnODR) (n = 1 to 6, 8, 9, A to J)

ODR is a register that stores output data of the pins to be used as the general output port.

The upper five bits in P5ODR, the upper one bit in P8ODR, the P96ODR bit, the upper two bits in PEODR, and the upper six bits in PHODR are reserved.

Bit	Bit Name	Initial Value	R/W	Description
7	Pn7ODR	0	R/W	PnODR stores output data for the pins that are
6	Pn6ODR	0	R/W	used as the general output port.
5	Pn5ODR	0	R/W	-
4	Pn4ODR	0	R/W	-
3	Pn3ODR	0	R/W	-
2	Pn2ODR	0	R/W	_
1	Pn10DR	0	R/W	-
0	Pn0ODR	0	R/W	_

9.1.3 Input Data Register (PnPIN) (n = 1 to 9 and A to J)

PIN is an 8-bit read-only register that reflects the port pin state. A write to PIN is invalid. The upper five bits in P5PIN, the upper one bit in P8PIN, the upper two bits in PEPIN, and the upper six bits in PHPIN are reserved.

Bit	Bit Name	Initial Value	R/W	Description
7	Pn7PIN	Undefined*	R	When this register is read, the pin states are
6	Pn6PIN	Undefined*	R	returned.
5	Pn5PIN	Undefined*	R	_
4	Pn4PIN	Undefined*	R	_
3	Pn3PIN	Undefined*	R	_
2	Pn2PIN	Undefined*	R	_
1	Pn1PIN	Undefined*	R	_
0	Pn0PIN	Undefined*	R	_

Note: * The initial values of these pins are determined in accordance with the states of pins Pn7 to Pn0.

9.1.4 Pull-Up MOS Control Register (PnPCR) (n = 1 to 6, 8, 9, B to F, and H)

PCR is a register that controls on/off of the port input pull-up MOS.

If a bit in PCR is set to 1 while the pin is in the input state, the input pull-up MOS corresponding to the bit in PCR is turned on. The upper six bits in P5PCR, the upper one bit of P8PCR, the upper one bits in P9PCR, the upper two bits in PEPCR, and the upper six bits in PHPCR are reserved.

Bit	Bit Name	Initial Value	R/W	Description
7	Pn7PCR	0	R/W	For pins in the input state corresponding to bits in
6	Pn6PCR	0	R/W	this register that have been set to 1, the input pullupul MOSs are turned on.
5	Pn5PCR	0	R/W	— up Meee are tarried on:
4	Pn4PCR	0	R/W	
3	Pn3PCR	0	R/W	
2	Pn2PCR	0	R/W	
1	Pn1PCR	0	R/W	
0	Pn0PCR	0	R/W	

9.1.5 Noise Canceler Enable Register (PnNCE) (n = 4, 6, C, and G)

NCE enables or disables the noise cancel circuit at port n pins in bit units.

Bit	Bit Name	Initial Value	R/W	Description
7	Pn7NCE	0	R/W	Noise cancel circuit is enabled when a bit in this
6	Pn6NCE	0	R/W	─ register is set to 1, and the pin setting state is — fetched in PnPIN in the sampling cycle set by the
5	Pn5NCE	0	R/W	PnNCCS.
4	Pn4NCE	0	R/W	
3	Pn3NCE	0	R/W	
2	Pn2NCE	0	R/W	
1	Pn1NCE	0	R/W	
0	Pn0NCE	0	R/W	_

9.1.6 Noise Canceler Decision Control Register (PnNCMC) (n = 4, 6, C, and G)

NCMC controls whether 1 or 0 is expected for the input signal to port n pins in bit units.

Bit	Bit Name	Initial Value	R/W	Description
7	Pn7NCMC	0	R/W	1 expected: 1 is stored in the port data register
6	Pn6NCMC	0	R/W	when 1 is input stably.
5	Pn5NCMC	0	R/W	0 expected: 0 is stored in the port data register when 0 is input stably.
4	Pn4NCMC	0	R/W	
3	Pn3NCMC	0	R/W	
2	Pn2NCMC	0	R/W	
1	Pn1NCMC	0	R/W	
0	Pn0NCMC	0	R/W	_

9.1.7 Noise Cancel Cycle Setting Register (PnNCCS) (n = 4, 6, C, and G)

NCCS controls the sampling cycles of the noise canceler.

Bit	Bit Name	Initial Value	R/W	Description			
7 to 3	_	Undefined	R/W	Reserv	Reserved		
					ad value is ur always be 0.	ndefined. The write value	
2	PnNCCK2	0	R/W			ampling cycles of the noise	
1	PnNCCK1	0	R/W	canceler.			
0	PnNCCK0	0	R/W	– When d	is 10 MHz		
				000:	0.80 μs	φ/2	
				001:	12.8 μs	ф/32	
				010:	3.3 ms	ф/8192	
				011:	6.6 ms	ф/16384	
				100:	13.1 ms	ф/32768	
				101:	26.2 ms	ф/65536	
				110:	52.4 ms	ф/131072	
				111:	104.9 ms	φ/262144	

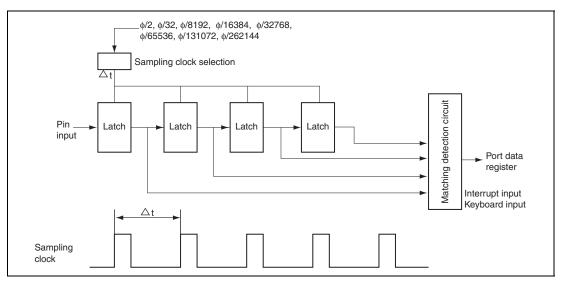


Figure 9.1 Noise Cancel Circuit

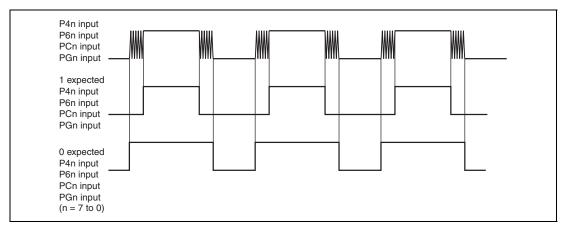


Figure 9.2 Schematic View of Noise Cancel Operation

9.1.8 Port Nch-OD Control Register (PnNOCR) (n = A and C to J)

The individual bits of NOCR specify output driver type for the pins of port n that is specified as output. The upper two bits in PENOCR and the upper six bits in PHNOCR are reserved.

Bit	Bit Name	Initial Value	R/W	Description
7	Pn7NOCR	0	R/W	Ports A and C to J:
6	Pn6NOCR	0	R/W	0: CMOS
5	Pn5NOCR	0	R/W	(P-channel driver is enabled)
4	Pn4NOCR	0	R/W	1: N channel open-drain(P-channel driver is disabled)
3	Pn3NOCR	0	R/W	(* *********************************
2	Pn2NOCR	0	R/W	_
1	Pn1NOCR	0	R/W	_
0	Pn0NOCR	0	R/W	

9.2 Pin Functions

9.2.1 Port 1

(1) P17/WUE7, P16/WUE6, P15/WUE5, P14/WUE4, P13/WUE3, P12/WUE2, P11/WUE1, P10/WUE0

The pin function is switched as shown below according to the P1nDDR bit setting.

When the WUEMRn bit in WUEMRB of the interrupt controller is cleared to 0, the pin functions as the \overline{WUEn} input pin.

P1nDDR	0	1		
Pin function	P1n input pin	P1n output pin		
	WUEn input pin			

(n = 7 to 0)

9.2.2 Port 2

(1) **P27 to P20**

The pin function is switched as shown below according to the P2nDDR bit setting.

P2nDDR	0	1
Pin function	P2n input pin	P2n output pin

(n = 7 to 0)

9.2.3 Port 3

P37/SERIRQ, P36/LCLK, P35/LRESET, P34/LFRAME, P33/LAD3, P32/LAD2, **(1)** P31/LAD1, P30/LAD0

The pin function is switched as shown below according to the combination of the FSILIE bit in SLCR of FSI, and the LPCAE bit in HICR6, the SCIFE bit in HICR5, the LPCAE bit in HICR4, and the LPC3E to LPC1E bits in HICR0 of LPC, and the P3nDDR bit. LPCENABLE in the following table is represented by the following logical expression.

LPCENABLE = 1: FSILIE + SCIFE + LPC4E + LPC3E + LPC2E + LPC1E + LPCAE

LPCENABLE	(1	
P3nDDR	0 1		_
Pin function	P3n input pin	P3n output pin	LPC I/O pin

(n = 7 to 0)

9.2.4 Port 4

(1) P47/PWMU5B

The pin function is switched as shown below according to the combination of the PWM5E bit in PWMOUTCR of PWMU B, and the P47DDR bit.

P47DDR	0	1	
PWM5E	_	0	1
Pin function	P47 input pin	P47 output pin	PWMU5B output pin

(2) P46/PWMU4B

The pin function is switched according to the combination of the settings of the PWM4E and CNTMD45B bits in PWMOUTCR of PWMU_B, the CNTMD45A bit in PWMPCR, and the P46DDR bit, as shown below. PWM4OE in the following table is represented by the following logical expression.

 $PWM4OE = 1: PWM4E \cdot \overline{CNTMD45A} \cdot \overline{CNTMD45B}$

P46DDR	0	1	
PWM4OE	_	0	1
Pin function	P46 input pin	P46 output pin	PWMU4B output pin

(3) P45/PWMU3B/TCMCKI2/TCMMCI2

The pin function is switched as shown below according to the combination of the PWM3E bit in PWMOUTCR of PWMU_B, and the P45DDR bit. When an external clock is selected by the CKS2 to CKS0 bits in TCMCR of TCM_2, the pin functions as the TCMCKI2 input pin. When the CMMS bit in TCMIER of TCM_2 is set to 1, the pin functions as the TCMMCI2 input pin.

P45DDR	0	-	1		
PWM3E	_	0	1		
Pin function	P45 input pin	P45 output pin	PWMU3B output pin		
	TCMCKI2 input pin/TCMMCI2 input pin				

(4) P44/TMO1/PWMU2B/TCMCYI2

The pin function is switched according to the combination of the settings of the OS3 to OS0 bits in TCR of TMR_1, the PWM2E and CNTMD23B bits in PWMOUTCR of PWMU_B, the CNTMD23A bit in PWMPCR, and the P44DDR bit, as shown below, PWM2OE in the following table is represented by the following logical expression.

PWM2OE = 1: PWM2E • CNTMD23A • CNTMD23B

OS3 to OS0	All 0 Any of them is 1				
P44DDR	0 1			_	
PWM2OE	_	0 1		_	
Pin function	P44 input pin	P44 output pin	PWMU2B output pin	TMO1 output pin	
	TCMCYI2 input pin				

(5) P43/TMI1/TCMCKI1/TCMMCI1

The pin function is switched as shown below according to the P43DDR bit. TMRI1 and TMCI1 are multiplexed as the TMI1 input pin. When the CCLR1 and CCLR0 bits in TCR of TMR 1 are set to 1, the pin functions as the TMI1 (TMRI1) input pin. When an external clock is selected by the CKS2 to CKS0 bits in TCR of TMR_1, the pin functions as the TMI1 (TMCI1) input pin. When an external clock is selected by the CKS2 to CKS0 bits in TCMCR of TCM 1, the pin functions as the TCMCKI1 input pin. When the CMMS bit in TCMIER of TCM_1 is set to 1, the pin functions as the TCMMCI1 input pin.

P43DDR	0	1		
Pin function	P43 input pin	P43 output pin		
	TMI1 input pin/TCMCKI1 input pin/TCMMCI1 input pin			

P42/TCMCYI1 **(6)**

The pin function is switched as shown below according to the P42DDR bit. When the TCMIPE bit in TCMIER 1 of TCM 1 is set to 1, the pin functions as the TCMCYI1 input pin.

P42DDR	0	1	
Pin function	P42 input pin P42 output pin		
	TCMCYI1 input pin		

(7) P41/TMO0/TCMCKI0/TCMMCI0

The pin function is switched as shown below according to the combination of the OS3 to OS0 bits in TCSR of TMR_0 and the P41DDR bit. When an external clock is selected by the CKS2 to CKS0 bits in TCMCR of TCM_0, the pin functions as the TCMCKI0 input pin. When the CMMS bit in TCMIER of TCM_0 is set to 1, the pin functions as the TCMMCI0 input pin.

OS3 to OS0	All 0		Any of them is 1
P41DDR	0 1		_
Pin function	P41 input pin	TMO0 output pin	
	TCMCKI0 input pin/TCMMCI0 input pin		

(8) P40/TMI0/TCMCYI0

The pin function is switched as shown below according to the P40DDR bit. TMRI0 and TMCI0 are multiplexed as the TMI0 input pin. When the CCLR1 and CCLR0 bits in TCR of TMR_0 are set to 1, the pin functions as the TMI0 (TMRI0) input pin. When an external clock is selected by the CKS2 to CKS0 bits in TCR of TMR_0, the pin functions as the TMI0 (TMCI0) input pin. When the TCMIPE bit in TCMIER_0 of TCM_0 is set to 1, the pin functions as the TCMCYI0 input pin.

P40DDR	0	1	
Pin function	P40 input pin	P40 output pin	
	TMI0 input pin/TCMCYI0 input pin		

9.2.5 Port 5

(1) P52/SCL0

The pin function is switched as shown below according to the combination of the ICE bit in ICCR of IIC 0 and the P52DDR bit.

ICE	0		1
P52DDR	0 1		_
Pin function	P52 input pin	P52 output pin	SCL0 I/O pin

Note: The output format for SCL0 is NMOS output only and direct bus drive is possible. When this pin is used as the P52 output pin, the output format is CMOS output.

(2) P51/FRxD

The pin function is switched as shown below according to the combination of the SCIFOE1 bit in SCIFCR and the SCIFE bit in HICR5 of SCIF, and the P51DDR bit.

SCIFENABLE = 1: SCIFOE1 + SCIFE

SCIFENABLE	0		1
P51DDR	0 1		_
Pin function	P51 input pin	P51 output pin	FRxD input pin

(3) P50/FTxD

The pin function is switched as shown below according to combination of the SCIFOE1 bit in SCIFCR and the SCIFE bit in HICR5 of SCIF, and the P50DDR bit.

SCIFENABLE = 1: SCIFOE1 + SCIFE

SCIFENABLE	0		1
P50DDR	0 1		_
Pin function	P50 input pin	P50 output pin	FTxD output pin

9.2.6 Port 6

(1) P67/IRQ7/KIN7

When the KMIM7 bit in KMIMR of the interrupt controller is cleared to 0, this pin functions as the $\overline{\text{KIN7}}$ input pin. When the ISS7 bit in ISSR is cleared to 0 and the IRQ7E bit in IER of the interrupt controller is set to 1, this pin can be used as the $\overline{\text{IRQ7}}$ input pin.

The pin function is switched as shown below according to the P67DDR bit.

P67DDR	0	_	
Pin function	P67 input pin P67 output pin		
	IRQ7 input pin/KIN7 input pin		

(2) P66/KIN6, P65/KIN5, P64/KIN4, P63/KIN3, P62/KIN2, P61/KIN1, P60/KIN0

When the KMIMn bit in KMIMRB of the interrupt controller is cleared to 0, this pin functions as the $\overline{\text{KINn}}$ input pin.

The pin function is switched as shown below according to the P6nDDR bit.

P6nDDR	0	1		
Pin function	P6n input pin	P6n output pin		
	KINn input pin			

(n = 6 to 0)

9.2.7 Port 7

(1) P77/AN7, P76/AN6, P75/AN5, P74/AN4, P73/AN3, P72/AN2, P71/AN1, P70/AN0

Pin function	ANn/P7n input
	(n = 7 to 0)

9.2.8 Port 8

P86/IRQ5/SCK1 **(1)**

The pin function is switched as shown below according to the combination of the $C\overline{A}$ bit in SMR and the CKE0 and CKE1 bits in SCR of SCI_1, and the P86DDR bit. When the IRQ5E bit in IER of the interrupt controller is set to 1, this pin functions as the $\overline{IRQ5}$ input pin.

CKE1		0			1	
C/A		0 1			_	
CKE0	(0 1		_	_	
P86DDR	0	1	_	_	_	
Pin function	P86 input pin	P86 input pin P86 output pin SCK1 output SCK1 output pin pin pin pin				
		IRQ5 input pin				

P85/IRQ4/RxD1 **(2)**

The pin function is switched as shown below according to the combination of the RE bit in SCR of SCI_1 and the P85DDR bit. When the IRQ4E bit in IER of the interrupt controller is set to 1, this pin functions as the $\overline{IRQ4}$ input pin.

RE	0		1
P85DDR	0 1		_
Pin function	P85 input pin P85 output pin		RxD1 input pin
	IRQ4 input pin		

(3) P84/IRQ3/TxD1

The pin function is switched as shown below according to the combination of the TE bit in SCR of SCI_1 and the P84DDR bit. When the IRQ3E bit in IER of the interrupt controller is set to 1, this pin functions as the IRQ3 input pin.

TE	0		1
P84DDR	0 1		_
Pin function	P84 input pin P84 output pin		TxD1 output pin
	IRQ3 input pin		

(4) P83/<u>LPCPD</u>

The pin function is switched as shown below according to the combination of the FSILIE bit in SLCR of FSI, and the LPCAE bit in HICR6, the SCIFE bit in HICR5, the LPC4E bit in HICR4, and the LPC3E to LPC1E bits in HICR0 of LPC, and the P83DDR bit. LPCENABLE in the following table is represented by the following logical expression.

LPCENABLE = 1: FSILIE + SCIFE + LPC4E + LPC3E + LPC2E + LPC1E + LPCAE

LPCENABLE	(1	
P83DDR	0	_	
Pin function	P83 input pin	P83 output pin	LPCPD input pin

(5) P82/CLKRUN

The pin function is switched as shown below according to the combination of the FSILIE bit in SLCR of FSI, and the LPCAE bit in HICR6, the SCIFE bit in HICR5, the LPC4E bit in HICR4, and the LPC3E to LPC1E bits in HICR0 of LPC, and the P82DDR bit. LPCENABLE in the following table is represented by the following logical expression.

LPCENABLE = 1: FSILIE + SCIFE + LPC4E + LPC3E + LPC2E + LPC1E + LPCAE

LPCENABLE	0		1
P82DDR	0 1		_
Pin function	P82 input pin	P82 output pin	CLKRUN I/O pin

P81/GA20 **(6)**

The pin function is switched as shown below according to the combination of the FGA20E bit in HICRO of LPC and the P81DDR bit.

FGA20E	0		1
P81DDR	0	_	
Pin function	P81 input pin	P81 output pin	GA20 output pin

P80/PME **(7)**

The pin function is switched as shown below according to the combination of the PMEE bit in HICRO of LPC and the P80DDR bit.

PMEE	0		1
P80DDR	0 1		_
Pin function	P80 input pin	P80 output pin	PME output pin

9.2.9 Port 9

(1) P97/IRQ15/SDA0

The pin function is switched as shown below according to the combination of the ICE bit in ICCR of IIC_0 and the P97DDR bit. When the ISS15 bit in ISSR16 is cleared to 0 and the IRQ15E bit in IER16 of the interrupt controller is set to 1, this pin functions as the IRQ15 input pin.

ICE	0		1
P97DDR	0 1		_
Pin function	P97 input pin P97 output pin		SDA0 I/O pin
	ĪRQ15 input pin		

Note: The output format for SDA0 is NMOS output only and direct bus drive is possible. When this pin is used as the P97 output pin, the output format is CMOS output.

(2) P96/\(\phi\)/EXCL

The pin function is switched as shown below according to the combination of the register settings of the EXCLS bit in PTCNT0 and the EXCLE bit in LPWRCR, and the P96DDR bit.

P96DDR	0			1
EXCLS	0		1	_
EXCLE	0 1		_	_
Pin function	P96 input pin	EXCL input pin	P96 input pin	φ output pin

(3) P95/IRQ14, P94/IRQ13, P93/IRQ12, P92/IRQ0, P91/IRQ1, P90/IRQ2

The pin function is switched as shown below according to the P9nDDR bit. When the ISSm bit in ISSR16 is cleared to 0 and the IRQmE bit in IER16 of the interrupt controller is set to 1, this pin functions as the $\overline{\text{IRQm}}$ input pin.

When the IRQkE bit in IER of the interrupt controller is set to 1, this pin functions as the \overline{IRQk} input pin.

P9nDDR	0	1		
Pin function	P9n input pin	P9n output pin		
	IRQm input pin/IRQk input pin			

(n = 5 to 0)

(m = 14 to 12)

(k = 2 to 0)

9.2.10 Port A

(1) PA7/KIN15/PS2CD, PA6/KIN14/PS2CC, PA5/KIN13/PS2BD, PA4/KIN12/PS2BC, PA3/KIN11/PS2AD, PA2/KIN10/PS2AC

The pin function is switched as shown below according to the combination of the KBIOE bit in KBCRH of PS2 and the PAnDDR bit. When the KMIMRm bit in KMIMRA of the interrupt controller is cleared to 0, this pin functions as the $\overline{\text{KINm}}$ input pin.

KBIOE	0		1
PAnDDR	0 1		_
Pin function	PAn input pin PAn output pin		PS2 I/O pin
	KINm input pin		

(n = 7 to 2, m = 15 to 10)

Note: When the KBIOE bit is set to 1, this pin functions as an NMOS open-drain output, and direct bus drive is possible.

(2) PA1/SCL1/KIN9

The pin function is switched as shown below according to the combination of the ICE bit in ICCR of IIC_1 and the PA1DDR bit. When the KMIMR9 bit in KMIMRA of the interrupt controller is cleared to 0, this pin functions as the $\overline{\text{KIN9}}$ input pin.

ICE	0		1
PA1DDR	0 1		_
Pin function	PA1 input pin PA1 output pin		SCL1 I/O pin
	KIN9 input pin		

Note: The output format for SCL1 is NMOS open-drain, and direct bus drive is possible

(3) PAO/SDA1/KIN8

The pin function is switched as shown below according to the combination of the ICE bit in ICCR of IIC_1 and the PA0DDR bit. When the KMIMR8 bit in KMIMRA of the interrupt controller is cleared to 0, this pin functions as the $\overline{\text{KIN8}}$ input pin.

ICE	0		1
PA0DDR	0 1		_
Pin function	PA0 input pin PA0 output pin		SDA1 I/O pin
	KIN8 input pin		

Note: The output format for SDA1 is NMOS open-drain, and direct bus drive is possible.

9.2.11 Port B

(1) PB7/RTS/FSISS

The pin function is switched as shown below according to the combination of the SCIFE bit in HICR5 of LPC, the FSIE bit in FSICR1 of FSI, the EXSCIFS bit in PTCNT0, and the PB7DDR bit. SCIFOE in the following table is represented by the following logical expression.

SCIFOE = 1: (SCIFE • SCIFOE1 • SCIFOE0 + SCIFE • SCIFOE0) • EXSCIFS

FSIE	0			1
SCIFOE	0		1	_
PB7DDR	0 1		_	_
Pin function	PB7 input pin	PB7 output pin	RTS output pin	FSISS output pin

(2) PB6/CTS/FSICK

The pin function is switched as shown below according to the combination of the FSIE bit in FSICR1 of FSI and the PB6DDR bit.

When the SCIFE bit in HICR5 of LPC is set to 1 and the EXSCIFS bit in PTCNT0 is cleared to 0, this pin can be used as the CTS input pin.

FSIE	0		1	
PB6DDR	0 1		_	
Pin function	PB6 input pin	FSICK output pin		
	CTS input pin			

(3) PB5/DTR/FSIDI

The pin function is switched as shown below according to the combination of the SCIFE bit in HICR5 of LPC, the FSIE bit in FSICR1 of FSI, the EXSCIFS bit in PTCNT0, and the PB5DDR bit. SCIFOE in the following table is represented by the following logical expression.

SCIFOE = 1: (SCIFE • SCIFOE1 • SCIFOE0 + SCIFE • SCIFOE0) • EXSCIFS

FSIE	0			1
SCIFOE	0		1	_
PB5DDR	0 1		_	_
Pin function	PB5 input pin	PB5 output pin	DTR output pin	FSIDI input pin

(4) PB4/DSR/FSIDO

The pin function is switched as shown below according to the combination of the FSIE bit in FSICR1 of FSI and the PB4DDR bit.

When the SCIFE bit in HICR5 of LPC is set to 1 and the EXSCIFS bit in PTCNT0 is cleared to 0, this pin can be used as the \overline{DSR} input pin.

FSIE	0		1
PB4DDR	0 1		_
Pin function	PB4 input pin PB4 output pin		FSIDO output pin
	DSR input pin		

(5) PB3/\overline{DCD}/PWMU1B

The pin function is switched as shown below according to the combination of the PWM1E bit in PWM of PWMU B and the PB3DDR bit.

PB3DDR	0	1	
PWM1E	_	0	1
Pin function	PB3 input pin	PB3 output pin	PWMU1B output pin
	DCD input pin		

(6) PB2/RI/PWMU0B

The pin function is switched according to the combination of the settings of the PWM0E bit in PWMOUTCR of PWMU_B, the CNTMD01A bit in PWMMDCR, the CNTMD01B bit in PWMMDCR, and the PB2DDR bit, as shown below. PWM0OE in the following table is represented by the following logical expression.

PWM00E = 1: $PWM0E \bullet \overline{CNTMD01A} \bullet \overline{CNTMD01B}$

PB2DDR	0	1	
PWM0OE	_	0	1
Pin function	PB2 input pin	PB2 output pin	PWMU0B output pin
	RI input pin		

(7) PB1/LSCI

The pin function is switched as shown below according to the combination of the LSCIE bit in HICRO of LPC and the PB1DDR bit.

LSCIE	(1	
PB1DDR	0	1	_
Pin function	PB1 input pin	PB1 output pin	LSCI output pin

(8) PB0/LSMI

The pin function is switched as shown below according to the combination of the LSMIE bit in HICRO of LPC and the PB0DDR bit.

LSMIE		1	
PB0DDR	0	1	_
Pin function	PB0 input pin	PB0 output pin	LSMI output pin

9.2.12 Port C

PC7/WUE15/TIOCB2/TCLKD **(1)**

The pin function is switched as shown below according to the combination of the TPU channel 2 setting, the TPSC2 to TPSC0 bits in TCR 0 of TPU, and the PC7DDR bit.

When the WUEMR15 bit in WUEMR of the interrupt controller is cleared to 0, this pin functions as the $\overline{WUE15}$ input pin.

TPU channel 2 setting	Input setting or initial value		Output setting
PC7DDR	0 1		
Pin function	PC7 input pin PC7 output pin		TIOCB2 output pin
	TIOCB2		
	WL	JE15 input pin/TCLKD inpu	ut pin*1

Notes: 1. This pin functions as the TCLKD input pin when the TPSC2 to TPSC0 bits in TCR_0 are B'111. Also, when channel 2 is set to phase counting mode, this pin functions as the TCLKD input pin.

2. This pin functions as the TIOCB2 input pin when the TPU channel 2 timer is set to normal operation mode, or to phase counting mode while the IOB3 bit in TIOR_2 is set to 1.

PC6/WUE14/TIOCA2 **(2)**

The pin function is switched as shown below according to the combination of the TPU channel 2 setting and the PC6DDR bit.

When the WUEMR14 bit in WUEMR of the interrupt controller is cleared to 0, this pin functions as the $\overline{\text{WUE}14}$ input pin.

TPU channel 2 setting	Input setting or initial value		Output setting
PC6DDR	0 1		_
Pin function	PC6 input pin PC6 output pin		TIOCA2 output pin
	TIOCA2 input pin*		

Note: This pin functions as the TIOCA2 input pin when the TPU channel 2 timer is set to normal operation mode, or to phase counting mode while the IOA3 bit in TIOR_2 is set to 1.

(3) PC5/WUE13/TIOCB1/TCLKC

The pin function is switched as shown below according to the combination of the TPU channel 1 setting, the TPSC2 to TPSC0 bits in TCR_0 or TCR_2 of TPU, and the PC5DDR bit.

When the WUEMR13 bit in WUEMRA of the interrupt controller is cleared to 0, this pin functions as the $\overline{WUE13}$ input pin.

TPU channel 1 setting	Input setting or initial value		Output setting
PC5DDR	0 1		_
Pin function	PC5 input pin PC5 output pin		TIOCB1 output pin
	TIOCB1 input pin*2		
	WU	ut pin*1	

- Notes: 1. This pin functions as the TCLKC input pin when the TPSC2 to TPSC0 bits in TCR_0 or TCR_2 are B'110. Also, when channel 1 is set to phase counting mode, this pin functions as the TCLKC input pin.
 - 2. This pin functions as the TIOCB1 input pin when the TPU channel 1 timer is set to normal operation mode, or to phase counting mode while the IOB3 to IOB0 bits in TIOR_1 are set to B'10xx. (x: Don't care)

(4) PC4/WUE12/TIOCA1

The pin function is switched as shown below according to the combination of the TPU channel 1 setting and the PC4DDR bit.

When the WUEMR12 bit in WUEMRA of the interrupt controller is cleared to 0, this pin functions as the $\overline{\text{WUE}12}$ input pin.

TPU channel 1 setting	Input setting or initial value		Output setting
PC4DDR	0 1		_
Pin function	PC4 input pin PC4 output pin		TIOCA1 output pin
	TIOCA1 input pin*		
	WUE12 input pin		

Note: * This pin functions as the TIOCA1 input pin when the TPU channel 1 timer is set to normal operation mode, or to phase counting mode while the IOA3 to IOA0 bits in TIOR_1 are set to B'10xx. (x: Don't care)

(5) PC3/WUE11/TIOCD0/TCLKB

The pin function is switched as shown below according to the combination of the TPU channel 0 setting, the TPSC2 to TPSC0 bits in any of TCR_0 to TCR_2 of TPU, and the PC3DDR bit.

When the WUEMR11 bit in WUEMRA of the interrupt controller is cleared to 0, this pin functions as the $\overline{WUE11}$ input pin.

TPU channel 0 setting	Input setting	Output setting	
PC3DDR	0	_	
Pin function	PC3 input pin PC3 output pin		TIOCD0 output pin
	TIOCDO		
	WU	ut pin*1	

- Notes: 1. This pin functions as the TCLKB input pin when the TPSC2 to TPSC0 bits in any of TCR_0 to TCR_2 are B'101. Also, when channel 0 is set to phase counting mode, this pin functions as the TCLKB input pin.
 - 2. This pin functions as the TIOCD0 input pin when the TPU channel 0 timer is set to normal operation mode, or to phase counting mode while the IOD3 to IOD0 bits in TIOR_0 are set to B'10xx. (x: Don't care)

(6) PC2/WUE10/TIOCC0/TCLKA

The pin function is switched as shown below according to the combination of the TPU channel 0 setting, the TPSC2 to TPSC0 bits in any of TCR_0 to TCR_2 of TPU, and the PC2DDR bit.

When the WUEMR10 bit in WUEMRA of the interrupt controller is cleared to 0, this pin functions as the $\overline{WUE10}$ input pin.

TPU channel 0 setting	Input setting or initial value		Output setting
PC2DDR	0 1		_
Pin function	PC2 input pin PC2 output pin		TIOCC0 output pin
	TIOCCO		
	WU	ut pin*1	

- Notes: 1. This pin functions as the TCLKA input pin when the TPSC2 to TPSC0 bits in any of TCR_0 to TCR_2 are B'100. Also, when channel 0 is set to phase counting mode, this pin functions as the TCLKA input pin.
 - 2. This pin functions as the TIOCC0 input pin when the TPU channel 0 timer is set to normal operation mode, or to phase counting mode while the IOC3 to IOC0 bits in TIOR_0 are set to B'10xx. (x: Don't care)

(7) PC1/WUE9/TIOCB0

The pin function is switched as shown below according to the combination of the TPU channel 0 setting and the PC1DDR bit.

When the WUEMR9 bit in WUEMRA of the interrupt controller is cleared to 0, this pin functions as the $\overline{\text{WUE9}}$ input pin.

TPU channel 0 setting	Input setting or initial value		Output setting
PC1DDR	0	1	_
Pin function	PC1 input pin	PC1 output pin	TIOCB0 output pin
	TIOCB0 input pin*		
	WUE9 input pin		

Note: * This pin functions as the TIOCB0 input pin when the TPU channel 0 timer is set to normal operation mode, or to phase counting mode while the IOB3 to IOB0 bits in TIORH 0 are set to B'10xx. (x: Don't care)

(8) PC0/WUE8/TIOCA0

The pin function is switched as shown below according to the combination of the TPU channel 0 setting and the PC0DDR bit.

When the WUEMR8 bit in WUEMRA of the interrupt controller is cleared to 0, this pin functions as the $\overline{WUE8}$ input pin.

TPU channel 0 setting	Input setting or initial value		Output setting
PC0DDR	0	1	_
Pin function	PC0 input pin	PC0 output pin	TIOCA0 output pin
	TIOCA0 input pin*		
		WUE8 input pin	

Note: * This pin functions as the TIOCA0 input pin when the TPU channel 0 timer is set to normal operation mode, or to phase counting mode while the IOA3 to IOA0 bits in TIORH_0 are set to B'10xx. (x: Don't care)

9.2.13 Port D

(1) PD7/SCS

The pin function is switched as shown below according to the combination of the MSS, CSS1, and CSS0 bits in SSCRH of SSU, the SSUMS bit in SSCRL, and the PD7DDR bit. SCSIE and SCSOE in the following table are represented by the following logical expressions.

$$SCSIE = 1: (\overline{SSUMS} \bullet \overline{MSS}) + (\overline{SSUMS} \bullet MSS \bullet \overline{CSS1} \bullet CSS0) + (\overline{SSUMS} \bullet MSS \bullet CSS1 \bullet \overline{CSS0})$$

 $SCSOE = 1: \overline{SSUMS} \cdot MSS \cdot CSS1$

SCSIE	0			1
SCSOE	0		1	0
PD7DDR	0	1	_	_
Pin function	PD7 input pin	PD7 output pin	SCS output pin	SCS input pin

(2) PD6/SSCK

The pin function is switched as shown below according to the combination of the MSS and SCKS bits in SSCRH of SSU, the SSUMS bit in SSCRL, and the PD6DDR bit. SSCKIE and SSCKOE in the following table are represented by the following logical expressions.

SSCKIE = 1:
$$(\overline{SSUMS} \cdot \overline{MSS} \cdot SCKS) + (SSUMS \cdot \overline{MSS} \cdot SCKS)$$

SSCKOE = 1: MSS • SCKS

SSCKIE	0			1
SSCKOE	0		1	0
PD6DDR	0	1	_	_
Pin function	PD6 input pin	PD6 output pin	SSCK output pin	SSCK input pin

(3) PD5/<u>SSI</u>

The pin function is switched as shown below according to the combination of the MSS and BIDE bits in SSCRH of SSU, the SSUMS bit in SSCRL, the TE and RE bits in SSER, and the PD5DDR bit. SSIIE and SSIOE in the following table are represented by the following logical expressions.

SSIIE = 1:
$$(\overline{SSUMS} \cdot \overline{BIDE} \cdot MSS \cdot RE) + (SSUMS \cdot \overline{BIDE} \cdot RE)$$

 $SSIOE = 1: \overline{SSUMS} \cdot \overline{BIDE} \cdot \overline{MSS} \cdot TE$

SSIE	0			1
SSIOE	0		1	0
PD5DDR	0	1	_	_
Pin function	PD5 input pin	PD5 output pin	SSI output pin	SSI input pin

(4) PD4/SSO

The pin function is switched as shown below according to the combination of the MSS and BIDE bits in SSCRH of SSU, the SSUMS bit in SSCRL, the TE and RE bits in SSER, and the PD4DDR bit. SSOIE and SSOOE in the following table are represented by the following logical expressions.

SSOIE = 1:
$$(\overline{SSUMS} \bullet \overline{BIDE} \bullet \overline{MSS} \bullet RE) + (\overline{SSUMS} \bullet BIDE \bullet \overline{TE} \bullet RE)$$

$$SSOOE = 1: (\overline{SSUMS} \bullet \overline{BIDE} \bullet \overline{MSS} \bullet TE) + (\overline{SSUMS} \bullet BIDE \bullet \overline{RE} \bullet TE) + (SSUMS \bullet \overline{BIDE} \bullet TE)$$

SSOIE	0			1
SSOOE	0		1	0
PD4DDR	0	1	_	_
Pin function	PD4 input pin	PD4 output pin	SSO output pin	SSO input pin

H8S/2113 Group Section 9 I/O Ports

(5) PD3/AN11, PD2/AN10, PD1/AN9, PD0/AN8

The pin function is switched as shown below according to the PDnDDR bit. When these pins are used as analog input pins, do not set them to output pins.

PDnDDR	0	1		
Pin function	PDn input pin PDn input pin			
	ANm input pin			

(n = 3 to 0, m = 11 to 8)

9.2.14 Port E

(1) PE5/ETRST, PE4/ETMS, PE3/ETDO, PE2/ETDI, PE1/ETCK

The pin function is switched as shown below according to the combination of the operating mode and the PEnDDR bit.

Operating mode	On-chip emulation mode	Single-chip mode	
PEnDDR	_	0	1
Pin function	Emulator input/output pin	PEn input pin	PEn output pin

(n = 5 to 1)

Note: Pins PE5 to PE1 are not supported by the system development tool (emulator).

(2) PE0/ExEXCL

The pin function is switched as shown below according to the combination of the EXCLS bit in PTCNT0, the EXCLE bit in LPWRCR, and the PE0DDR bit.

When the EXCLS bit in PTCNT0 and the EXCLE bit in LPWRCR are set to 1 in this order, this pin functions as the ExEXCL input pin.

PE0DDR	0			1
EXCLS	0 1 —			_
EXCLE	_ 0 1		_	
Pin function	PE0 input pin	PE0 input pin	ExEXCL input pin	PE0 output pin

H8S/2113 Group Section 9 I/O Ports

9.2.15 Port F

(1) PF7/PWMU5A/ExRTS

The pin function is switched as shown below according to the combination of the SCIFE bit in HICR5 of LPC, the EXSCIFS bit in PTCNT0, PWM5E bit in PWMOUTCR of PWMU_A, and the PF7DDR bit. EXSCIFOE in the following table is represented by the following logical expression.

EXSCIFOE = 1: (SCIFE • SCIFOE1 • SCIFOE0 + SCIFE • SCIFOE0) • EXSCIFS

EXSCIFOE	0			1
PF7DDR	0	1		_
PWM5E	_	0	1	_
Pin function	PF7 input pin	PF7 output pin	PWMU5A output pin	ExRTS output pin

(2) PF6/PWMU4A/ExCTS

The pin function is switched as shown below according to the combination of the SCIFE bit in HICR5 of LPC, the PWM4E bit in PWMOUTCR of PWMU_A, the CNTMD45A bit in PWMPCR, the CNTMD45B bit in PWMOUTCR, and the PF6DDR bit.

When the SCIFE bit in HICR5 of LPC is set to 1 and the EXSCIF bit in PTCNT0 is set to 1, this pin can be used as the ExCTS input pin.

PWM5OE in the following table is represented by the following logical expression.

 $PWM4OE = 1: PWM4E \bullet \overline{CNTMD45A} \bullet \overline{CNTMD45B}.$

PF6DDR	0	1	
PWM4OE	_	0	1
Pin function	PF6 input pin	PF6 output pin	PWMU4A output pin
	ExCTS input pin		

(3) PF5/PWMU3A/ExDTR

The pin function is switched as shown below according to the combination of the SCIFE bit in HICR5 of LPC, the EXSCIFS bit in PTCNT0, the PWM3E bit in PWMOUTCR of PWMU_A, and the PF5DDR bit.

EXSCIFOE in the following table is represented by the following logical expression.

EXSCIFOE = 1: (SCIFE • SCIFOE1 • SCIFOE0 + SCIFE • SCIFOE0) • EXSCIFS

EXSCIFOE	0			1
PF5DDR	0	-	_	
PWM3E	_	0	1	_
Pin function	PF5 input pin	PF5 output pin	PWMU3A output pin	ExDTR output pin

(4) PF4/PWMU2A/ExDSR

The pin function is switched as shown below according to the combination of the SCIFE bit in HICR5 of LPC, the PWM2E bit in PWMOUTCR of PWMU_A, the CNTMD23A bit in PWMPCR, the CNTMD23B bit in PWMOUTCR, and the PF4DDR bit.

When the SCIFE bit in HICR5 of LPC is set to 1 and the EXSCIF bit in PTCNT0 is set to 1, this pin can be used as the ExDSR input pin.

PWM2OE in the following table is represented by the following logical expression.

 $PWM2OE = 1: PWM2E \cdot \overline{CNTMD23A} \cdot \overline{CNTMD23B}.$

PF4DDR	0	1	
PWM2OE	_	0	1
Pin function	PF4 input pin	PF4 output pin	PWMU2A output pin
	ExDSR input pin		

H8S/2113 Group Section 9 I/O Ports

PF3/TMOX/IRQ11 (5)

The pin function is switched as shown below according to the combination of the OS3 to OS0 bits in TCSR of TMR_X and the PF3DDR bit.

When the ISS11 bit in ISSR16 is cleared to 0 and the IRQ11E bit in IER16 of the interrupt controller is set to 1, this functions as the $\overline{IRQ11}$ input pin.

OS3 to OS0	All 0		Any of them is 1
PF3DDR	0 1		_
Pin function	PF3 input pin PF3 output pin		TMOX output pin
	ĪRQ11 input pin		

PF2/TMOY/IRQ10 **(6)**

The pin function is switched as shown below according to the combination of the OS3 to OS0 bits in TCSR of TMR Y and the PF2DDR bit.

When the ISS10 bit in ISSR16 is cleared to 0 and the IRQ10E bit in IER16 of the interrupt controller is set to 1, this pin functions as the $\overline{IRQ10}$ input pin.

OS3 to OS0	All 0		Any of them is 1
PF2DDR	0 1		_
Pin function	PF2 input pin PF2 output pin		TMOY output pin
	ĪRQ10 input pin		

PF1/IRQ9/PWMU1A **(7)**

The pin function is switched as shown below according to the combination of the PWM1E bit in PWMOUTCR of PWMU_A and the PF1DDR bit. When the ISS9 bit in ISSR16 is cleared to 0 and the IRQ9E bit in IER16 of the interrupt controller is set to 1, this pin can be used as the $\overline{IRQ9}$ input pin.

PF1DDR	0	-	1
PWM1E	_	0	1
Pin function	PF1 input pin	PF1 output pin	PWMU1A output pin
	IRQ9 input pin		

(8) PF0/IRQ8/PWMU0A

The pin function is switched according to the combination of the settings of the PWM0E bit in PWMOUTCR of PWMU_A, the CNTMD01A bit in PWMMDCR, the CNTMD01B bit in PWMMDCR, and the PF0DDR bit, as shown below.

When the ISS8 bit in ISSR16 is cleared to 0 and the IRQ8E bit in the IER16 register of the interrupt controller is set to 1, this pin can be used as the $\overline{\text{IRQ8}}$ input pin. PWM0OE in the following table is represented by the following logical expression.

 $PWM00E = 1: PWM0E \bullet \overline{CNTMD01A} \bullet \overline{CNTMD01B}$

PF0DDR	0	-	1
PWM0OE	_	0	1
Pin function	PF0 input pin	PF0 output pin	PWMU0A output pin
	ĪRQ8 input pin		

H8S/2113 Group Section 9 I/O Ports

9.2.16 Port G

(1) PG7/SCLD/ExIRQ15

The pin function is switched as shown below according to the combination of the ICE bit in ICCR of IIC_2, the IIC2AS bit in IIC2BS of PTCNT1, and the PG7DDR bit. When the ISS15 bit in ISSR16 is set to 1 and the IRQ15E bit in IER16 of the interrupt controller is set to 1, this pin can be used as the $\overline{\text{ExIRQ15}}$ input pin. SCLD_EN in the following table is represented by the following logical expression.

SCLD_EN = 1: ICE • IIC2BS • IIC2AS

SCLD_EN	0		1
PG7DDR	0 1		
Pin function	PG7 input pin PG7 output pin		SCLD I/O pin
	ExIRQ15 input pin		

Note: The output format for SCLD is NMOS output only, and direct bus drive is possible. When this pin is used as the PG7 output pin, the output format is CMOS output.

(2) PG6/SDAD/ExIRQ14

The pin function is switched as shown below according to the combination of the ICE bit in ICCR of IIC_2, the IIC2AS bit in IIC2BS of PTCNT1, and the PG6DDR bit. When the ISS14 bit in ISSR16 is set to 1 and the IRQ14E bit in IER16 of the interrupt controller is set to 1, this pin can be used as the ExIRQ14 input pin. SDAD_EN in the following table is represented by the following logical expression.

 $SDAD_EN = 1: ICE \bullet IIC2BS \bullet IIC2AS$

SDAD_EN	0		1
PG6DDR	0 1		_
Pin function	PG6 input pin PG6 output pin		SDAD I/O pin
	ExIRQ14 input pin		

Note: The output format for SDAD is NMOS output only, and direct bus drive is possible. When this pin is used as the PG6 output pin, the output format is CMOS output.

(3) PG5/SCLC/ExIRQ13

The pin function is switched as shown below according to the combination of the ICE bit in ICCR of IIC_2, the IIC2AS bit in IIC2BS of PTCNT1, and the PG5DDR bit. When the ISS13 bit in ISSR16 is set to 1 and the IRQ13E bit in IER16 of the interrupt controller is set to 1, this pin can be used as the ExIRQ13 input pin. SCLC_EN in the following table is represented by following logical expression.

SCLC EN = 1: ICE • IIC2BS • $\overline{\text{IIC2AS}}$

SCLC_EN	0		1
PG5DDR	0 1		_
Pin function	PG5 input pin PG5 output pin		SCLC I/O pin
	ExIRQ13 input pin		

Note: The output format for SCLC is NMOS output only, and direct bus drive is possible. When this pin is used as the PG5 output pin, the output format is CMOS output.

(4) PG4/SDAC/ExIRQ12

The pin function is switched as shown below according to the combination of the ICE bit in ICCR of IIC_2, the IIC2AS bit in IIC2BS of PTCNT1, and the PG4DDR bit. When the ISS12 bit in ISSR16 is set to 1 and the IRQ12E bit in IER16 of the interrupt controller is set to 1, this pin can be used as the ExIRQ12 input pin. SDAC_EN in the following table is represented by the following logical expression.

SDAC EN = 1: ICE • IIC2BS • $\overline{\text{IIC2AS}}$

SDAC_EN	0		1
PG4DDR	0 1		_
Pin function	PG4 input pin PG4 output pin		SDAC I/O pin
	ExIRQ12 input pin		

Note: The output format for SDAC is NMOS output only, and direct bus drive is possible. When this pin is used as the PG4 output pin, the output format is CMOS output.

H8S/2113 Group Section 9 I/O Ports

(5) PG3/SCLB/ExIRQ11

The pin function is switched as shown below according to the combination of the ICE bit in ICCR of IIC_2, the IIC2AS bit in IIC2BS of PTCNT1, and the PG3DDR bit. When the ISS11 bit in ISSR16 is set to 1 and the IRQ11E bit in IER16 of the interrupt controller is set to 1, this pin can be used as the ExIRQ11 input pin. SCLB_EN in the following table is represented by the following logical expression.

SCLB EN = 1: ICE • $\overline{\text{IIC2BS}}$ • IIC2AS

SCLB_EN	0		1
PG3DDR	0 1		_
Pin function	PG3 input pin PG3 output pin		SCLB I/O pin
	ExIRQ11 input pin		

Note: The output format for SCLB is NMOS output only, and direct bus drive is possible. When this pin is used as the PG3 output pin, the output format is CMOS output.

(6) PG2/SDAB/ExIRQ10

The pin function is switched as shown below according to the combination of the ICE bit in ICCR of IIC_2, the IIC2AS bit in IIC2BS of PTCNT1, and the PG2DDR bit. When the ISS10 bit in ISSR16 is set to 1 and the IRQ10E bit in IER16 of the interrupt controller is set to 1, this pin can be used as the $\overline{\text{ExIRQ10}}$ input pin. SDAB_EN in the following table is represented by the following logical expression.

 $SDAB_EN = 1: ICE \bullet \overline{IIC2BS} \bullet IIC2AS$

SDAB_EN	0		1
PG2DDR	0 1		
Pin function	PG2 input pin PG2 output pin		SDAB I/O pin
	ExIRQ10 input pin		

Note: The output format for SDAB is NMOS output only, and direct bus drive is possible. When this pin is used as the PG2 output pin, the output format is CMOS output

(7) PG1/SCLA/ExIRQ9/TMIY

The pin function is switched as shown below according to the combination of the ICE bit in ICCR of IIC_2, the IIC2AS bit in IIC2BS of PTCNT1, and the PG1DDR bit. TMRIY and TMCIY are multiplexed as the TMIY input pin. When the CCLR1 and CCLR0 bits in TCR of TMR_Y are set to 1, the pin functions as the TMIY (TMRIY) input pin. When and external clock is selected by the CKS2 to CKS0 bits in TCR of TMR_Y, the pin functions as the TMIY (TMCIY) input pin. When the ISS9 bit in ISSR16 is set to 1 and the IRQ9E bit in IER16 of the interrupt controller is set to 1, this pin can be used as the $\overline{\text{ExIRQ9}}$ input pin. SCLA_EN in the following table is represented by the following logical expression.

SCLA EN = 1: ICE • $\overline{\text{IIC2BS}}$ • $\overline{\text{IIC2AS}}$

SCLA_EN		1	
PG1DDR	0 1		_
Pin function	PG1 input pin PG1 output pin		SCLA I/O pin
	ExIRQ9 input pin / TMIY input pin		

Note: The output format for SCLA is NMOS output only, and direct bus drive is possible. When this pin is used as the PG1 output pin, the output format is CMOS output.

(8) PG0/SDAA/ExIRQ8/TMIX

The pin function is switched as shown below according to the combination of the ICE bit in ICCR of IIC_2, the IIC2AS bit in IIC2BS of PTCNT1, and the PG0DDR bit. TMRIX and TMCIX are multiplexed as the TMIX input pin. When the CCLR1 and CCLR0 bits in TCR of TMR_X are set to 1, the pin functions as the TMIX (TMRIX) input pin. When and external clock is selected by the CKS2 to CKS0 bits in TCR of TMR_X, the pin functions as the TMIX (TMCIX) input pin. When the ISS8 bit in ISSR16 is set to 1 and the IRQ8E bit in IER16 of the interrupt controller is set to 1, this pin can be used as the ExIRQ8 input pin. SDAA_EN in the following table is represented by the following logical expression.

 $SDAA_EN = 1: ICE \bullet \overline{IIC2BS} \bullet \overline{IIC2AS}$

SDAA_EN	(1	
PG0DDR	0 1		_
Pin function	PG0 input pin	PG0 output pin	SDAA I/O pin
	ExIRQ8 input pin / TMIX input pin		

Note: The output format for SDAA is NMOS output only, and direct bus drive is possible. When this pin is used as the PG0 output pin, the output format is CMOS output.

H8S/2113 Group Section 9 I/O Ports

9.2.17 Port H

(1) PH1/ExIRQ7

The pin function is switched as shown below according to the PH1DDR bit. When the ISS7 bit in ISSR is set to 1 and the IRQ7E bit in IER of the interrupt controller is set to 1, this pin can be used as the $\overline{\text{ExIRQ7}}$ input pin.

PH1DDR	0 1	
Pin function	PH1 input pin	PH1 output pin
	ExIRQ7 input pin	

PH0/IRQ6 **(2)**

The pin function is switched as shown below according to the PH0DDR bit. When the IRQ6E bit in IER of the interrupt controller is set to 1, this pin can be used as the $\overline{IRQ6}$ input pin.

PH0DDR	0 1	
Pin function	PH0 input pin	PH0 output pin
	IRQ6 input pin	

9.2.18 Port I

(1) PI7, PI6, PI5, PI4, PI3, PI2, PI1, PI0

The pin function is switched as shown below according to the PInDDR bit.

PInDDR	0	1
Pin function	PIn input pin	PIn output pin

(n = 7 to 0)

9.2.19 Port J

(1) PJ7, PJ6, PJ5, PJ4, PJ3, PJ2, PJ1, PJ0

The pin function is switched as shown below according to the PJnDDR bit.

PJnDDR	0	1
Pin function	PJn input pin	PJn output pin

(n = 7 to 0)

H8S/2113 Group Section 9 I/O Ports

9.3 Change of Peripheral Function Pins

For the external sub-clock input, SCIF input/output, and IIC input/output, the multi-function I/O ports can be changed. The external interrupt can be changed by the setting of ISSR16 and ISSR. I/O ports that also function as the external sub-clock input or SCIF input/output pin are changed by the setting of PTCNT0. For IIC input/output, change the setting of PTCNT1. The pin name of the peripheral function is indicated by adding "Ex" at the head of the original pin name. In each peripheral function description, only the original pin name is used.

The following registers are available as the port control register.

- Port control register 0 (PTCNT0)
- Port control register 1 (PTCNT1)
- Port control register 2 (PTCNT2)

9.3.1 Port Control Register 0 (PTCNT0)

PTCNT0 selects ports that also function as the external sub-clock input pin and SCIF input/output pins.

Bit	Bit Name	Initial Value	R/W	Description
7 to 2	_	All 0	R/W	Reserved
				The initial value should not be changed.
1	EXSCIFS	0	R/W	0: PB7/RTS is selected. PB6/CTS is selected. PB5/DTR is selected. PB4/DSR is selected.
				1: PF7/ExRTS is selected. PF6/ExCTS is selected. PF5/ExDTR is selected. PF4/ExDSR is selected.
0	EXCLS	0	R/W	0: P96/EXCL is selected. 1: PE0/ExEXCL is selected.

9.3.2 Port Control Register 1 (PTCNT1)

PTCNT1 selects port pins that also function as IIC_2 input/output pins.

When the IIC_2 pin functions are to be used, set the PGjODR bits for the corresponding pins to 1 (j = 7 to 0).

Bit	Bit Name	Initial Value	R/W	Descripti	ion	
7	IIC2BS	0	R/W	These bit	s select ir	nput/output pins for IIC_2
6	IIC2AS	1	R/W	IIC2BS	IIC2AS	
				0	0:	Selects PG1/SCLA and PG0/SDAA
				0	1:	Selects PG3/SCLB and PG2/SDAB
				1	0:	Selects PG5/SCLC and PG4/SDAC
				1	1:	Selects PG7/SCLD and PG6/SDAD
5 to 0	_	All 0	R/W	Reserved		
				The initial	l value sh	ould not be changed.

H8S/2113 Group Section 9 I/O Ports

9.3.3 Port Control Register 2 (PTCNT2)

PTCNT2 selects inverted SCI input/output.

Bit	Bit Name	Initial Value	R/W	Description
7, 6	_	All 0	R/W	Reserved
				The initial value should not be changed.
5	RxD1RS	0	R/W	0: RxD1 direct input
				1: RxD1 inverted input
4	TxD1RS	0	R/W	0: TxD1 direct output
				1: TxD1 inverted output
3 to 0	_	All 0	R/W	Reserved
				The initial value should not be changed.

Section 10 8-Bit PWM Timer (PWMU)

This LSI has two channels of 8-bit PWM timers, A and B (PWMU_A and PWMU_B). Each PWMU outputs 6 PWM waveforms. Each of the PWM channels of a PWMU can operate independently. A PWMU allows long-period PWM outputs for six channels in 8-bit single-pulse mode and for three channels in 16-bit/12-bit single-pulse mode. In addition, PWM outputs at a high carrier frequency are available in 8-bit pulse division mode. Connecting a low-pass filter externally to the LSI allows the PWMU to be used as an 8-bit D/A converter.

10.1 Features

- Selectable from four types of counter input clock
 Selection of four internal clock signals (φ, φ/2, φ/4, and φ/8)
- Independent operation and variable cycle for each channel

Cascaded connection of two channels is possible.

Operation of channel 1 (higher order) and channel 0 (lower order) as a 16-bit/12-bit single-pulse PWM timer

Operation of channel 3 (higher order) and channel 2 (lower order) as a 16-bit/12-bit single-pulse PWM timer

Operation of channel 5 (higher order) and channel 4 (lower order) as a 16-bit/12-bit single-pulse PWM timer

• 8-bit single pulse mode

Operates at a maximum carrier frequency of 78.1 kHz (at 20-MHz operation)

Pulse output settable with a duty cycle from 0/255 to 255/255

PWM output enable/disable control, and selection of direct or inverted PWM output

• 12-bit single pulse mode

Two channels are cascade-connected for operation in this mode.

Operates at a maximum carrier frequency of 4.9 kHz (at 20-MHz operation)

Pulse output settable with a duty cycle from 0/4095 to 4095/4095

PWM output enable/disable control, and selection of direct or inverted PWM output

• 16-bit single pulse mode

Two channels are cascade-connected for operation in this mode.

Operates at a maximum carrier frequency of 305.2 Hz (at 20-MHz operation)

Pulse output settable with a duty cycle from 0/65535 to 65535/65535

PWM output enable/disable control, and selection of direct or inverted PWM output

8-bit pulse division mode
 Operable at a maximum carrier frequency of 1.25 MHz (at 20-MHz operation)
 Pulse output settable with a duty cycle from 0/16 to 15/16
 PWM output enable/disable control, and selection of direct or inverted PWM output

Figure 10.1 shows a block diagram of the PWMU.

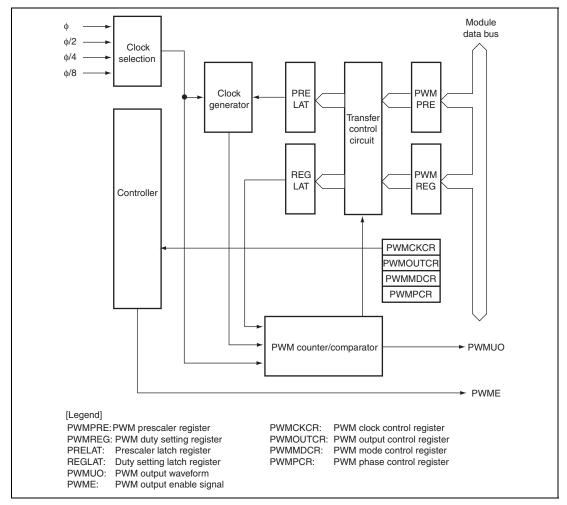


Figure 10.1 Block Diagram of PWMU Timer

10.2 Input/Output Pins

Table 10.1 shows the PWMU pin configuration.

Table 10.1 Pin Configuration

Channel		Pin Name	I/O	Function
Channel A	0	PWMU0A	Output	PWM pulse output (8-bit single pulse, 8-bit pulse division)
	1	PWMU1A	Output	PWM pulse output (8/12/16-bit single pulse, 8-bit pulse division)
	2	PWMU2A	Output	PWM pulse output (8-bit single pulse, 8-bit pulse division)
	3	PWMU3A	Output	PWM pulse output (8/12/16-bit single pulse, 8-bit pulse division)
	4	PWMU4A	Output	PWM pulse output (8-bit single pulse, 8-bit pulse division)
	5	PWMU5A	Output	PWM pulse output (8/12/16-bit single pulse, 8-bit pulse division)
Channel B	0	PWMU0B	Output	PWM pulse output (8-bit single pulse, 8-bit pulse division)
	1	PWMU1B	Output	PWM pulse output (8/12/16-bit single pulse, 8-bit pulse division)
	2	PWMU2B	Output	PWM pulse output (8-bit single pulse, 8-bit pulse division)
	3	PWMU3B	Output	PWM pulse output (8/12/16-bit single pulse, 8-bit pulse division)
	4	PWMU4B	Output	PWM pulse output (8-bit single pulse, 8-bit pulse division)
	5	PWMU5B	Output	PWM pulse output (8/12/16-bit single pulse, 8-bit pulse division)

10.3 Register Descriptions

The PWMU has the following registers.

Table 10.2 Register Configuration

Channel	Register Name	Abbreviation	R/W	Initial Value	Address	Data Bus Width
Channel A	PWM clock control register_A	PWMCKCR_A	R/W	H'00	H'FD0C	8
	PWM output control register_A	PWMOUTCR_A	R/W	H'00	H'FD0D	8
	PWM mode control register_A	PWMMDCR_A	R/W	H'00	H'FD0E	8
	PWM phase control register_A	PWMPCR_A	R/W	H'00	H'FD0F	8
	PWM prescaler register 0_A	PWMPRE0_A	R/W	H'00	H'FD01	8
	PWM prescaler register 1_A	PWMPRE1_A	R/W	H'00	H'FD03	8
	PWM prescaler register 2_A	PWMPRE2_A	R/W	H'00	H'FD05	8
	PWM prescaler register 3_A	PWMPRE3_A	R/W	H'00	H'FD07	8
	PWM prescaler register 4_A	PWMPRE4_A	R/W	H'00	H'FD09	8
	PWM prescaler register 5_A	PWMPRE5_A	R/W	H'00	H'FD0B	8
	PWM duty setting register 0_A	PWMREG0_A	R/W	H'00	H'FD00	8
	PWM duty setting register 1_A	PWMREG1_A	R/W	H'00	H'FD02	8
	PWM duty setting register 2_A	PWMREG2_A	R/W	H'00	H'FD04	8
	PWM duty setting register 3_A	PWMREG3_A	R/W	H'00	H'FD06	8
	PWM duty setting register 4_A	PWMREG4_A	R/W	H'00	H'FD08	8
	PWM duty setting register 5_A	PWMREG5_A	R/W	H'00	H'FD0A	8

				Initial		Data Bus
Channel	Register Name	Abbreviation	R/W	Value	Address	Width
Channel B	PWM clock control register_B	PWMCKCR_B	R/W	H'00	H'FD1C	8
	PWM output control register_B	PWMOUTCR_B	R/W	H'00	H'FD1D	8
	PWM mode control register_B	PWMMDCR_B	R/W	H'00	H'FD1E	8
	PWM phase control register_B	PWMPCR_B	R/W	H'00	H'FD1F	8
	PWM prescaler register 0_B	PWMPRE0_B	R/W	H'00	H'FD11	8
	PWM prescaler register 1_B	PWMPRE1_B	R/W	H'00	H'FD13	8
	PWM prescaler register 2_B	PWMPRE2_B	R/W	H'00	H'FD15	8
	PWM prescaler register 3_B	PWMPRE3_B	R/W	H'00	H'FD17	8
	PWM prescaler register 4_B	PWMPRE4_B	R/W	H'00	H'FD19	8
	PWM prescaler register 5_B	PWMPRE5_B	R/W	H'00	H'FD1B	8
	PWM duty setting register 0_B	PWMREG0_B	R/W	H'00	H'FD10	8
	PWM duty setting register 1_B	PWMREG1_B	R/W	H'00	H'FD12	8
	PWM duty setting register 2_B	PWMREG2_B	R/W	H'00	H'FD14	8
	PWM duty setting register 3_B	PWMREG3_B	R/W	H'00	H'FD16	8
	PWM duty setting register 4_B	PWMREG4_B	R/W	H'00	H'FD18	8
	PWM duty setting register 5_B	PWMREG5_B	R/W	H'00	H'FD1A	8

10.3.1 PWM Clock Control Register (PWMCKCR)

PWMCKCR selects the PWM clock source.

Bit	Bit Name	Initial Value	R/W	Description
7, 6	CLK1, CLK0	All 0	R/W	Clock Select 1, 0
				These bits select the PWM count clock source.
				CLK1 CLK0
				0 0: Internal clock ϕ is selected
				0 1: Internal clock φ/2 is selected
				1 0: Internal clock φ/4 is selected
				1 1: Internal clock φ/8 is selected
5 to 0	_	All 0	R	Reserved
				These bits are always read as 0 and cannot be modified.

10.3.2 PWM Output Control Register (PWMOUTCR)

PWMOUTCR controls enabling and disabling of the PWM output and counter operation of each channel.

Bit	Bit Name	Initial Value	R/W	Description
7	CNTMD45B	0	R/W	Channel 4 and 5, 12-bit Counter Select
				0: Channel 4 and 5 are set to 8-bit count operating mode
				1: Channel 4 and 5 are set to 12-bit count operating mode
				When selecting 12-bit count operating mode, 16-bit count mode must be non-selectable (CNTMD45A = 0). For details, see table 10.5.

Bit	Bit Name	Initial Value	R/W	Description
6	CNTMD23B	0	R/W	Channel 4 and 5, 12-bit Counter Select
				0: Channel 4 and 5 are set to 8-bit count operating mode
				1: Channel 4 and 5 are set to 12-bit count operating mode
				When selecting 12-bit count operating mode, 16-bit count mode must be non-selectable (CNTMD23A = 0). For details, see table 10.4.
5	PWM5E	0	R/W	PWMU5 Output Enable
				PWMU5 output and counter operation are disabled.
				 PWMU5 output and counter operation are enabled.
4	PWM4E	0	R/W	PWMU4 Output Enable
				8-bit single-pulse/pulse-division mode
				PWMU4 output and counter operation are disabled.
				 PWMU4 output and counter operation are enabled.
				• 12/16-bit single-pulse mode
				PWMU4 output and counter operation are disabled.
				1: PWMU4 output is disabled and counter operation is enabled.
3	PWM3E	0	R/W	PWMU3 Output Enable
				PWMU3 output and counter operation are disabled.
				PWMU3 output and counter operation are enabled.

Bit	Bit Name	Initial Value	R/W	Description
2	PWM2E	0	R/W	PWMU2 Output Enable
				8-bit single-pulse/pulse division mode
				PWMU2 output and counter operation are disabled.
				 PWMU2 output and counter operation are enabled.
				12/16-bit single-pulse mode
				PWMU2 output and counter operation are disabled.
				PWMU2 output is disabled and counter operation is enabled.
1	PWM1E	0	R/W	PWMU1 Output Enable
				PWMU1 output and counter operation are disabled.
				 PWMU1 output and counter operation are enabled.
0	PWM0E	0	R/W	PWMU0 Output Enable
				8-bit single-pulse/pulse division mode
				PWMU0 output and counter operation are disabled.
				 PWMU0 output and counter operation are enabled.
				12/16-bit single-pulse mode
				PWMU0 output and counter operation are disabled.
				PWMU0 output is disabled and counter operation is enabled.

10.3.3 PWM Mode Control Register (PWMMDCR)

PWMMDCR selects the PWM count mode and operating mode for each channel.

Bit	Bit Name	Initial Value	R/W	Description
7	CNTMD01B	0	R/W	Channel 0 and 1, 12-bit Counter Select
				0: Channel 0 and 1 are set to 8-bit count operating mode
				1: Channel 0 and 1 are set to 12-bit count operating mode
				When selecting 12-bit count operating mode, 16-bit count mode must be non-selectable (CNTMD01A = 0). For details, see table 10.3.
6	CNTMD01A	0	R/W	Channel 0 and 1, 16-bit Counter Select
				0: Channel 0 and 1 are set to 8-bit count operating mode
				1: Channel 0 and 1 are set to 16-bit count operating mode
				When selecting 16-bit count operating mode, 12-bit count mode must be non-selectable (CNTMD01B = 0). For details, see table 10.3.
5	PWMSL5	0	R/W	Channel 5 Operating Mode Select
				0: Single-pulse mode
				1: Pulse division mode (Specify 8-bit counter mode.)
4	PWMSL4	0	R/W	Channel 4 Operating Mode Select
				0: Single pulse mode
				1: Pulse division mode (Specify 8-bit counter mode.)
3	PWMSL3	0	R/W	Channel 3 Operating Mode Select
				0: Single pulse mode
				1: Pulse division mode (Specify 8-bit counter mode.)
2	PWMSL2	0	R/W	Channel 2 Operating Mode Select
				0: Single pulse mode
				1: Pulse division mode (Specify 8-bit counter mode.)

		Initial		
Bit	Bit Name	Value	R/W	Description
1	PWMSL1	0	R/W	Channel 1 Operating Mode Select
				0: Single pulse mode
				1: Pulse division mode (Specify 8-bit counter mode.)
0	PWMSL0	0	R/W	Channel 0 Operating Mode Select
				0: Single pulse mode
				1: Pulse division mode (Specify 8-bit counter mode.)

10.3.4 PWM Phase Control Register (PWMPCR)

PWMPCR selects the PWM count mode and output phase for each channel.

Bit	Bit Name	Initial Value	R/W	Description
7	PH5S	0	R/W	Channel 5 Output Phase Select
				0: PWMU5 direct output
				1: PWMU5 inverted output
6	PH4S	0	R/W	Channel 4 Output Phase Select
				0: PWMU4 direct output
				1: PWMU4 inverted output
5	PH3S	0	R/W	Channel 3 Output Phase Select
				0: PWMU3 direct output
				1: PWMU3 inverted output
4	PH2S	0	R/W	Channel 2 Output Phase Select
				0: PWMU2 direct output
				1: PWMU2 inverted output
3	PH1S	0	R/W	Channel 1 Output Phase Select
				0: PWMU1 direct output
				1: PWMU1 inverted output
2	PH0S	0	R/W	Channel 0 Output Phase Select
				0: PWMU0 direct output
				1: PWMU0 inverted output

Bit	Bit Name	Initial Value	R/W	Description
1	CNTMD45A	0	R/W	Channel 4 and 5, 16-bit Counter Select
				0: Channel 4 and 5 are set to 8-bit count operating mode
				Channel 4 and 5 are set to 16-bit count operating mode
				When selecting 16-bit count operating mode, 12-bit count mode must be non-selectable (CNTMD45B = 0). For details, see table 10.5.
0	CNTMD23A	0	R/W	Channel 2 and 3, 16-bit Counter Select
				Channel 2 and 3 are set to 8-bit count operating mode
				Channel 2 and 3 are set to 16-bit count operating mode
				When selecting 16-bit count operating mode, 12-bit count mode must be non-selectable (CNTMD23B = 0). For details, see table 10.4.

PWM Prescaler Latch Register (PRELAT) 10.3.5

PRELAT is a shift register in PWMPRE. When one pulse is completed, the data of PWMPRE is transferred to PRELAT automatically. This register cannot be accessed by the CPU directly.

10.3.6 PWM Duty Setting Latch Register (REGLAT)

REGLAT is a shift register in PWMREG. When one pulse is completed, the data of PWMREG is transferred to PRELAT automatically. This register cannot be accessed by the CPU directly.

Table 10.3 Counter Operation of the Channel 0 and 1

CNTMD01A in PWMMDCR	CNTMD01B in PWMMDCR	Counter Operation of the Channel 0 and 1
0	0	8-bit counter operation
0	1	12-bit counter operation (higher order: channel 1, lower order: channel 0)
1	0	16-bit counter operation (higher order: channel 1, lower order: channel 0)
1	1	Setting prohibited

Note: When 12/16-bit counter is selected, single pulse mode must be selected.

Table 10.4 Counter Operation of the Channel 2 and 3

CNTMD23A in PWMMPCR	CNTMD23B in PWMOUTCR	Counter Operation of the Channel 2 and 3
0	0	8-bit counter operation
0	1	12-bit counter operation (higher order: channel 2)
1	0	16-bit counter operation (higher order: channel 3, lower order: channel 2)
1	1	Setting prohibited

Note: When 12/16-bit counter is selected, single pulse mode must be selected.

Table 10.5 Counter Operation of the Channel 4 and 5

CNTMD45A in CNTMD45B in PWMMPCR PWMOUTCR Co		Counter Operation of the Channel 4 and 5
0	0	8-bit counter operation
0	1	12-bit counter operation (higher order: channel 5, lower order: channel 4)
1	0	16-bit counter operation (higher order: channel 5, lower order: channel 4)
1	1	Setting prohibited

Note: When 12/16-bit counter is selected, single pulse mode must be selected.

10.3.7 PWM Prescaler Registers 0 to 5 (PWMPRE0 to PWMPRE5)

PWMPRE are 8-bit readable/writable registers used to set the PWM cycle. The initial value is H'00.

When the PWMPRE value is n, the PWM cycle is calculated as follows.

(1) 8-Bit Single Pulse Mode

PWM cycle = $[255 \times (n + 1)]$ / internal clock frequency $(0 \le n \le 255)$

Table 10.6 Resolution, PWM Conversion Period, and Carrier Frequency when ϕ = 20 MHz (8-Bit Counter Operation)

				Carrier Frequency	
Internal Clock		PWM Conversion Period		Single Pulse	e Mode
Frequency	Resolution	Min.	Max.	Min.	Max.
ф	50 ns	12.8 μs	3.3 ms	306.4 Hz	78.4 kHz
φ/2	100 ns	25.5 μs	6.5 ms	153.2 Hz	39.2 kHz
φ/4	200 ns	51.0 μs	13.1 ms	76.6 Hz	19.6 kHz
ф/8	400 ns	102.0 μs	26.1 ms	38.3 Hz	9.8 kHz

(2) 12-Bit Single Pulse Mode

When 12-bit single pulse mode is selected, PWMPRE0, PWMPRE2, and PWMPRE4 are valid. The settings of PWMPRE1, PWMPRE3, and PWMPRE5 are invalid.

PWM cycle = $[4095 \times (n + 1)]$ / internal clock frequency $(0 \le n \le 255)$

Table 10.7 Resolution, PWM Conversion Period, and Carrier Frequency when $\phi = 20$ MHz (12-Bit Counter Operation)

		Carrier Frequen		quency	
Internal Clock		PWM Conve	PWM Conversion Period		e Mode
Frequency	Resolution	Min.	Max.	Min.	Max.
ф	50 ns	204.8 μs	52.4 ms	19.1 Hz	4.9 kHz
φ/2	100 ns	409.5 μs	104.8 ms	9.5 Hz	2.4 kHz
φ/4	200 ns	819.0 μs	209.7 ms	4.8 Hz	1.2 kHz
φ/8	400 ns	1.6 ms	419.3 ms	2.4 Hz	0.6 kHz

(3) 16-Bit Single Pulse Mode

When 16-bit single pulse mode is selected, PWMPRE0, PWMPRE2, and PWMPRE4 are valid. The settings of PWMPRE1, PWMPRE3, and PWMPRE5 are invalid.

PWM cycle = $[65535 \times (n + 1)]$ / internal clock frequency $(0 \le n \le 255)$

Table 10.8 Resolution, PWM Conversion Period, and Carrier Frequency when ϕ = 20 MHz (at 16-bit counter operation)

				Carrier Frequency	
Internal Clock		PWM Conversion Period		Single Puls	se Mode
Frequency	Resolution	Min.	Max.	Min.	Max.
ф	50 ns	3.3ms	838.8 ms	1.2 Hz	305.2 Hz
φ/2	100 ns	6.6ms	1.7 s	0.6 Hz	152.6 Hz
φ/4	200 ns	13.1ms	3.4 s	0.3 Hz	76.3 Hz
ф/8	400 ns	26.2ms	6.7 s	0.1 Hz	38.1 Hz

8-Bit Pulse Division Mode **(4)**

PWM cycle = $[16 \times (n + 1)]$ / internal clock frequency $(0 \le n \le 255)$ PWM conversion cycle = $[256 \times (n + 1)]$ / internal clock frequency $(0 \le n \le 255)$

Resolution, PWM Conversion Period, and Carrier Frequency when $\phi = 20 \text{ MHz}$ **Table 10.9** (at 8-bit counter operation)

Internal Clock		PWM Conversion Period		Carrier Frequency (1/PWM cycle)	
Frequency	Resolution	Min.	Max.	Min.	Max.
ф	50 ns	12.8 μs	3.3ms	4882.8 Hz	1250.0 kHz
φ/2	100 ns	25.5 μs	6.6ms	2441.4 Hz	625.0 kHz
φ/4	200 ns	51.2 μs	13.1ms	1220.7 Hz	312.5 kHz
ф/8	400 ns	102.4 μs	26.2ms	610.4 Hz	156.3 kHz

10.3.8 PWM Duty Setting Registers 0 to 5 (PWMREG0 to PWMREG5)

PWMREG are 8-bit readable/writable registers used to set the high period (duty) of the PWM output pulse. The initial value is H'00.

(1) 8-Bit Single Pulse Mode

Directly set the high period of the pulse for PWM output. With PWMREG registers, the duty cycle of the PWM output pulse is specified as a value from 0/255 to 255/255 with a resolution of 1/255.

When the PWMREG value is m, the high period of the output pulse is calculated as follows:

Output pulse high period = (PWM cycle \times m) / 255 (0 \leq m \leq 255)

(2) 12-Bit Single Pulse Mode

Directly set the high period of the pulse for PWM output. With PWMREG registers, the duty cycle of the PWM output pulse is specified as a value from 0/4095 to 4095/4095 with a resolution of 1/4095.

When the PWMREG value is m, the high period of the output pulse is calculated as follows:

Output pulse high period = (PWM cycle \times m) / 4095 (0 \leq m \leq 4095)

Set the respective high-level pulse periods by using the following register combinations: PWMREG1 (higher order) and PWMREG0 (lower order), PWMREG3 (higher order) and PWMREG2 (lower order), and PWMREG5 (higher order) and PWMREG4 (lower order).

Note: Setting of the bits 3 to 0 in the higher order registers and lower order registers is enabled. The bits 7 to 4 in the higher order registers are disabled. The higher order registers must be set after setting the lower order registers, otherwise the output performance is not as desired.

(3) 16-Bit Single Pulse Mode

Directly set the high period of the pulse for PWM output. With cascade-connected PWMREG registers, the duty cycle of the PWM output pulse is specified as a value from 0/65535 to 65535/65535.

When the PWMREG value is m, the high period of the output pulse is calculated as follows:

Output pulse high period = (PWM cycle \times m) / 65535 (0 \le m \le 65535)

Set the respective high-level pulse periods by using the following register combinations (cascaded connection): PWMREG1 (higher order) and PWMREG0 (lower order), PWMREG3 (higher order) and PWMREG2 (lower order), and PWMREG5 (higher order) and PWMREG4 (lower order).

Note: The higher order registers must be set after setting the lower order registers, otherwise the output performance is not as desired.

(4) 8-Bit Pulse Division Mode

Specify the basic pulse duty cycle and the number of additional pulses for PWM output. The higher-order four bits of the PWMREG setting specify the duty cycle of the basic pulse as 0/16 to 15/16 with a resolution of 1/16, and the lower-order four bits specify the number of pulses to be added within the conversion period comprising the basic pulses.

10.4 Operation

The PWMU operates in 8-bit single pulse mode, 12-bit single pulse mode, 16-bit single pulse mode, or 8-bit division pulse mode.

10.4.1 Single-Pulse Mode (8 Bits, 12 Bits, and 16 Bits)

Figure 10.2 shows a block diagram of 8-bit single pulse mode. Figure 10.3 shows a block diagram of 12 and 16-bit single pulse mode.

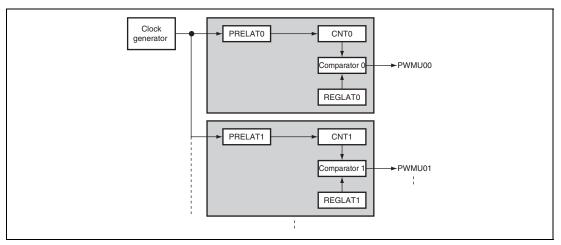


Figure 10.2 Block Diagram of 8-Bit Single Pulse Mode

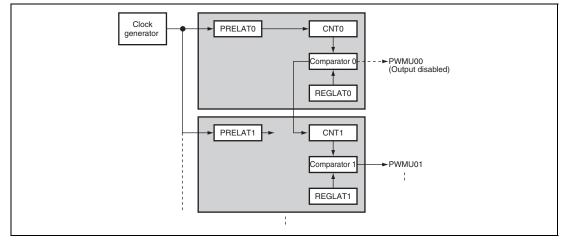


Figure 10.3 Block Diagram of 12 and 16-bit Single Pulse Mode

When the PWMnE bit (n = 0 to 5) in PWMOUTCR is set to 1, the PWMU outputs pulses that start with a high level. The updated PWMREG value is written in REGLAT, and the updated PWMPRE value is written in PRELAT.

When the REGLAT value is less than the duty counter value, the PWMU outputs a high level (when direct output is selected). At each PWM clock timing, the duty counter is incremented. When the clock generator counter is H'00, the PWM clock is generated by decrementing the PRELAT value.

Figure 10.4 shows an example of duty counter and clock generator counter operation.

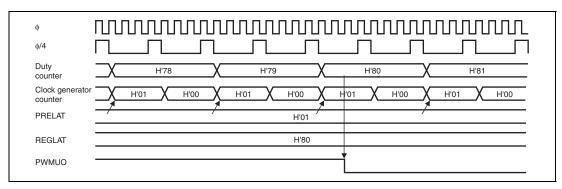


Figure 10.4 Example of Duty Counter and Clock Generator Counter Operation (When PWMPRE = H'01 and PWMREG = H'80 with \$\phi/4\$ Selected as Count Clock Source)

The following shows the duty counter value and PWMU output timing.

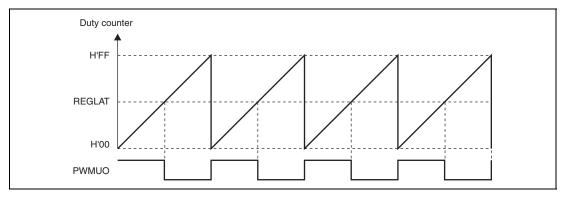


Figure 10.5 Duty Counter Value and PWMU Output Timing

If the PWMREG value is changed during PWM output, the PWMREG value is loaded into REGLAT when the duty counter overflows (at the beginning of the next PWM cycle). The following shows the PWMU output waveform when the PWMREG value is changed.

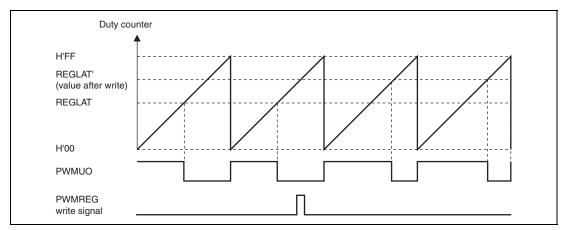


Figure 10.6 PWMU Output Waveform When PWMREG Value is Changed

When the PWMPRE value is changed during PWM output, the PWM cycle changes from the next cycle. When the clock generator counter underflows, the PWMPRE value is loaded into PRELAT. The following shows the PRELAT update timing when the PWMPRE value is changed.

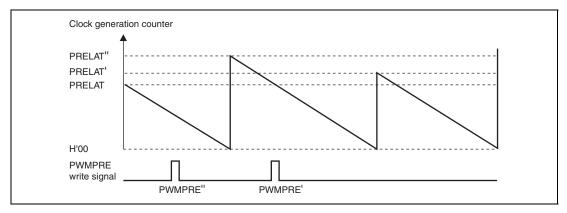
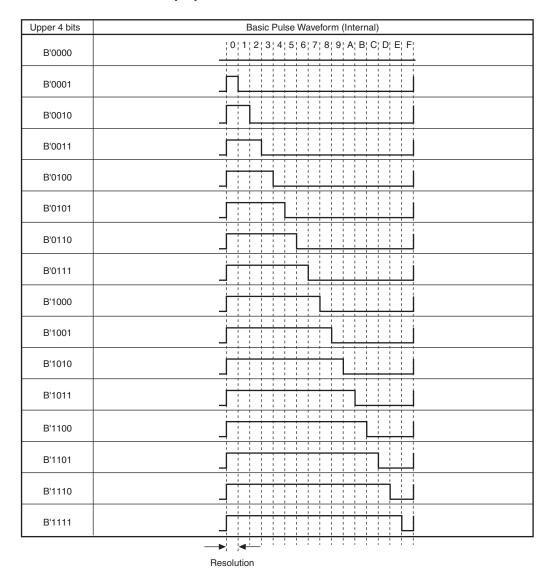



Figure 10.7 PRELAT Update Timing When PWMPRE Value is Changed

10.4.2 Pulse Division Mode

In pulse division mode, the higher-order four bits in PWMREG specify the duty cycle of the basic pulse as 0/16 to 15/16 with a resolution of 1/16. The following shows the duty cycle of the basic pulse.

Table 10.10 Basic Pulse Duty Cycle

The lower four bits in PWMREG specify the position of pulses added to the 16 basic pulses. The additional pulse adds a high period (when PHnS = 0) at the resolution width before the rising edge of the basic pulse. Although there is no rising edge of the basic pulse when the upper four bits in PWMREG is B'0000, the timing for adding pulses is the same. Table 10.7 shows the additional pulse positions corresponding to the basic pulses, and figure 10.8 shows an example of additional pulse timing.

Table 10.11 Additional Pulse Positions Corresponding to Basic Pulse

Lower 4							Bas	ic Pu	lse N	umbe	er					
Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
B'0000																
B'0001																0
B'0010								0								0
B'0011								0				0				0
B'0100				0				0				0				0
B'0101				0				0				0		0		0
B'0110				0		0		0				0		0		0
B'0111				0		0		0		0		0		0		0
B'1000		0		0		0		0		0		0		0		0
B'1001		0		0		0		0		0		0		0	0	0
B'1010		0		0		0	0	0		0		0		0	0	0
B'1011		0		0		0	0	0		0	0	0		0	0	0
B'1100		0	0	0		0	0	0		0	0	0		0	0	0
B'1101		0	0	0		0	0	0		0	0	0	0	0	0	0
B'1110		0	0	0	0	0	0	0		0	0	0	0	0	0	0
B'1111		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

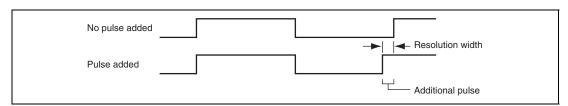


Figure 10.8 Example of Additional Pulse Timing (Upper 4 Bits in PWMREG = B'1000)

(1) Example of Setting

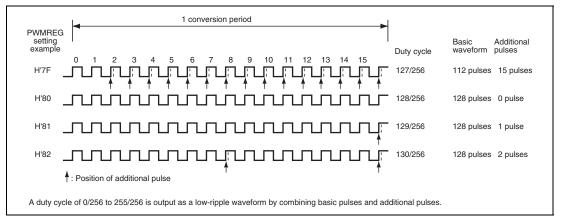


Figure 10.9 Example of WMU Setting

(2) Example of Circuit for Use as D/A Converter

The following shows an example of a circuit in which PWMU output pulses are used as a D/A converter. When a low-pass filter is connected externally to the LSI, low-ripple analog output can be generated. If pulse division mode is used, a D/A output with even less ripple is available.

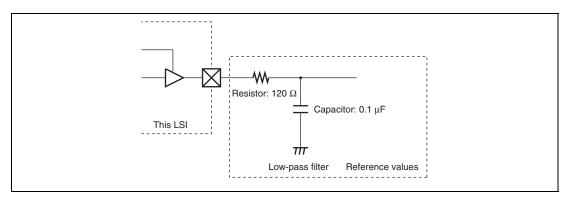


Figure 10.10 Example of Circuit for Use as a D/A Converter

10.5 **Usage Note**

10.5.1 **Setting Module Stop Mode**

The module stop control register can be used to enable or disable PWMU operation. The default setting disables PWMU operation. Clearing the module stop mode enables registers to be accessed. For details, see section 29, Power-Down Modes.

10.5.2 Note on Using 16-Bit/12-Bit Single-Pulse PWM Timer

When the duty cycle is to be changed in usage of a 16-bit/12-bit single-pulse PWM timer, the higher- and lower-order eight bits must be individually written to the respective PWMREGn (n = 0 to 5) registers. There will thus be a time lag between the write operations, and this may lead to the output of a pulse waveform with a duty cycle other than the intended one during the corresponding period.

Also, care must be taken to ensure that there are no interrupts while writing to PWMREGn is in progress, since interrupt processing can lead to the continued output of pulses with a duty cycle other than the intended one.

Section 11 16-Bit Timer Pulse Unit (TPU)

This LSI has an on-chip 16-bit timer pulse unit (TPU) that comprises three 16-bit timer channels. The function list of the 16-bit timer unit and its block diagram are shown in table 11.1 and figure 11.1, respectively.

11.1 Features

- Maximum 8-pulse input/output
- Selection of eight counter input clocks for channels 0 and 2, seven counter input clocks for channel 1
- The following operations can be set for each channel:
 - Waveform output at compare match
 - Input capture function
 - Counter clear operation
 - Multiple timer counters (TCNT) can be written to simultaneously
 - Simultaneous clearing by compare match and input capture possible
 - Register simultaneous input/output possible by counter synchronous operation
 - Maximum of 7-phase PWM output possible by combination with synchronous operation
- Buffer operation settable for channel 0
- Phase counting mode settable independently for each of channels 1 and 2
- Fast access via internal 16-bit bus
- 13 interrupt sources
- Automatic transfer of register data
- A/D converter conversion start trigger can be generated

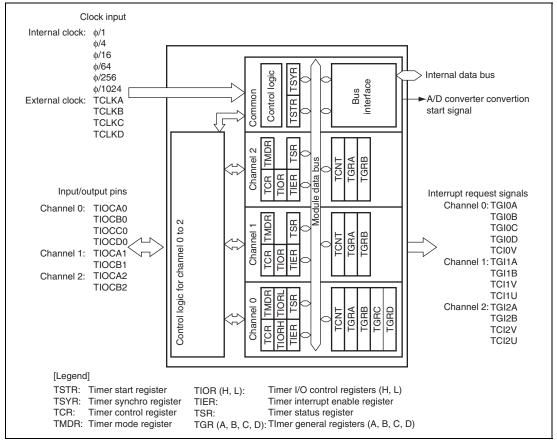


Figure 11.1 Block Diagram of TPU

Table 11.1 TPU Functions

Item		Channel 0	Channel 1	Channel 2
Count clock	<	φ/1	φ/1	φ/1
		φ/4	φ/4	φ/4
		φ/16	φ/16	φ/16
		φ/64	φ/64	φ/64
		TCLKA	φ/256	φ/1024
		TCLKB	TCLKA	TCLKA
		TCLKC	TCLKB	TCLKB
		TCLKD		TCLKC
General reg	gisters	TGRA_0	TGRA_1	TGRA_2
(TGR)		TGRB_0	TGRB_1	TGRB_2
	gisters/buffer	TGRC_0	_	_
registers		TGRC_0		
I/O pins		TIOCA0	TIOCA1	TIOCA2
		TIOCB0	TIOCB1	TIOCB2
		TIOCC0		
		TIOCD0		
Counter cle	ear function	TGR compare match or input capture	TGR compare match or input capture	TGR compare match or input capture
Compare	0 output	0	0	0
match output	1 output	0	0	0
output	Toggle output	0	0	0
Input capture function		0	0	0
Synchrono	us operation	0	0	0
PWM mode	Э	0	0	0
Phase cour	nting mode	_	0	0
Buffer oper	ation	0	_	_
· · · · · · · · · · · · · · · · · · ·				

Item	Channel 0	Channel 1	Channel 2	
A/D converter trigger	TGRA_0 compare match or input capture	TGRA_1 compare match or input capture	TGRA_2 compare match or input capture	
Interrupt sources	5 sourcesCompare match or	4 sourcesCompare match or	4 sourcesCompare match or	
	input capture 0A	input capture 1A	input capture 2A	
	 Compare match or input capture 0B 	 Compare match or input capture 1B 	 Compare match or input capture 2B 	
	 Compare match or 	 Overflow 	 Overflow 	
	input capture 0C	 Underflow 	 Underflow 	
	 Compare match or input capture 0D 			
	 Overflow 			

O: Enable

—: Disable

Input/Output Pins 11.2

Table 11.2 Pin Configuration

Channel	Pin Name	I/O	Function			
Common	TCLKA	Input	External clock A input pin (Channel 1 phase counting mode A phase input)			
	TCLKB	Input	External clock B input pin (Channel 1 phase counting mode B phase input)			
	TCLKC	Input	External clock C input pin (Channel 2 phase counting mode A phase input)			
	TCLKD	Input	External clock D input pin (Channel 2 phase counting mode B phase input)			
0	TIOCA0	I/O	TGRA_0 input capture input/output compare output/ PWM output pin			
	TIOCB0 I/O		TGRB_0 input capture input/output compare output/ PWM output pin			
	TIOCC0	I/O	TGRC_0 input capture input/output compare output/ PWM output pin			
	TIOCD0	I/O	TGRD_0 input capture input/output compare output/ PWM output pin			
1	TIOCA1	I/O	TGRA_1 input capture input/output compare output/ PWM output pin			
	TIOCB1	I/O	TGRB_1 input capture input/output compare output/ PWM output pin			
2	TIOCA2	I/O	TGRA_2 input capture input/output compare output/ PWM output pin			
	TIOCB2	I/O	TGRA_2 input capture input/output compare output/ PWM output pin			

11.3 Register Descriptions

The TPU has the following registers.

Table 11.3 Register Configuration

Channel	Register Name	Abbreviation	n R/W	Initial Value	Address	Data Bus Width
Channel 0	Timer control register_0	TCR_0	R/W	H'00	H'FE50	8
	Timer mode register_0	TMDR_0	R/W	H'C0	H'FE51	8
	Timer I/O control register H_0	TIORH_0	R/W	H'00	H'FE52	8
	Timer I/O control register L_0	TIORL_0	R/W	H'00	H'FE53	8
	Timer interrupt enable register_0	TIER_0	R/W	H'40	H'FE54	8
	Timer status register_0	TSR_0	R/W	H'C0	H'FE55	8
	Timer counter_0	TCNT_0	R/W	H'0000	H'FE56	16
	Timer general register A_0	TGRA_0	R/W	H'FFFF	H'FE58	16
	Timer general register B_0	TGRB_0	R/W	H'FFFF	H'FE5A	16
	Timer general register C_0	TGRC_0	R/W	H'FFFF	H'FE5C	16
	Timer general register D_0	TGRD_0	R/W	H'FFFF	H'FE5E	16
Channel 1	Timer control register_1	TCR_1	R/W	H'00	H'FD40	8
	Timer mode register_1	TMDR_1	R/W	H'C0	H'FD41	8
	Timer I/O control register _1	TIOR_1	R/W	H'00	H'FD42	8
	Timer interrupt enable register_1	TIER_1	R/W	H'40	H'FD44	8
	Timer status register_1	TSR_1	R/W	H'C0	H'FD45	8
	Timer counter_1	TCNT_1	R/W	H'0000	H'FD46	16
	Timer general register A_1	TGRA_1	R/W	H'FFFF	H'FD48	16
	Timer general register B_1	TGRB_1	R/W	H'FFFF	H'FD4A	16
Channel 2	Timer control register_2	TCR_2	R/W	H'00	H'FE70	8
	Timer mode register_2	TMDR_2	R/W	H'C0	H'FE71	8
	Timer I/O control register_2	TIOR_2	R/W	H'00	H'FE72	8
	Timer interrupt enable register_2	TIER_2	R/W	H'40	H'FE74	8
	Timer status register_2	TSR_2	R/W	H'C0	H'FE75	8
	Timer counter_2	TCNT_2	R/W	H'0000	H'FE76	16

Channel	Register Name	Abbreviation	n R/W	Initial Value	Address	Data Bus Width
Channel 2	Timer general register A_2	TGRA_2	R/W	H'FFFF	H'FE78	16
	Timer general register B_2	TGRB_2	R/W	H'FFFF	H'FE7A	16
Common	Timer start register	TSTR	R/W	H'00	H'FEB0	8
	Timer synchro register	TSYR	R/W	H'00	H'FEB1	8

11.3.1 Timer Control Register (TCR)

The TCR registers control the TCNT operation for each channel. The TPU has a total of three TCR registers, one for each channel (channel 0 to 2). TCR register settings should be made only when TCNT operation is stopped.

		Initial		
Bit	Bit Name	value	R/W	Description
7	CCLR2	0	R/W	Counter Clear 2 to 0
6	CCLR1	0	R/W	These bits select the TCNT counter clearing source.
5	CCLR0	0	R/W	For details, see tables 11.4 and 11.5.
4	CKEG1	0	R/W	Clock Edge 1 and 0
3	CKEG0	0	R/W	These bits select the input clock edge. When the input clock is counted using both edges, the input clock cycle is divided in 2 (ϕ /4 both edges = ϕ /2 rising edge). If phase counting mode is used on channels 1, 2, 4, and 5, this setting is ignored and the phase counting mode setting has priority. Internal clock edge selection is valid when the input clock is ϕ /4 or slower. This setting is ignored if the input clock is ϕ /1 and rising edge count is selected.
				00: Count at rising edge
				01: Count at falling edge
				1x: Count at both edges
2	TPSC2	0	R/W	Time Prescaler 2 to 0
1	TPSC1	0	R/W	These bits select the TCNT counter clock. The clock
0	TPSC0	0	R/W	source can be selected independently for each channel. For details, see tables 11.6 to 11.8.

[Legend]

Table 11.4 CCLR2 to CCLR0 (channel 0)

Channel	Bit 7 CCLR2	Bit 6 CCLR1	Bit 5 CCLR0	Description
0	0	0	0	TCNT clearing disabled (Initial value)
			1	TCNT cleared by TGRA compare match/input capture
		1	0	TCNT cleared by TGRB compare match/input capture
			1	TCNT cleared by counter clearing for another channel performing synchronous/clearing synchronous operation*1
	1	0	0	TCNT clearing disabled
			1	TCNT cleared by TGRC compare match/input capture*2
		1	0	TCNT cleared by TGRD compare match/input capture*2
			1	TCNT cleared by counter clearing for another channel performing synchronous clearing/synchronous operation*1

Notes: 1. Synchronous operation setting is performed by setting the SYNC bit in TSYR to 1.

2. When TGRC or TGRD is used as a buffer register. TCNT is not cleared because the buffer register setting has priority, and compare match/input capture dose not occur.

Table 11.5 CCLR2 to CCLR0 (channels 1 and 2)

Channel	Bit 7 Reserved* ²	Bit 6 CCLR1	Bit 5 CCLR0	Description
1, 2	0	0	0	TCNT clearing disabled
			1	TCNT cleared by TGRA compare match/input capture
		1	0	TCNT cleared by TGRB compare match/input capture
			1	TCNT cleared by counter clearing for another channel performing synchronous clearing/synchronous operation*1

Notes: 1. Synchronous operation setting is performed by setting the SYNC bit in TSYR to 1.

2. Bit 7 is reserved in channels 1 and 2. It is always read as 0 and cannot be modified.

Table 11.6 TPSC2 to TPSC0 (channel 0)

Channel	Bit 2 TPSC2	Bit 1 TPSC1	Bit 0 TPSC0	Description
0	0	0	0	Internal clock: counts on ϕ
			1	Internal clock: counts on φ/4
		1	0	Internal clock: counts on φ/16
			1	Internal clock: counts on φ/64
	1	0	0	External clock: counts on TCLKA pin input
			1	External clock: counts on TCLKB pin input
		1	0	External clock: counts on TCLKC pin input
			1	External clock: counts on TCLKD pin input

Table 11.7 TPSC2 to TPSC0 (channel 1)

Channel	Bit 2 TPSC2	Bit 1 TPSC1	Bit 0 TPSC0	Description
1	0	0	0	Internal clock: counts on φ
			1	Internal clock: counts on φ/4
		1	0	Internal clock: counts on $\phi/16$
			1	Internal clock: counts on $\phi/64$
	1	0	0	External clock: counts on TCLKA pin input
			1	External clock: counts on TCLKB pin input
		1	0	Internal clock: counts on $\phi/256$
			1	Setting prohibited

Note: This setting is ignored when channel 1 is in phase counting mode.

Table 11.8 TPSC2 to TPSC0 (channel 2)

Channel	Bit 2 TPSC2	Bit 1 TPSC1	Bit 0 TPSC0	Description
2	0	0	0	Internal clock: counts on φ
			1	Internal clock: counts on φ/4
		1	0	Internal clock: counts on φ/16
			1	Internal clock: counts on φ/64
	1	0	0	External clock: counts on TCLKA pin input
			1	External clock: counts on TCLKB pin input
		1	0	External clock: counts on TCLKC pin input
			1	Internal clock: counts on φ/1024

Note: This setting is ignored when channel 2 is in phase counting mode.

11.3.2 Timer Mode Register (TMDR)

The TMDR registers are used to set the operating mode for each channel. The TPU has three TMDR registers, one for each channel. TMDR register settings should be made only when TCNT operation is stopped.

Bit	Bit Name	Initial value	R/W	Description
7, 6	_	All 1	R	Reserved
				These bits are always read as 1 and cannot be modified.
5	BFB	0	R/W	Buffer Operation B
				Specifies whether TGRB is to operate in the normal way, or TGRB and TGRD are to be used together for buffer operation. When TGRD is used as a buffer register. TGRD input capture/output compare is not generation. Because channels 1 and 2 have no TGRD, bit 5 is reserved. It is always read as 0 and cannot be modified.
				0: TGRB operates normally
				1: TGRB and TGRD used together for buffer operation
4	BFA	0	R/W	Buffer Operation A
				Specifies whether TGRA is to operate in the normal way, or TGRA and TGRC are to be used together for buffer operation. When TGRC is used as a buffer register, TGRC input capture/output compare is not generated. Because channels 1 and 2 have no TGRC, bit 4 is reserved. It is always read as 0 and cannot be modified.
				0: TGRA operates normally
				1: TGRA and TGRC used together for buffer operation
3	MD3	0	R/W	Modes 3 to 0
2	MD2	0	R/W	These bits are used to set the timer operating mode.
1	MD1	0	R/W	MD3 is a reserved bit. In a write, the write value should
0	MD0	0	R/W	always be 0. For details, see table 11.9.

Table 11.9 MD3 to MD0

Bit 3 MD3* ¹	Bit2 MD2* ²	Bit 1 MD1	Bit 0 MD0	Description
0	0	0	0	Normal operation
			1	Reserved
		1	0	PWM mode 1
			1	PWM mode 2
	1	0	0	Phase counting mode 1
			1	Phase counting mode 2
		1	0	Phase counting mode 3
			1	Phase counting mode 4
1	Х	Х	Х	Setting prohibited

x: Don't care

Notes: 1. MD3 is reserved bit. In a write, it should be written with 0.

2. Phase counting mode cannot be set for channels 0 and 3. In this case, 0 should always be written to MD2.

11.3.3 Timer I/O Control Register (TIOR)

The TIOR registers control the TGR registers. The TPU has four TIOR registers, two each for channels 0, and one each for channels 1 and 2. Care is required since TIOR is affected by the TMDR setting. The initial output specified by TIOR is valid when the counter is stopped (the CST bit in TSTR is cleared to 0). Note also that, in PWM mode 2, the output at the point at which the counter is cleared to 0 is specified. When TGRC or TGRD is designated for buffer operation, this setting is invalid and the register operates as a buffer register.

• TIORH 0, TIOR 1, TIOR 2

Bit	Bit Name	Initial value	R/W	Description
7	IOB3	0	R/W	I/O Control B3 to B0
6	IOB2	0	R/W	Specify the function of TGRB.
5	IOB1	0	R/W	
4	IOB0	0	R/W	
3	IOA3	0	R/W	I/O Control A3 to A0
2	IOA2	0	R/W	Specify the function of TGRA.
1	IOA1	0	R/W	
0	IOA0	0	R/W	

TIORL_0

Bit	Bit Name	Initial value	R/W	Description
7	IOD3	0	R/W	I/O Control D3 to D0
6	IOD2	0	R/W	Specify the function of TGRD.
5	IOD1	0	R/W	
4	IOD0	0	R/W	
3	IOC3	0	R/W	I/O Control C3 to C0
2	IOC2	0	R/W	Specify the function of TGRC.
1	IOC1	0	R/W	
0	IOC0	0	R/W	

Description

Table 11.10 TIORH_0 (channel 0)

		Bit 4 IOB0	Description		
Bit 6 IOB2	Bit 5 IOB1		TGRB_0 Function	TIOCB0 Pin Function	
0	0	0	Output	Output disabled	
		1	compare	Initial output is 0 output	
			register	0 output at compare match	
	1	0		Initial output is 0 output	
				1 output at compare match	
		1		Initial output is 0 output	
				Toggle output at compare match	
1	0	0		Output disabled	
		1		Initial output is 1 output	
				0 output at compare match	
	1	0		Initial output is 1 output	
				1 output at compare match	
		1		Initial output is 1 output	
				Toggle output at compare match	
0	0	0	Input capture register	Capture input source is TIOCB0 pin Input capture at rising edge	
		1		Capture input source is TIOCB0 pin Input capture at falling edge	
	1	х		Capture input source is TIOCB0 pin Input capture at both edges	
1	Х	Х		Setting prohibited	
	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	IOB2 IOB1 IOB0 0 0 0 1 1 0 1 0 0 1 0 1 0 0 1 1 0 0 1 1 x	IOB2 IOB1 IOB0 Function 0 0 Output compare register 1 0 1 1 0 0 1 0 1 0 0 Input capture register 1 1 x	

[Legend]

Table 11.11 TIORH_0 (channel 0)

					Description
Bit 3 IOA3	Bit 2 IOA2	Bit 1 IOA1	Bit 0 IOA0	TGRA_0 Function	TIOCA0 Pin Function
0	0	0	0	Output	Output disabled
			1	compare register	Initial output is 0 output
				register	0 output at compare match
		1	0		Initial output is 0 output
					1 output at compare match
			1	<u> </u>	Initial output is 0 output
					Toggle output at compare match
	1	0	0		Output disabled
			1		Initial output is 1 output
					0 output at compare match
		1	0	_	Initial output is 1 output
					1 output at compare match
			1		Initial output is 1 output
					Toggle output at compare match
1	0	0	0	Input capture	Capture input source is TIOCA0 pin
				register	Input capture at rising edge
			1		Capture input source is TIOCA0 pin
					Input capture at falling edge
		1	Х	<u> </u>	Capture input source is TIOCA0 pin
					Input capture at both edges
	1	Х	Х		Setting prohibited

Table 11.12 TIORL_0 (channel 0)

					Description
Bit 7 IOD3	Bit 6 IOD2	Bit 5 IOD1	Bit 4 IOD0	TGRD_0 Function	TIOCD0 Pin Function
0	0	0	0	Output	Output disabled
			1	Compare register*	Initial output is 0 output
				register	0 output at compare match
		1	0		Initial output is 0 output
					1 output at compare match
			1	_	Initial output is 0 output
					Toggle output at compare match
	1	0	0		Output disabled
			1		Initial output is 1 output
					0 output at compare match
		1	0		Initial output is 1 output
				_	1 output at compare match
			1		Initial output is 1 output
					Toggle output at compare match
1	0	0	0	Input capture register*	Capture input source is TIOCD0 pin Input capture at rising edge
			1		Capture input source is TIOCD0 pin Input capture at falling edge
		1	х		Capture input source is TIOCD0 pin Input capture at both edges
	1	Х	х		Setting prohibited

x: Don't care

Note: When the BFB bit in TMDR_0 is set to 1 and TGRD_0 is used as a buffer register, this setting is invalid and input capture/output compare is not generated.

Deceriation

Table 11.13 TIORL_0 (channel 0)

				Description		
Bit 3 IOC3	Bit 2 IOC2	Bit 1 IOC1	Bit 0 IOC0	TGRC_0 Function	TIOCA0 Pin Function	
0	0	0	0	Output	Output disabled	
			1	compare register*	Initial output is 0 output	
				register	0 output at compare match	
		1	0		Initial output is 0 output	
					1 output at compare match	
			1		Initial output is 0 output	
					Toggle output at compare match	
	1	0	0		Output disabled	
			1		Initial output is 1 output	
					0 output at compare match	
		1	0		Initial output is 1 output	
				_	1 output at compare match	
			1		Initial output is 1 output	
					Toggle output at compare match	
1	0	0	0	Input capture register*	Capture input source is TIOCA0 pin Input capture at rising edge	
			1		Capture input source is TIOCA0 pin Input capture at falling edge	
		1	Х	_	Capture input source is TIOCA0 pin Input capture at both edges	
	1	Х	х		Setting prohibited	

[Legend]

x: Don't care

Note: * When the BFA bit in TMDR_0 is set to 1and TGRC_0 is used as a buffer register, this setting is invalid and input capture/output compare is not generated.

Table 11.14 TIOR_1 (channel 1)

				Description		
Bit 7 IOB3	Bit 6 IOB2	Bit 5 IOB1		TGRB_1 Function	TIOCB1 Pin Function	
0	0	0	0	Output	Output disabled	
			1	compare register	Initial output is 0 output	
				register	0 output at compare match	
		1	0		Initial output is 0 output	
					1 output at compare match	
			1		Initial output is 0 output	
					Toggle output at compare match	
	1	1	0		Output disabled	
			1		Initial output is 1 output	
					0 output at compare match	
			0		Initial output is 1 output	
					1 output at compare match	
			1		Initial output is 1 output	
					Toggle output at compare match	
1	0	0	0	Input capture register	Capture input source is TIOCB1 pin Input capture at rising edge	
			1		Capture input source is TIOCB1 pin Input capture at falling edge	
		1	Х	_	Capture input source is TIOCB1 pin Input capture at both edges	
	1	х	Х		Setting prohibited	

Table 11.15 TIOR_1 (channel 1)

		Bit 1 IOA1		Description		
Bit 3 IOA3	Bit 2 IOA2			TGRA_1 Function	TIOCA1 Pin Function	
0	0	0	0	Output	Output disabled	
			1	compare register	Initial output is 0 output	
				register	0 output at compare match	
		1	0	 ;	Initial output is 0 output	
					1 output at compare match	
			1		Initial output is 0 output	
					Toggle output at compare match	
	1	0	0		Output disabled	
			1		Initial output is 1 output	
					0 output at compare match	
		1	0		Initial output is 1 output	
					1 output at compare match	
			1		Initial output is 1 output	
					Toggle output at compare match	
1	0	0	0	Input capture register	Capture input source is TIOCA0 pin Input capture at rising edge	
			1		Capture input source is TIOCA0 pin Input capture at falling edge	
		1	х		Capture input source is TIOCA0 pin Input capture at both edges	
	1	х	х		Setting prohibited	

Description

Table 11.16 TIOR_2 (channel 2)

					Description
Bit 7 IOB3	Bit 6 IOB2	Bit 5 IOB1	Bit 4 IOB0	TGRB_2 Function	TIOCB2 Pin Function
0	0	0	0	Output	Output disabled
			1	compare register	Initial output is 0 output
				register	0 output at compare match
		1	0		Initial output is 0 output
					1 output at compare match
			1		Initial output is 0 output
					Toggle output at compare match
	1	0	0		Output disabled
			1		Initial output is 1 output
					0 output at compare match
		1	0		Initial output is 1 output
					1 output at compare match
			1		Initial output is 1 output
					Toggle output at compare match
1	×	0	0	Input capture register	Capture input source is TIOCB2 pin Input capture at rising edge
			1		Capture input source is TIOCB2 pin Input capture at falling edge
		1	Х		Capture input source is TIOCB2 pin Input capture at both edges

[Legend]

Description

Table 11.17 TIOR_2 (channel 2)

					Description
Bit 3 IOA3	Bit 2 IOA2	Bit 1 IOA1	Bit 0 IOA0	TGRA_2 Function	TIOCA2 Pin Function
0	0	0	0	Output	Output disabled
			1	compare register	Initial output is 0 output
				register	0 output at compare match
		1	0	_	Initial output is 0 output
					1 output at compare match
			1	_	Initial output is 0 output
					Toggle output at compare match
	1	0	0	_	Output disabled
			1		Initial output is 1 output
					0 output at compare match
		1	0	_	Initial output is 1 output
					1 output at compare match
			1		Initial output is 1 output
					Toggle output at compare match
1	Х	0	0	Input capture register	Capture input source is TIOCA2 pin Input capture at rising edge
			1	_	Capture input source is TIOCA2 pin Input capture at falling edge
		1	Х	_	Capture input source is TIOCA2 pin Input capture at both edges

[Legend]

11.3.4 Timer Interrupt Enable Register (TIER)

The TIER registers control enabling or disabling of interrupt requests for each channel. The TPU has three TIER registers, one for each channel.

Bit	Bit Name	Initial value	R/W	Description
7	TTGE	0	R/W	A/D Conversion Start Request Enable
				Enables or disables generation of A/D conversion start requests by TGRA input capture/compare match.
				0: A/D conversion start request generation disabled
				1: A/D conversion start request generation enabled
6	_	1	R	Reserved
				This bit is always read as 1 and cannot be modified.
5	TCIEU	0	R/W	Underflow Interrupt Enable
				Enables or disables interrupt requests (TCIU) by the TCFU flag when the TCFU flag in TSR is set to 1 in channels 1 and 2. In channel 0, bit 5 is reserved.
				0: Interrupt requests (TCIU) by TCFU disabled
				1: Interrupt requests (TCIU) by TCFU enabled
4	TCIEV	0	R/W	Overflow Interrupt Enable
				Enables or disables interrupt requests (TCIV) by the TCFV flag when the TCFV flag in TSR is set to 1.
				0: Interrupt requests (TCIV) by TCFV disabled
				1: Interrupt requests (TCIV) by TCFV enabled
3	TGIED	0	R/W	TGR Interrupt Enable D
				Enables or disables interrupt requests (TGID) by the TGFD bit when the TGFD bit in TSR is set to 1 in channel 0. In channels 1 and 2, bit 3 is reserved. It is always read as 0 and cannot be modified.
				0: Interrupt requests (TGID) by TGFD disabled
				1: Interrupt requests (TGID) by TGFD enabled.

Bit	Bit Name	Initial value	R/W	Description
2	TGIEC	0	R/W	TGR Interrupt Enable C
				Enables or disables interrupt requests (TGIC) by the TGFC bit when the TGFC bit in TSR is set to 1 in channel 0. In channels 1 and 2, bit 2 is reserved. It is always read as 0 and cannot be modified.
				0: Interrupt requests (TGIC) by TGFC disabled
				1: Interrupt requests (TGIC) by TGFC enabled
1	TGIEB	0	R/W	TGR Interrupt Enable B
				Enables or disables interrupt requests (TGIB) by the TGFB bit when the TGFB bit in TSR is set to 1.
				0: Interrupt requests (TGIB) by TGFB disabled
				1: Interrupt requests (TGIB) by TGFB enabled
0	TGIEA	0	R/W	TGR Interrupt Enable A
				Enables or disables interrupt requests (TGIA) by the TGFA bit when the TGFA bit in TSR is set to 1.
				0: Interrupt requests (TGIA) by TGFA disabled
				1: Interrupt requests (TGIA) by TGFA enabled

11.3.5 Timer Status Register (TSR)

The TSR registers indicate the status of each channel. The TPU has three TSR registers, one for each channel.

Bit	Bit Name	Initial value	R/W	Description
7	TCFD	1	R	Count Direction Flag
				Status flag that shows the direction in which TCNT counts in channel 1 and 2. In channel 0, bit 7 is reserved. It is always read as 0 and cannot be modified.
				0: TCNT counts down
				1: TCNT counts up
6	_	1	R	Reserved
				This bit is always read as 1 and cannot be modified.
5	TCFU	0	R/(W)*	Underflow Flag
				Status flag that indicates that TCNT underflow has occurred when channels 1 and 2 are set to phase counting mode.
				In channel 0, bit 5 is reserved. It is always read as 0 and cannot be modified.
				[Setting condition]
				When the TCNT value underflows (change from H'0000 to H'FFFF)
				[Clearing condition]
				When 0 is written to TCFU after reading TCFU = 1
4	TCFV	0	R/(W)*	Overflow Flag
				Status flag that indicates that TCNT overflow has occurred.
				[Setting condition]
				When the TCNT value overflows (change from H'FFFF to H'0000)
				[Clearing condition]
				When 0 is written to TCFV after reading TCFV = 1

Bit	Bit Name	Initial value	R/W	Description
3	TGFD	0	R/(W)*	Input Capture/Output Compare Flag D
				Status flag that indicates the occurrence of TGRD input capture or compare match in channel 0.
				In channels 1 and 2, bit 3 is reserved. It is always read as 0 and cannot be modified.
				[Setting conditions]
				 When TCNT = TGRD while TGRD is functioning as output compare register
				 When TCNT value is transferred to TGRD by input capture signal while TGRD is functioning as input capture register
				[Clearing condition]
				When 0 is written to TGFD after reading TGFD = 1
2	TGFC	0	R/(W)*	Input Capture/Output Compare Flag C
				Status flag that indicates the occurrence of TGRC input capture or compare match in channel 0.
				In channels 1 and 2, bit 2 is reserved. It is always read as 0 and cannot be modified.
				[Setting conditions]
				• When the TCNT = TGRC while TGRC is functioning as output compare register
				When TCNT value is transferred to TGRC by input capture signal while TGRC is functioning as input capture register
				[Clearing condition]
				When 0 is written to TGFC after reading TGFC = 1

Bit	Bit Name	Initial value	R/W	Description
1	TGFB	0	R/(W)*	Input Capture/Output Compare Flag B
				Status flag that indicates the occurrence of TGRB input capture or compare match.
				[Setting conditions]
				 When TCNT = TGRB while TGRB is functioning as output compare register
				 When TCNT value is transferred to TGRB by input capture signal while TGRB is functioning as input capture register
				[Clearing condition]
				When 0 is written to TGFB after reading TGFB = 1
0	TGFA	0	R/(W)*	Input Capture/Output Compare Flag A
				Status flag that indicates the occurrence of TGRA input capture or compare match. The write value should always be 0 to clear this flag.
				[Setting conditions]
				• When TCNT = TGRA while TGRA is functioning as output compare register
				 When TCNT value is transferred to TGRA by input capture signal while TGRA is functioning as input capture register
				[Clearing condition]
				When 0 is written to TGFA after reading TGFA = 1

Note: * The write value should always be 0 to clear the flag.

11.3.6 Timer Counter (TCNT)

The TCNT registers are 16-bit counters. The TPU has three TCNT counters, one for each channel. The TCNT counters are initialized to H'0000 by a reset. The TCNT counters cannot be accessed in 8-bit units; they must always be accessed as a 16-bit unit.

11.3.7 Timer General Register (TGR)

The TGR registers are 16-bit registers with a dual function as output compare and input capture registers. The TPU has 16 TGR registers, four for channel 0 and two each for channels 1 and 2. TGRC and TGRD for channel 0 can also be designated for operation as buffer registers. The TGR registers are initialized to H'FFFF by a reset. The TGR registers cannot be accessed in 8-bit units; they must always be accessed as a 16-bit unit. TGR buffer register combinations are TGRA—TGRC and TGRB—TGRD.

11.3.8 Timer Start Register (TSTR)

TSTR is an 8-bit readable/writable register that selects operation/stoppage for channels 0 to 2. TCNT of a channel performs counting when the corresponding bit in TSTR is set to 1. When setting the operating mode in TMDR or setting the count clock in TCR, first stop the TCNT counter.

Bit	Bit Name	Initial value	R/W	Description
7 to 3	_	All 0	R	Reserved
				The initial value should not be changed.
2	CST2	0	R/W	Counter Start 2 to 0 (CST2 to CST0)
1	CST1	0	R/W	These bits select operation or stoppage for TCNT.
0	CST0	0	R/W	If 0 is written to the CST bit during operation with the TIOC pin designated for output, the counter stops but the TIOC pin output compare output level is retained.
				If TIOR is written to when the CST bit is cleared to 0, the pin output level will be changed to the set initial output value.
				0: TCNT_n count operation is stopped
				1: TCNT_n performs count operation
				(n = 2 to 0)

11.3.9 Timer Synchro Register (TSYR)

TSYR selects independent operation or synchronous operation for the channel 0 to 2 TCNT counters. A channel performs synchronous operation when the corresponding bit in TSYR is set to 1.

		Initial		
Bit	Bit Name	value	R/W	Description
7 to 3	_	All 0	R/W	Reserved
				The initial value should not be changed.
2	SYNC2	0	R/W	Timer Synchro 2 to 0
1	SYNC1	0	R/W	These bits select whether operation is independent of
0	SYNC0	0	R/W	or synchronized with other channels. When synchronous operation is selected, synchronous presetting of multiple channels, and synchronous clearing through counter clearing on another channel are possible. To set synchronous operation, the SYNC bits for at least two channels must be set to 1. To set synchronous clearing, in addition to the SYNC bit, the TCNT clearing source must also be set by means of bits CCLR2 to CCLR0 in TCR.
				 TCNT_n operates independently (TCNT presetting /clearing is unrelated to other channels)
				 TCNT_n performs synchronous operation TCNT synchronous presetting/synchronous clearing is possible
				(n = 2 to 0)

11.4 Interface to Bus Master

11.4.1 16-Bit Registers

TCNT and TGR are 16-bit registers. As the data bus to the bus master is 16 bits wide, these registers can be read and written to in 16-bit units.

These registers cannot be read from or written to in 8-bit units; 16-bit access must always be used.

An example of 16-bit register access operation is shown in figure 11.2.

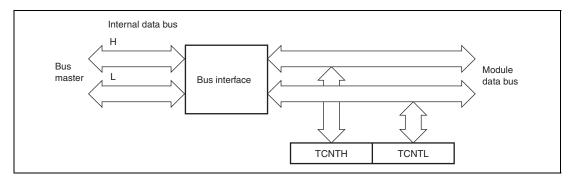


Figure 11.2 16-Bit Register Access Operation [Bus Master ↔ TCNT (16 Bits)]

11.4.2 8-Bit Registers

Registers other than TCNT and TGR are 8-bit. As the data bus to the CPU is 16 bits wide, these registers can be read and written to in 16-bit units. They can also be read and written to in 8-bit units.

Examples of 8-bit register access operation are shown in figures 11.3, 11.4, and 11.5.



Figure 11.3 8-Bit Register Access Operation [Bus Master ↔ TCR (Upper 8 Bits)]

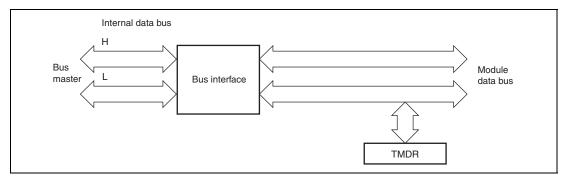


Figure 11.4 8-Bit Register Access Operation [Bus Master ↔ TMDR (Lower 8 Bits)]

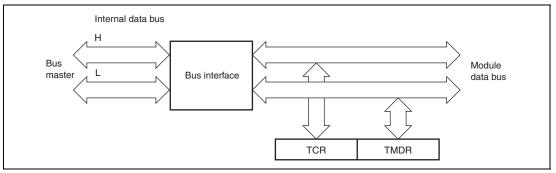


Figure 11.5 8-Bit Register Access Operation [Bus Master ↔ TCR and TMDR (16 Bits)]

11.5 Operation

11.5.1 Basic Functions

Each channel has a TCNT and TGR. TCNT performs up-counting, and is also capable of free-running operation, synchronous counting, and external event counting. Each TGR can be used as an input capture register or output compare register.

(1) Counter Operation

When one of bits CST0 to CST2 is set to 1 in TSTR, the TCNT counter for the corresponding channel starts counting. TCNT can operate as a free-running counter, periodic counter, and so on.

(a) Example of count operation setting procedure

Figure 11.6 shows an example of the count operation setting procedure.

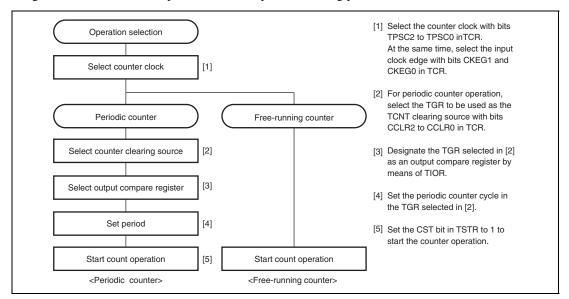


Figure 11.6 Example of Counter Operation Setting Procedure

(b) Free-running count operation and periodic count operation

Immediately after a reset, the TPU's TCNT counters are all designated as free-running counters. When the relevant bit in TSTR is set to 1 the corresponding TCNT counter starts up-count operation as a free-running counter. When TCNT overflows (from H'FFFF to H'0000), the TCFV bit in TSR is set to 1. If the value of the corresponding TCIEV bit in TIER is 1 at this point, the TPU requests an interrupt. After overflow, TCNT starts counting up again from H'0000. Figure 11.7 illustrates free-running counter operation.

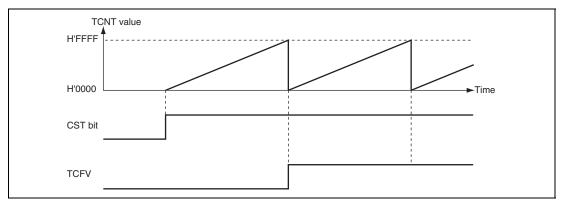


Figure 11.7 Free-Running Counter Operation

When compare match is selected as the TCNT clearing source, the TCNT counter for the relevant channel performs periodic count operation. The TGR register for setting the period is designated as an output compare register, and counter clearing by compare match is selected by means of bits CCLR2 to CCLR0 in TCR. After the settings have been made, TCNT starts up-count operation as periodic counter when the corresponding bit in TSTR is set to 1. When the count value matches the value in TGR, the TGF bit in TSR is set to 1 and TCNT is cleared to H'0000. If the value of the corresponding TGIE bit in TIER is 1 at this point, the TPU requests an interrupt. After a compare match, TCNT starts counting up again from H'0000. Figure 11.8 illustrates periodic counter operation.

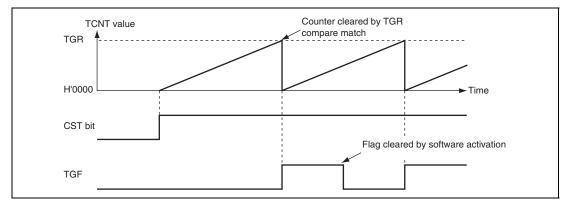


Figure 11.8 Periodic Counter Operation

(2) Waveform Output by Compare Match

The TPU can perform 0, 1, or toggle output from the corresponding output pin using compare match.

Example of setting procedure for waveform output by compare match (a)

Figure 11.9 shows an example of the setting procedure for waveform output by compare match.

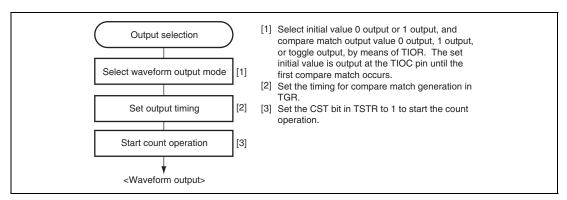


Figure 11.9 Example of Setting Procedure for Waveform Output by Compare Match

(b) Examples of waveform output operation

Figure 11.10 shows an example of 0 output/1 output. In this example TCNT has been designated as a free-running counter, and settings have been made so that 1 is output by compare match A, and 0 is output by compare match B. When the set level and the pin level coincide, the pin level does not change.

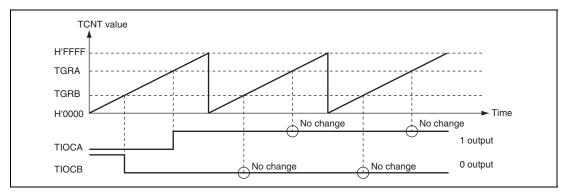


Figure 11.10 Example of 0 Output/1 Output Operation

Figure 11.11 shows an example of toggle output.

In this example TCNT has been designated as a periodic counter (with counter clearing performed by compare match B), and settings have been made so that output is toggled by both compare match A and compare match B.

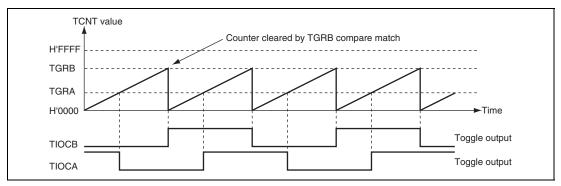


Figure 11.11 Example of Toggle Output Operation

Input Capture Function (3)

The TCNT value can be transferred to TGR on detection of the TIOC pin input edge. Rising edge, falling edge, or both edges can be selected as the detected edge.

Example of input capture operation setting procedure (a)

Figure 11.12 shows an example of the input capture operation setting procedure.

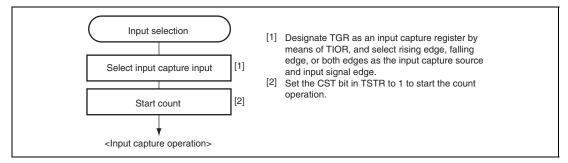


Figure 11.12 Example of Input Capture Operation Setting Procedure

(b) Example of input capture operation

Figure 11.13 shows an example of input capture operation. In this example both rising and falling edges have been selected as the TIOCA pin input capture input edge, falling edge has been selected as the TIOCB pin input capture input edge, and counter clearing by TGRB input capture has been designated for TCNT.

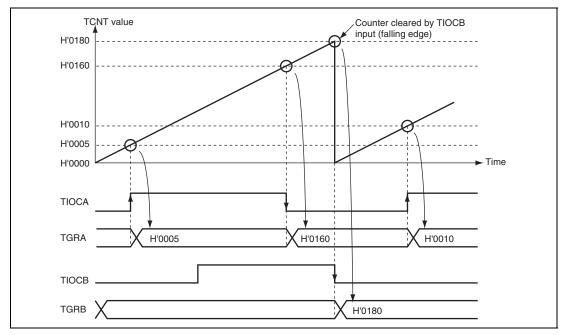


Figure 11.13 Example of Input Capture Operation

11.5.2 **Synchronous Operation**

In synchronous operation, the values in a number of TCNT counters can be rewritten simultaneously (synchronous presetting). Also, a number of TCNT counters can be cleared simultaneously by making the appropriate setting in TCR (synchronous clearing). Synchronous operation enables TGR to be incremented with respect to a single time base. Channels 0 to 2 can all be designated for synchronous operation.

Example of Synchronous Operation Setting Procedure (1)

Figure 11.14 shows an example of the synchronous operation setting procedure.

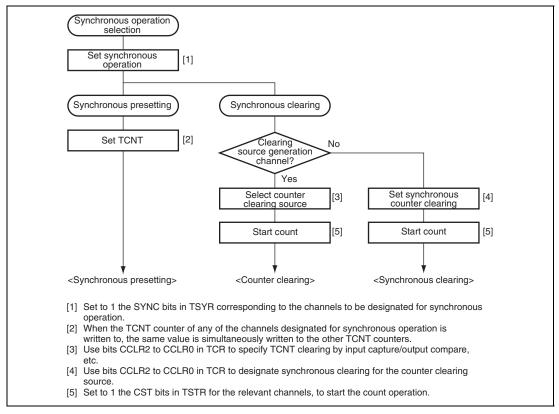


Figure 11.14 Example of Synchronous Operation Setting Procedure

(2) Example of Synchronous Operation

Figure 11.15 shows an example of synchronous operation.

In this example, synchronous operation and PWM mode 1 have been designated for channels 0 to 2, TGRB_0 compare match has been set as the channel 0 counter clearing source, and synchronous clearing has been set for the channel 1 and 2 counter clearing source. Three-phase PWM waveforms are output from pins TIOC0A, TIOC1A, and TIOC2A. At this time, synchronous presetting, and synchronous clearing by TGRB_0 compare match, is performed for channel 0 to 2 TCNT counters, and the data set in TGRB_0 is used as the PWM cycle. For details of PWM modes, see section 11.5.4, PWM Modes.

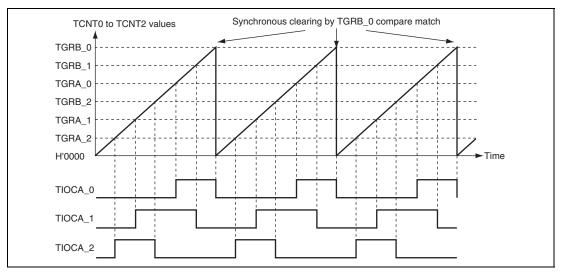


Figure 11.15 Example of Synchronous Operation

11.5.3 Buffer Operation

Buffer operation, provided for channels 0 and 3, enables TGRC and TGRD to be used as buffer registers. Buffer operation differs depending on whether TGR has been designated as an input capture register or as a compare match register. Table 11.18 shows the register combinations used in buffer operation.

Table 11.18 Register Combinations in Buffer Operation

Channel	Timer General Register	Buffer Register
0	TGRA_0	TGRC_0
	TGRB_0	TGRD_0

When TGR is an output compare register

When a compare match occurs, the value in the buffer register for the corresponding channel is transferred to the timer general register. This operation is illustrated in figure 11.16.

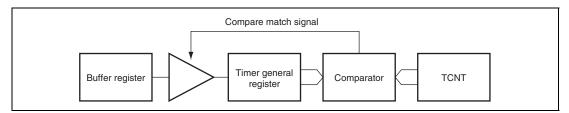


Figure 11.16 Compare Match Buffer Operation

• When TGR is an input capture register

When input capture occurs, the value in TCNT is transferred to TGR and the value previously held in the timer general register is transferred to the buffer register. This operation is illustrated in figure 11.17.



Figure 11.17 Input Capture Buffer Operation

(1) Example of Buffer Operation Setting Procedure

Figure 11.18 shows an example of the buffer operation setting procedure.

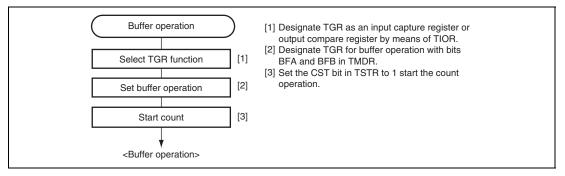


Figure 11.18 Example of Buffer Operation Setting Procedure

(2) Examples of Buffer Operation

(a) When TGR is an output compare register

Figure 11.19 shows an operation example in which PWM mode 1 has been designated for channel 0, and buffer operation has been designated for TGRA and TGRC. The settings used in this example are TCNT clearing by compare match B, 1 output at compare match A, and 0 output at compare match B. As buffer operation has been set, when compare match A occurs the output changes and the value in buffer register TGRC is simultaneously transferred to timer general register TGRA. This operation is repeated each time compare match A occurs. For details of PWM modes, see section 11.5.4, PWM Modes.

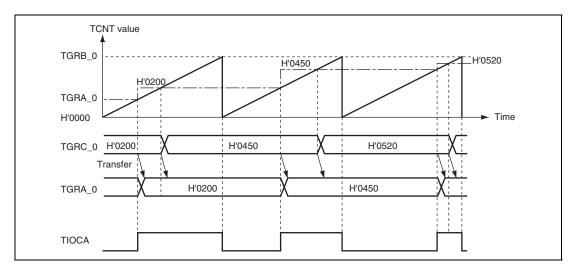


Figure 11.19 Example of Buffer Operation (1)

(b) When TGR is an input capture register

Figure 11.20 shows an operation example in which TGRA has been designated as an input capture register, and buffer operation has been designated for TGRA and TGRC. Counter clearing by TGRA input capture has been set for TCNT, and both rising and falling edges have been selected as the TIOCA pin input capture input edge. As buffer operation has been set, when the TCNT value is stored in TGRA upon occurrence of input capture A, the value previously stored in TGRA is simultaneously transferred to TGRC.

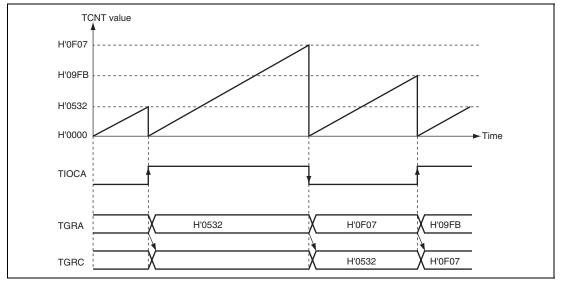


Figure 11.20 Example of Buffer Operation (2)

11.5.4 **PWM Modes**

In PWM mode, PWM waveforms are output from the output pins. 0, 1, or toggle output can be selected as the output level in response to compare match of each TGR. Settings of TGR registers can output a PWM waveform in the range of 0 % to 100 % duty. Designating TGR compare match as the counter clearing source enables the period to be set in that register. All channels can be designated for PWM mode independently. Synchronous operation is also possible. There are two PWM modes, as described below.

• PWM mode 1

PWM output is generated from the TIOCA and TIOCC pins by pairing TGRA with TGRB and TGRC with TGRD. The output specified by bits IOA3 to IOA0 and IOC3 to IOC0 in TIOR is output from the TIOCA and TIOCC pins at compare matches A and C, and the output specified by bits IOB3 to IOB0 and IOD3 to IOD0 in TIOR is output at compare matches B and D. The initial output value is the value set in TGRA or TGRC. If the set values of paired TGRs are identical, the output value does not change when a compare match occurs. In PWM mode 1, a maximum 4-phase PWM output is possible.

PWM mode 2

PWM output is generated using one TGR as the cycle register and the others as duty registers. The output specified in TIOR is performed by means of compare matches. Upon counter clearing by a synchronization register compare match, the output value of each pin is the initial value set in TIOR. If the set values of the cycle and duty registers are identical, the output value does not change when a compare match occurs. In PWM mode 2, a maximum 7-phase PWM output is possible by combined use with synchronous operation. The correspondence between PWM output pins and registers is shown in table 11.19.

Table 11.19 PWM Output Registers and Output Pins

			Output Pins	
Channel	Registers	PWM Mode 1	PWM Mode 2	
0	TGRA_0	TIOCA0	TIOCA0	
	TGRB_0		TIOCB0	
	TGRC_0	TIOCC0	TIOCC0	
	TGRD_0		TIOCD0	
1	TGRA_1	TIOCA1	TIOCA1	
	TGRB_1		TIOCB1	
2	TGRA_2	TIOCA2	TIOCA2	
	TGRB_2		TIOCB2	

Note: In PWM mode 2, PWM output is not possible for the TGR register in which the period is set.

(1) Example of PWM Mode Setting Procedure

Figure 11.21 shows an example of the PWM mode setting procedure.

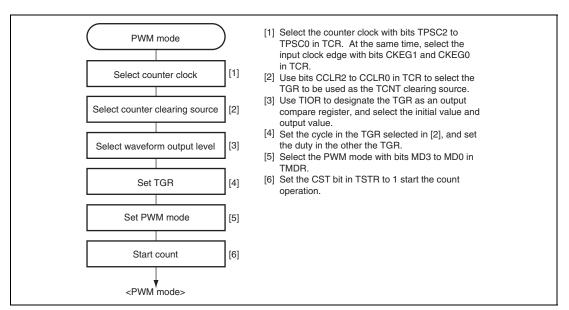


Figure 11.21 Example of PWM Mode Setting Procedure

(2) Examples of PWM Mode Operation

Figure 11.22 shows an example of PWM mode 1 operation.

In this example, TGRA compare match is set as the TCNT clearing source, 0 is set for the TGRA initial output value and output value, and 1 is set as the TGRB output value. In this case, the value set in TGRA is used as the period, and the values set in TGRB registers as the duty.

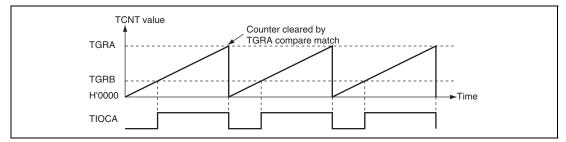


Figure 11.22 Example of PWM Mode Operation (1)

Figure 11.23 shows an example of PWM mode 2 operation. In this example, synchronous operation is designated for channels 0 and 1, TGRB_1 compare match is set as the TCNT clearing source, and 0 is set for the initial output value and 1 for the output value of the other TGR registers (TGRA_0 to TGRD_0, TGRA_1), to output a 5-phase PWM waveform. In this case, the value set in TGRB_1 is used as the cycle, and the values set in the other TGRs as the duty.

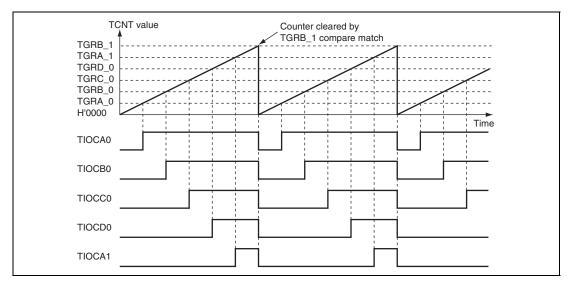


Figure 11.23 Example of PWM Mode Operation (2)

Figure 11.24 shows examples of PWM waveform output with 0% duty and 100% duty in PWM mode.

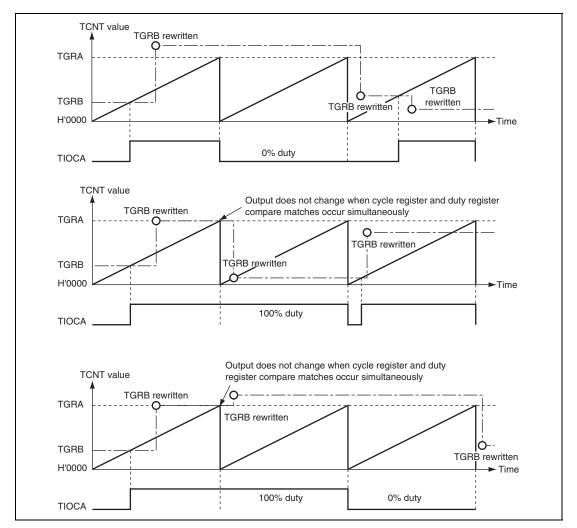


Figure 11.24 Example of PWM Mode Operation (3)

11.5.5 Phase Counting Mode

In phase counting mode, the phase difference between two external clock inputs is detected and TCNT is incremented/decremented accordingly. This mode can be set for channels 1 and 2. When phase counting mode is set, an external clock is selected as the counter input clock and TCNT operates as an up/down-counter regardless of the setting of bits TPSC2 to TPSC0 and bits CKEG1 and CKEG0 in TCR. However, the functions of bits CCLR1 and CCLR0 in TCR, and of TIOR, TIER, and TGR are valid, and input capture/compare match and interrupt functions can be used. This can be used for two-phase encoder pulse input. When overflow occurs while TCNT is counting up, the TCFV flag in TSR is set; when underflow occurs while TCNT is counting down, the TCFU flag is set. The TCFD bit in TSR is the count direction flag. Reading the TCFD flag provides an indication of whether TCNT is counting up or down. Table 11.20 shows the correspondence between external clock pins and channels.

Table 11.20 Phase Counting Mode Clock Input Pins

	External Clock Pins		
Channels	A-Phase	B-Phase	
When channel 1 is set to phase counting mode	TCLKA	TCLKB	
When channel 2 is set to phase counting mode	TCLKC	TCLKD	

(1) Example of Phase Counting Mode Setting Procedure

Figure 11.25 shows an example of the phase counting mode setting procedure.

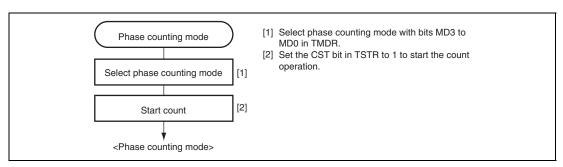


Figure 11.25 Example of Phase Counting Mode Setting Procedure

(2) Examples of Phase Counting Mode Operation

In phase counting mode, TCNT counts up or down according to the phase difference between two external clocks. There are four modes, according to the count conditions.

(a) Phase counting mode 1

Figure 11.26 shows an example of phase counting mode 1 operation, and table 11.21 summarizes the TCNT up/down-count conditions.

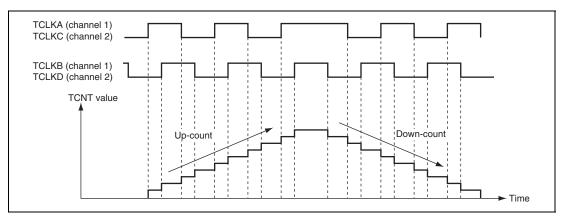


Figure 11.26 Example of Phase Counting Mode 1 Operation

Table 11.21 Up/Down-Count Conditions in Phase Counting Mode 1

TCLKA (Channel 1)	TCLKB (Channel 1)	
TCLKC (Channel 2)	TCLKD (Channel 2)	Operation
High level	<u>_</u>	Up-count
Low level	₹_	
<u></u>	Low level	
₹_	High level	
High level	₹_	Down-count
Low level	<u>_</u>	
<u></u>	High level	
₹_	Low level	

[Legend]

F: Rising edge

L: Falling edge

(b) Phase counting mode 2

Figure 11.27 shows an example of phase counting mode 2 operation, and table 11.22 summarizes the TCNT up/down-count conditions.

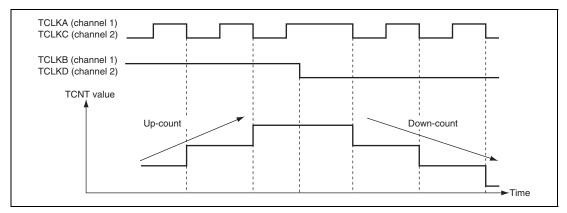


Figure 11.27 Example of Phase Counting Mode 2 Operation

Table 11.22 Up/Down-Count Conditions in Phase Counting Mode 2

TCLKA (Channel 1)	TCLKB (Channel 1)	
TCLKC (Channel 2)	TCLKD (Channel 2)	Operation
High level	<u>_</u>	Don't care
Low level	T_	Don't care
<u>_</u>	Low level	Don't care
Ŧ_	High level	Up-count
High level	Ŧ_	Don't care
Low level	<u>_</u>	Don't care
<u>_</u>	High level	Don't care
₹	Low level	Down-count

[Legend]

Falling edge

(c) Phase counting mode 3

Figure 11.28 shows an example of phase counting mode 3 operation, and table 11.23 summarizes the TCNT up/down-count conditions.

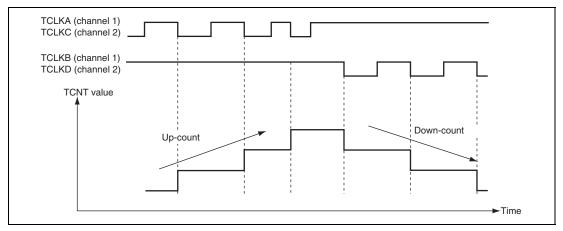


Figure 11.28 Example of Phase Counting Mode 3 Operation

Table 11.23 Up/Down-Count Conditions in Phase Counting Mode 3

TCLKA (Channel 1)	TCLKB (Channel 1)	
TCLKC (Channel 2)	TCLKD (Channel 2)	Operation
High level	<u>_</u>	Don't care
Low level	T_	Don't care
<u></u>	Low level	Don't care
<u>T</u>	High level	Up-count
High level	₹_	Down-count
Low level	<u>_</u>	Don't care
<u></u>	High level	Don't care
₹_	Low level	Don't care

[Legend]

📥 : Rising edge

t: Falling edge

Phase counting mode 4 (d)

Figure 11.29 shows an example of phase counting mode 4 operation, and table 11.24 summarizes the TCNT up/down-count conditions.

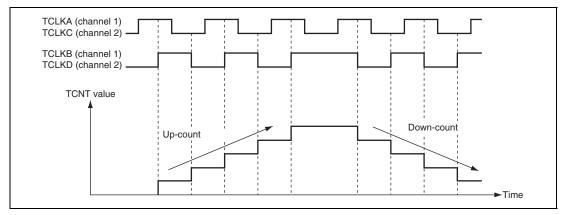


Figure 11.29 Example of Phase Counting Mode 4 Operation

Table 11.24 Up/Down-Count Conditions in Phase Counting Mode 4

TCLKA (Channel 1)	TCLKB (Channel 1)	
TCLKC (Channel 2)	TCLKD (Channel 2)	Operation
High level		Up-count
Low level	₹_	
<u></u>	Low level	Don't care
₹_	High level	
High level	₹_	Down-count
Low level		
<u></u>	High level	Don't care
₹	Low level	

[Legend]

Rising edge Falling edge

11.6 Interrupts

11.6.1 Interrupt Source and Priority

There are three kinds of TPU interrupt source: TGR input capture/compare match, TCNT overflow, and TCNT underflow. Each interrupt source has its own status flag and enable/disabled bit, allowing generation of interrupt request signals to be enabled or disabled individually. When an interrupt request is generated, the corresponding status flag in TSR is set to 1. If the corresponding enable/disable bit in TIER is set to 1 at this time, an interrupt is requested. The interrupt request is cleared by clearing the status flag to 0. Relative channel priorities can be changed by the interrupt controller, but the priority order within a channel is fixed. For details, see section 7, Interrupt Controller. Table 11.25 lists the TPU interrupt sources.

Table 11.25 TPU Interrupts

Channel	Name	Interrupt Source	Interrupt Flag	Priority*
0	TGI0A	TGRA_0 input capture/compare match	TGFA	High
	TGI0B	TGRB_0 input capture/compare match	TGFB	_ †
	TGI0C	TGRC_0 input capture/compare match	TGFC	_
	TGI0D	TGRD_0 input capture/compare match	TGFD	
	TCI0V	TCNT_0 overflow	TCFV	_
1	TGI1A	TGRA_1 input capture/compare match	TGFA	
	TGI1B	TGRB_1 input capture/compare match	TGFB	
	TCI1V	TCNT_1 overflow	TCFV	_
	TCI1U	TCNT_1 underflow	TCFU	_
2	TGI2A	TGRA_2 input capture/compare match	TGFA	
	TGI2B	TGRB_2 input capture/compare match	TGFB	
	TCI2V	TCNT_2 overflow	TCFV	_
	TCI2U	TCNT_2 underflow	TCFU	Low

Note: * This table shows the initial state immediately after a reset. The relative channel priorities can be changed by the interrupt controller.

(1) Input Capture/Compare Match Interrupt

An interrupt is requested if the TGIE bit in TIER is set to 1 when the TGF flag in TSR is set to 1 by the occurrence of a TGR input capture/compare match on a particular channel. The interrupt request is cleared by clearing the TGF flag to 0. The TPU has 8 input capture/compare match interrupts, four each for channel 0, and two each for channels 1 and 2.

(2) Overflow Interrupt

An interrupt is requested if the TCIEV bit in TIER is set to 1 when the TCFV flag in TSR is set to 1 by the occurrence of TCNT overflow on a channel. The interrupt request is cleared by clearing the TCFV flag to 0. The TPU has three overflow interrupts, one for each channel.

(3) Underflow Interrupt

An interrupt is requested if the TCIEU bit in TIER is set to 1 when the TCFU flag in TSR is set to 1 by the occurrence of TCNT underflow on a channel. The interrupt request is cleared by clearing the TCFU flag to 0. The TPU has two underflow interrupts, one each for channels 1 and 2.

11.6.2 A/D Converter Activation

The A/D converter can be activated by the TGRA input capture/compare match for a channel. If the TTGE bit in TIER is set to 1 when the TGFA flag in TSR is set to 1 by the occurrence of a TGRA input capture/compare match on a particular channel, a request to start A/D conversion is sent to the A/D converter. If the TPU conversion start trigger has been selected on the A/D converter side at this time, A/D conversion is started. In the TPU, a total of three TGRA input capture/compare match interrupts can be used as A/D converter conversion start sources, one for each channel.

11.7 Operation Timing

11.7.1 Input/Output Timing

(1) TCNT Count Timing

Figure 11.30 shows TCNT count timing in internal clock operation, and figure 11.31 shows TCNT count timing in external clock operation.

Figure 11.30 Count Timing in Internal Clock Operation

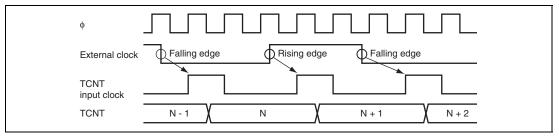


Figure 11.31 Count Timing in External Clock Operation

Output Compare Output Timing (2)

A compare match signal is generated in the final state in which TCNT and TGR match (the point at which the count value matched by TCNT is updated). When a compare match signal is generated, the output value set in TIOR is output at the output compare output pin (TIOC pin). After a match between TCNT and TGR, the compare match signal is not generated until the TCNT input clock is generated. Figure 11.32 shows output compare output timing.

Figure 11.32 Output Compare Output Timing

Input Capture Signal Timing: Figure 11.33 shows input capture signal timing.

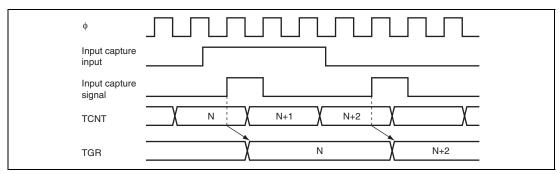


Figure 11.33 Input Capture Input Signal Timing

Page 286 of 1054

(3) Timing for Counter Clearing by Compare Match/Input Capture

Figure 11.34 shows the timing when counter clearing by compare match occurrence is specified, and figure 11.35 shows the timing when counter clearing by input capture occurrence is specified.

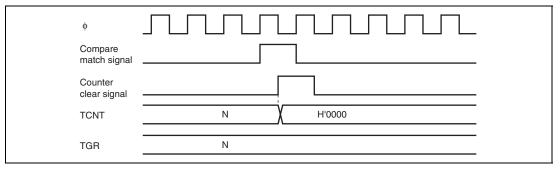
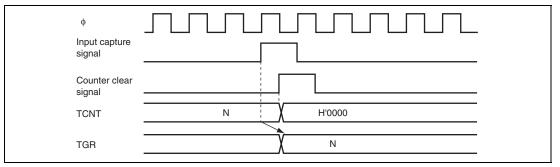
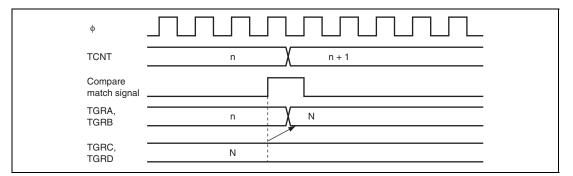
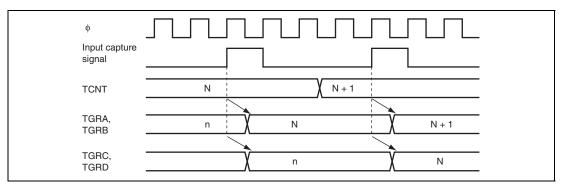


Figure 11.34 Counter Clear Timing (Compare Match)


Figure 11.35 Counter Clear Timing (Input Capture)

(4) Buffer Operation Timing

Figures 11.36 and 11.37 show the timing in buffer operation.

Figure 11.36 Buffer Operation Timing (Compare Match)

Figure 11.37 Buffer Operation Timing (Input Capture)

11.7.2 Interrupt Signal Timing

(1) TGF Flag Setting Timing in Case of Compare Match

Figure 11.38 shows the timing for setting of the TGF flag in TSR by compare match occurrence, and TGI interrupt request signal timing.

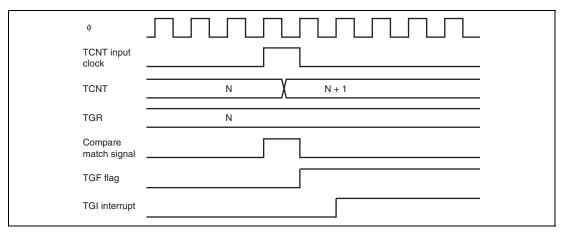


Figure 11.38 TGI Interrupt Timing (Compare Match)

(2) TGF Flag Setting Timing in Case of Input Capture

Figure 11.39 shows the timing for setting of the TGF flag in TSR by input capture occurrence, and TGI interrupt request signal timing.

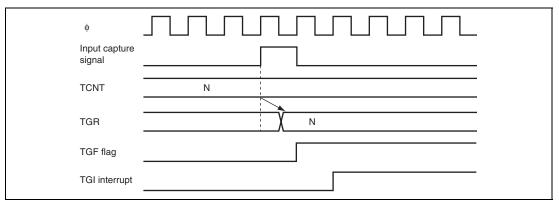


Figure 11.39 TGI Interrupt Timing (Input Capture)

(3) TCFV Flag/TCFU Flag Setting Timing

Figure 11.40 shows the timing for setting of the TCFV flag in TSR by overflow occurrence, and TCIV interrupt request signal timing. Figure 11.41 shows the timing for setting of the TCFU flag in TSR by underflow occurrence, and TCIU interrupt request signal timing.

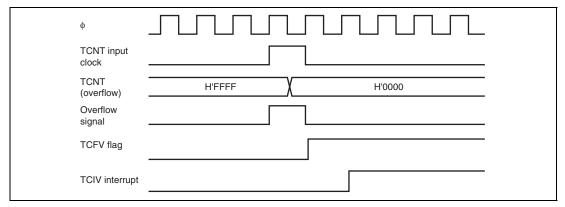


Figure 11.40 TCIV Interrupt Setting Timing

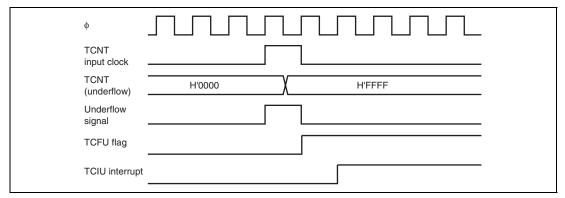


Figure 11.41 TCIU Interrupt Setting Timing

(4) Status Flag Clearing Timing

After a status flag is read as 1 by the CPU, it is cleared by writing 0 to it. Figure 11.42 shows the timing for status flag clearing by the CPU.

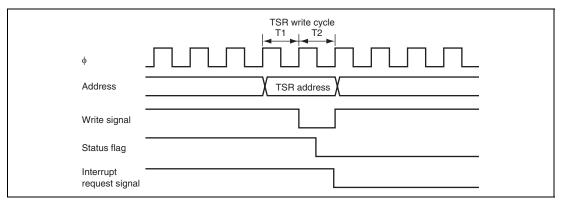


Figure 11.42 Timing for Status Flag Clearing by CPU

11.8 Usage Notes

11.8.1 Input Clock Restrictions

The input clock pulse width must be at least 1.5 states in the case of single-edge detection, and at least 2.5 states in the case of both-edge detection. The TPU will not operate properly with a narrower pulse width. In phase counting mode, the phase difference and overlap between the two input clocks must be at least 1.5 states, and the pulse width must be at least 2.5 states. Figure 11.43 shows the input clock conditions in phase counting mode.

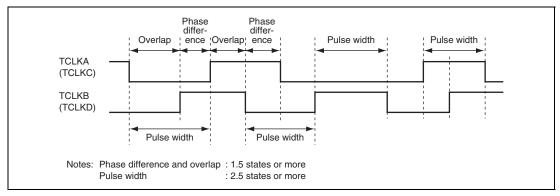


Figure 11.43 Phase Difference, Overlap, and Pulse Width in Phase Counting Mode

11.8.2 Caution on Period Setting

When counter clearing by compare match is set, TCNT is cleared in the final state in which it matches the TGR value (the point at which the count value matched by TCNT is updated). Consequently, the actual counter frequency is given by the following formula:

$$f = \frac{\phi}{(N+1)}$$

Where f: Counter frequency

φ: Operating frequency

N: TGR set value

11.8.3 Conflict between TCNT Write and Clear Operations

If the counter clear signal is generated in the T_2 state of a TCNT write cycle, TCNT clearing takes precedence and the TCNT write is not performed. Figure 11.44 shows the timing in this case.

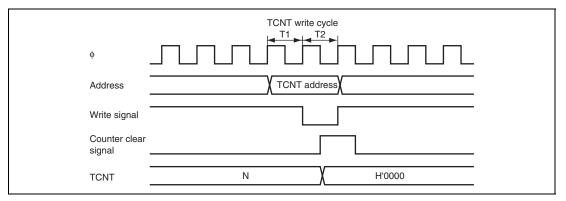


Figure 11.44 Conflict between TCNT Write and Clear Operations

11.8.4 Conflict between TCNT Write and Increment Operations

If incrementing occurs in the T_2 state of a TCNT write cycle, the TCNT write takes precedence and TCNT is not incremented. Figure 11.45 shows the timing in this case.

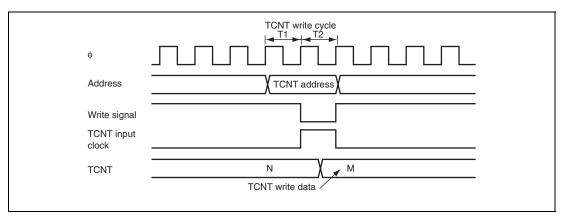


Figure 11.45 Conflict between TCNT Write and Increment Operations

11.8.5 Conflict between TGR Write and Compare Match

If a compare match occurs in the T_2 state of a TGR write cycle, the TGR write takes precedence and the compare match signal is inhibited. A compare match does not occur even if the same value as before is written. Figure 11.46 shows the timing in this case.

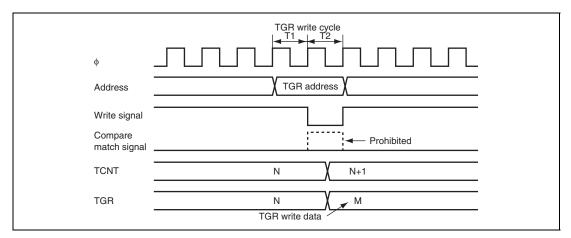


Figure 11.46 Conflict between TGR Write and Compare Match

11.8.6 Conflict between Buffer Register Write and Compare Match

If a compare match occurs in the T_2 state of a TGR write cycle, the data transferred to TGR by the buffer operation will be the data prior to the write. Figure 11.47 shows the timing in this case.

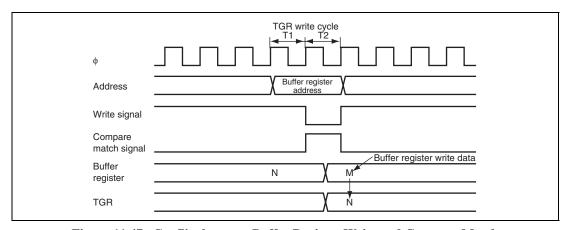


Figure 11.47 Conflict between Buffer Register Write and Compare Match

11.8.7 Conflict between TGR Read and Input Capture

If the input capture signal is generated in the T_1 state of a TGR read cycle, the data that is read will be the data after input capture transfer. Figure 11.48 shows the timing in this case.

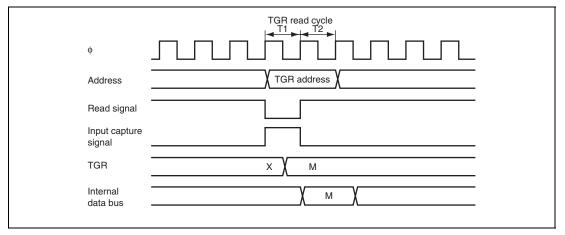


Figure 11.48 Conflict between TGR Read and Input Capture

11.8.8 Conflict between TGR Write and Input Capture

If the input capture signal is generated in the T_2 state of a TGR write cycle, the input capture operation takes precedence and the write to TGR is not performed. Figure 11.49 shows the timing in this case.

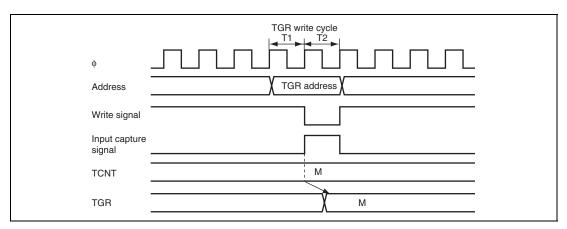


Figure 11.49 Conflict between TGR Write and Input Capture

11.8.9 Conflict between Buffer Register Write and Input Capture

If the input capture signal is generated in the T_2 state of a buffer register write cycle, the buffer operation takes precedence and the write to the buffer register is not performed. Figure 11.50 shows the timing in this case.

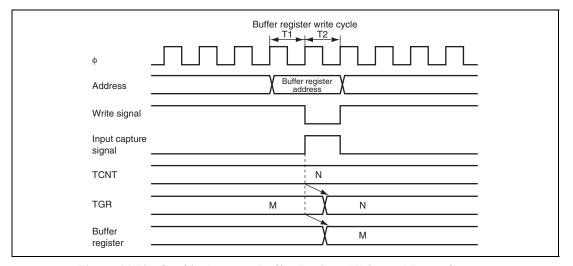


Figure 11.50 Conflict between Buffer Register Write and Input Capture

11.8.10 Conflict between Overflow/Underflow and Counter Clearing

If overflow/underflow and counter clearing occur simultaneously, the TCFV/TCFU flag in TSR is not set and TCNT clearing takes precedence. Figure 11.51 shows the operation timing when a TGR compare match is specified as the clearing source, and H'FFFF is set in TGR.

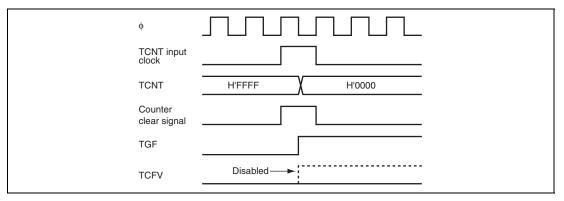


Figure 11.51 Conflict between Overflow and Counter Clearing

11.8.11 Conflict between TCNT Write and Overflow/Underflow

If there is an up-count or down-count in the T_2 state of a TCNT write cycle, and overflow/underflow occurs, the TCNT write takes precedence and the TCFV/TCFU flag in TSR is not set. Figure 11.52 shows the operation timing when there is conflict between TCNT write and overflow.

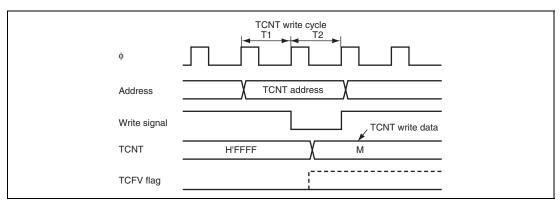


Figure 11.52 Conflict between TCNT Write and Overflow

11.8.12 Multiplexing of I/O Pins

In this LSI, the TCLKA input pin is multiplexed with the TIOCC0 I/O pin, the TCLKB input pin with the TIOCD0 I/O pin, the TCLKC input pin with the TIOCB1 I/O pin, and the TCLKD input pin with the TIOCB2 I/O pin. When an external clock is input, compare match output should not be performed from a multiplexed pin.

11.8.13 Module Stop Mode Setting

TPU operation can be enabled or disabled by the module stop control register. In the initial state, TPU operation is disabled. Access to TPU registers is enabled when module stop mode is cancelled. For details, see section 29, Power-Down Modes.

Section 12 8-Bit Timer (TMR)

This LSI has an on-chip 8-bit timer module (TMR_0, TMR_1, TMR_Y, and TMR_X) with four channels operating on the basis of an 8-bit counter. The 8-bit timer module can be used as a multifunction timer in a variety of applications, such as generation of counter reset, interrupt requests, and pulse output with an arbitrary duty cycle using a compare-match signal with two registers.

12.1 Features

- Selection of clock sources
 - The counter input clock can be selected from six internal clocks and an external clock
- Selection of three ways to clear the counters
 The counters can be cleared on compare-match A, compare-match B, or by an external reset signal.
- Timer output controlled by two compare-match signals
 - The timer output signal in each channel is controlled by two independent compare-match signals, enabling the timer to be used for various applications, such as the generation of pulse output or PWM output with an arbitrary duty cycle.
- Cascading of two channels
 - Cascading of TMR_0 and TMR_1
 - Operation as a 16-bit timer can be performed using TMR_0 as the upper half and TMR_1 as the lower half (16-bit count mode).
 - TMR_1 can be used to count TMR_0 compare-match occurrences (compare-match count mode).
 - Cascading of TMR_Y and TMR_X
 - Operation as a 16-bit timer can be performed using TMR_Y as the upper half and TMR_X as the lower half (16-bit count mode).
 - TMR_X can be used to count TMR_Y compare-match occurrences (compare-match count mode).
- Multiple interrupt sources for each channel
 - TMR_0, TMR_1, and TMR_Y: Three types of interrupts: Compare-match A, compare-match B, and overflow
 - TMR_X: Four types of interrupts: Compare-match A, compare match B, overflow, and input capture

Figures 12.1 and 12.2 show block diagrams of 8-bit timers.

An input capture function is added to TMR X.

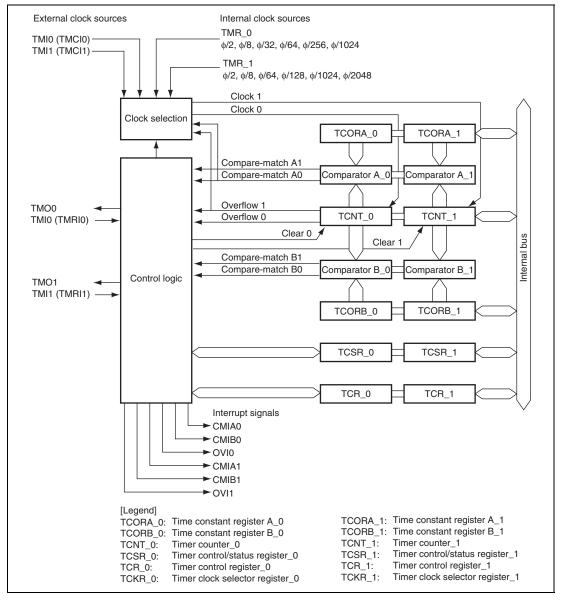


Figure 12.1 Block Diagram of 8-Bit Timer (TMR_0 and TMR_1)

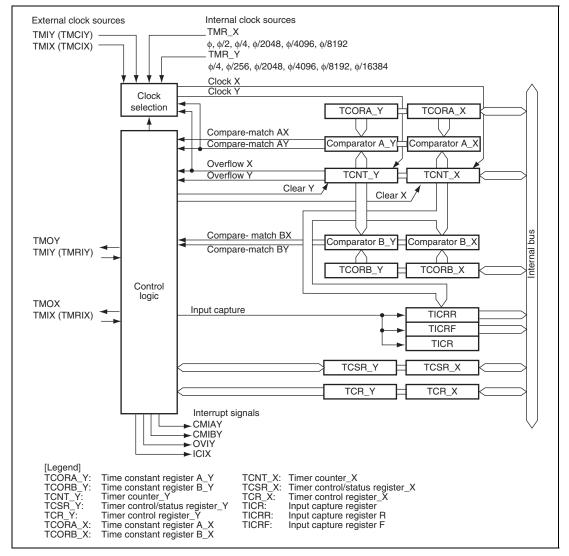


Figure 12.2 Block Diagram of 8-Bit Timer (TMR_Y and TMR_X)

12.2 Input/Output Pins

Table 12.1 summarizes the input and output pins of the TMR.

Table 12.1 Pin Configuration

Channel	Pin Name	I/O	Function
TMR_0	TMO0	Output	Output controlled by compare-match
	TMI0 (TMCI0/TMRI0)	Input	External clock input/external reset input for the counter
TMR_1	TMO1	Output	Output controlled by compare-match
	TMI1 (TMCI1/TMRI1)	Input	External clock input/external reset input for the counter
TMR_Y	TMIY (TMCIY/TMRIY)	Input	External clock input/external reset input for the counter
	TMOY	Output	Output controlled by compare-match
TMR_X	TMOX	Output	Output controlled by compare-match
	TMIX (TMCIX/TMRIX)	Input	External clock input/external reset input for the counter

12.3 Register Descriptions

The TMR has the following registers. For details on the serial/timer control register, see section 3.2.3, Serial/Timer Control Register (STCR).

Table 12.2 Register Configuration

Register Name	Abbreviation	R/W	Initial Value	Address	Data Bus Width
Timer counter_0	TCNT_0	R/W	H'00	H'FFD0	16
Time constant register A_0	TCORA_0	R/W	H'FF	H'FFCC	16
Time constant register B_0	TCORB_0	R/W	H'FF	H'FFCE	16
Timer control register_0	TCR_0	R/W	H'00	H'FFC8	8
Timer control/status register_0	TCSR_0	R/W	H'00	H'FFCA	8
Timer clock selector register_0	TCKR_0	R/W	H'F0	H'FFD2	8
Timer counter_1	TCNT_1	R/W	H'00	H'FFD1	16
Time constant register A_1	TCORA_1	R/W	H'FF	H'FFCD	16
Time constant register B_1	TCORB_1	R/W	H'FF	H'FFCF	16
Timer control register_1	TCR_1	R/W	H'00	H'FFC9	8
Timer control/status register_1	TCSR_1	R/W	H'10	H'FFCB	8
Timer clock selector register_1	TCKR_1	R/W	H'F0	H'FFD3	8
Timer counter_Y	TCNT_Y	R/W	H'00	H'FECC	8
Time constant register A_Y	TCORA_Y	R/W	H'FF	H'FECA	8
Time constant register B_Y	TCORB_Y	R/W	H'FF	H'FECB	8
Timer control register_Y	TCR_Y	R/W	H'00	H'FEC8	8
Timer control/status register_Y	TCSR_Y	R/W	H'00	H'FEC9	8
	Timer counter_0 Time constant register A_0 Time constant register B_0 Timer control register_0 Timer control/status register_0 Timer clock selector register_0 Timer counter_1 Time constant register A_1 Time constant register B_1 Timer control register_1 Timer control/status register_1 Timer control/status register_1 Timer clock selector register_1 Timer constant register A_Y Time constant register A_Y Time constant register B_Y Timer control register_Y	Timer counter_0 TCNT_0 Time constant register A_0 TCORA_0 Time constant register B_0 TCORB_0 Timer control register_0 TCR_0 Timer control/status register_0 TCSR_0 Timer clock selector register_0 TCKR_0 Timer counter_1 TCNT_1 Time constant register A_1 TCORA_1 Timer constant register B_1 TCORB_1 Timer control register_1 TCR_1 Timer control/status register_1 TCSR_1 Timer control/status register_1 TCKR_1 Timer control/status register_1 TCKR_1 Timer counter_Y TCNT_Y Time constant register A_Y TCORA_Y Time constant register B_Y TCORB_Y Timer control register_Y TCR_Y	Timer counter_0 TCNT_0 R/W Time constant register A_0 TCORA_0 R/W Time constant register B_0 TCORB_0 R/W Timer control register_0 TCR_0 R/W Timer control/status register_0 TCSR_0 R/W Timer clock selector register_0 TCKR_0 R/W Timer counter_1 TCNT_1 R/W Time constant register A_1 TCORA_1 R/W Time constant register B_1 TCORB_1 R/W Timer control register_1 TCR_1 R/W Timer control/status register_1 TCSR_1 R/W Timer control/status register_1 TCKR_1 R/W Timer control/status register_1 TCKR_1 R/W Timer counter_Y TCNT_Y R/W Time constant register A_Y TCORA_Y R/W Time constant register B_Y TCORB_Y R/W Timer control register_Y TCR_Y R/W Timer control register_Y TCR_Y R/W	Timer counter_0 TCORA_0 R/W H'FF Timer control register A_0 TCORA_0 R/W H'FF Timer control register_0 TCORA_0 R/W H'FF Timer control register_0 TCORA_0 R/W H'FF Timer control/status register_0 TCSR_0 R/W H'00 Timer clock selector register_0 TCKR_0 R/W H'00 Timer counter_1 TCNT_1 R/W H'00 Timer constant register A_1 TCORA_1 R/W H'FF Timer constant register B_1 TCORB_1 R/W H'FF Timer control register_1 TCR_1 R/W H'00 Timer control/status register_1 TCSR_1 R/W H'10 Timer control/status register_1 TCKR_1 R/W H'10 Timer control register_4 TCORA_Y R/W H'FF Timer constant register A_Y TCORA_Y R/W H'FF Timer constant register_9 TCORB_Y R/W H'FF Timer control register_Y TCR_Y R/W H'00	Timer counter_0 TCNT_0 R/W H'00 H'FFD0 Time constant register A_0 TCORA_0 R/W H'FF H'FFCC Time constant register B_0 TCORB_0 TCORB_0 R/W H'FF H'FFCE Timer control register_0 TCSR_0 R/W H'00 H'FFCA Timer clock selector register_0 TCNT_1 R/W H'00 H'FFD1 Time constant register A_1 TCORA_1 R/W H'FF H'FFCD Timer counter_1 TCNT_1 R/W H'FF H'FFCD Timer control register A_1 TCORA_1 TCORA_1 R/W H'FF H'FFCD Timer control register_1 TCORB_1 R/W H'FF H'FFCD Timer control register_1 TCR_1 R/W H'O0 H'FFCB Timer control register_1 TCR_1 R/W H'O0 H'FFCB Timer control/status register_1 TCSR_1 R/W H'10 H'FF BTIMER CONSTANT REGISTER_1 TCKR_1 R/W H'10 H'FFCB Timer control register_1 TCKR_1 R/W H'10 H'FFCB Timer control register_1 TCKR_1 R/W H'O0 H'FFCB Timer constant register A_Y TCORA_Y R/W H'FF H'FECA Time constant register B_Y TCORB_Y R/W H'FF H'FECB Timer control register_Y TCR_Y R/W H'O0 H'FECB

Channel	Register Name	Abbreviation	R/W	Initial Value	Address	Data Bus Width
Channel X	Timer counter_X	TCNT_X	R/W	H'00	H'FFF4	8
	Time constant register A_X	TCORA_X	R/W	H'FF	H'FFF6	8
	Time constant register B_X	TCORB_X	R/W	H'FF	H'FFF7	8
	Timer control register_X	TCR_X	R/W	H'00	H'FFF0	8
	Timer control/status register_X	TCSR_X	R/W	H'00	H'FFF1	8
	Input capture register R	TICRR	R	H'00	H'FFF2	8
	Input capture register F	TICRF	R	H'00	H'FFF3	8
	Timer connection register I	TCONRI	R/W	H'00	H'FFFC	8
Common	Timer XY control register	TCRXY	R/W	H'CF	H'FEC6	8

12.3.1 Timer Counter (TCNT)

Each TCNT is an 8-bit readable/writable up-counter. TCNT_0 and TCNT_1 (or TCNT_X and TCNT_Y) comprise a single 16-bit register, so they can be accessed together by word access. The clock source is selected by the CKS2 to CKS0 bits in TCR. TCNT can be cleared by an external reset input signal, compare-match A signal or compare-match B signal. The method of clearing can be selected by the CCLR1 and CCLR0 bits in TCR. When TCNT overflows (changes from H'FF to H'00), the OVF bit in TCSR is set to 1. TCNT is initialized to H'00.

12.3.2 Time Constant Register A (TCORA)

TCORA is an 8-bit readable/writable register. TCORA_0 and TCORA_1 (or TCORA_X and TCORA_Y) comprise a single 16-bit register, so they can be accessed together by word access. TCORA is continually compared with the value in TCNT. When a match is detected, the corresponding compare-match flag A (CMFA) in TCSR is set to 1. Note however that comparison is disabled during the T₂ state of a TCORA write cycle. The timer output from the TMO pin can be freely controlled by these compare-match A signals and the settings of output select bits OS1 and OS0 in TCSR. TCORA is initialized to H'FF.

12.3.3 Time Constant Register B (TCORB)

TCORB is an 8-bit readable/writable register. TCORB_0 and TCORB_1 (or TCORB_X and TCORB_Y) comprise a single 16-bit register, so they can be accessed together by word access. TCORB is continually compared with the value in TCNT. When a match is detected, the corresponding compare-match flag B (CMFB) in TCSR is set to 1. Note however that comparison is disabled during the T₂ state of a TCORB write cycle. The timer output from the TMO pin can be freely controlled by these compare-match B signals and the settings of output select bits OS3 and OS2 in TCSR. TCORB is initialized to H'FF.

12.3.4 Timer Control Register (TCR)

TCR selects the TCNT clock source and the condition by which TCNT is cleared, and enables/disables interrupt requests.

Bit	Bit Name	Initial Value	R/W	Description
7	CMIEB	0	R/W	Compare-Match Interrupt Enable B
				Selects whether the CMFB interrupt request (CMIB) is enabled or disabled when the CMFB flag in TCSR is set to 1.
				0: CMFB interrupt request (CMIB) is disabled
				1: CMFB interrupt request (CMIB) is enabled
6	CMIEA	0	R/W	Compare-Match Interrupt Enable A
				Selects whether the CMFA interrupt request (CMIA) is enabled or disabled when the CMFA flag in TCSR is set to 1.
				0: CMFA interrupt request (CMIA) is disabled
				1: CMFA interrupt request (CMIA) is enabled
5	OVIE	0	R/W	Timer Overflow Interrupt Enable
				Selects whether the OVF interrupt request (OVI) is enabled or disabled when the OVF flag in TCSR is set to 1.
				0: OVF interrupt request (OVI) is disabled
				1: OVF interrupt request (OVI) is enabled
4	CCLR1	0	R/W	Counter Clear 1 and 0
3	CCLR0	0	R/W	These bits select the method by which the timer counter is cleared.
				00: Clearing is disabled
				01: Cleared on compare-match A
				10: Cleared on compare-match B
				11: Cleared on rising edge of external reset input
2	CKS2	0	R/W	Clock Select 2 to 0
1	CKS1	0	R/W	These bits select the clock input to TCNT and count
0	CKS0	0	R/W	condition, together with the ICKS1 and ICKS0 bits in STCR. For details, see table 12.3.

Timer Clock Selector Register (TCKR_0, TCKR_1) 12.3.5

TCKR selects the TCNT input clock.

		Initial		
Bit	Bit Name	Value	R/W	Description
7 to 4	_	All 1	R/W	Reserved
				The initial value should not be changed.
3	CKS3	0	R/W	Clock Select 3
				These bits select the clock input to TCNT and count condition, together with the CKS2 to CKS0 bits in TCR. For details, see table 12.3.
2 to 0	_	All 0	R/W	Reserved
				The initial value should not be changed.

Table 12.3 Clock Input to TCNT and Count Condition (1)

		TCR		ST	CR*1	TCKR_1*1	TCKR_0*1	
Channel	CKS2	CKS1	CKS0	ICKS1	ICKS0	CKS3	CKS3	Description
TMR_0	0	0	0	_	_	_	_	Disables clock input
	0	0	1	_	0	_	0	Increments at falling edge of internal clock φ/8
	0	0	1	_	1	_	1	Increments at falling edge of internal clock φ/2
	0	1	0	_	0	_	0	Increments at falling edge of internal clock $\phi/64$
	0	1	0	_	1	_	1	Increments at falling edge of internal clock φ/32
	0	1	1	_	0	_	0	Increments at falling edge of internal clock $\phi/1024$
	0	1	1	_	1	_	1	Increments at falling edge of internal clock φ/256
	1	0	0	_	_	_	_	Increments at overflow signal from TCNT_1*2
TMR_1	0	0	0	_	_	_	_	Disables clock input
	0	0	1	0	_	0	_	Increments at falling edge of internal clock φ/8
	0	0	1	1	_	1	_	Increments at falling edge of internal clock φ/2
	0	1	0	0	_	0	_	Increments at falling edge of internal clock φ/64
	0	1	0	1	_	1	_	Increments at falling edge of internal clock φ/128
	0	1	1	0	_	0	_	Increments at falling edge of internal clock φ/1024
	0	1	1	1	_	1		Increments at falling edge of internal clock φ/2048
	1	0	0	_	_	_	_	Increments at compare- match A from TCNT_0*2

		TCR		STCR*1		TCKR_1*1	TCKR_0*1	
Channel	CKS2	CKS1	CKS0	ICKS1	ICKS0	CKS3	CKS3	Description
Common	1	0	1	_	_	_	_	Increments at rising edge of external clock
	1	1	0	_	_	_	_	Increments at falling edge of external clock
	1	1	1	_	_	_	_	Increments at both rising and falling edges of external clock

- Notes: 1. Set either the ICKS1 bit in STCR or the CKS3 bit in TCKR_1. Set either the ICKS0 bit in STCR or the CKS3 bit in TCKR_0.

 Setting the ICKS1 bit in STCR also sets the CKS3 bit in TCKR_1, and vice versa.

 Setting the ICKS0 bit in STCR also sets the CKS3 bit in TCKR_0, and vice versa.
 - 2. If the TMR_0 clock input is set as the TCNT_1 overflow signal and the TMR_1 clock input is set as the TCNT_0 compare-match signal simultaneously, a count-up clock cannot be generated. These settings should not be made.

Table 12.3 Clock Input to TCNT and Count Condition (2)

		TCR		TCRXY		
Channel	CKS2	CKS1	CKS0	CKSX	CKSY	Description
TMR_Y	0	0	0	_	0	Disables clock input
	0	0	1		0	Increments at $\phi/4$
	0	1	0		0	Increments at $\phi/256$
	0	1	1	_	0	Increments at φ/2048
	1	0	0	_	0	Disables clock input
	0	0	0	_	1	Disables clock input
	0	0	1	_	1	Increments at φ/4096
	0	1	0	_	1	Increments at φ/8192
	0	1	1	_	1	Increments at φ/16384
	1	0	0	_	1	Increments at overflow signal from TCNT_X*
	1	0	1	_	х	Increments at rising edge of external clock
	1	1	0	_	Х	Increments at falling edge of external clock
	1	1	1	_	х	Increments at both rising and falling edges of external clock

		TCR		TCRXY		
Channel	CKS2	CKS1	CKS0	CKSX	CKSY	
TMR_X	0	0	0	0	_	Disables clock input
	0	0	1	0	_	Increments at ϕ
	0	1	0	0	_	Increments at φ/2
	0	1	1	0	_	Increments at φ/4
	1	0	0	0	_	Disables clock input
	0	0	0	1	_	Disables clock input
	0	0	1	1		Increments at φ/2048
	0	1	0	1	_	Increments at φ/4096
	0	1	1	1	_	Increments at φ/8192
	1	0	0	1	_	Increments at compare-match A from TCNT_Y*
	1	0	1	Х	_	Increments at rising edge of external clock
	1	1	0	Х		Increments at falling edge of external clock
	1	1	1	Х	_	Increments at both rising and falling edges of external clock

Note: * If the TMR_Y clock input is set as the TCNT_X overflow signal and the TMR_X clock input is set as the TCNT_Y compare-match signal simultaneously, a count-up clock cannot be generated. These settings should not be made.

[Legend]

x: Don't care

—: Invalid

12.3.6 Timer Control/Status Register (TCSR)

TCSR indicates the status flags and controls compare-match output.

• TCSR_0

Bit	Bit Name	Initial Value	R/W	Description
7	CMFB	0	R/(W)*	Compare-Match Flag B
				[Setting condition]
				When the values of TCNT_0 and TCORB_0 match
				[Clearing condition]
				Read CMFB when CMFB = 1, then write 0 in CMFB
6	CMFA	0	R/(W)*	Compare-Match Flag A
				[Setting condition]
				When the values of TCNT_0 and TCORA_0 match
				[Clearing condition]
				Read CMFA when CMFA = 1, then write 0 in CMFA
5	OVF	0	R/(W)*	Timer Overflow Flag
				[Setting condition]
				When TCNT_0 overflows from H'FF to H'00
				[Clearing condition]
				Read OVF when OVF = 1, then write 0 in OVF
4	ADTE	0	R/W	A/D Trigger Enable
				Enables or disables A/D converter start requests by compare-match A.
				0: A/D converter start requests by compare-match A are disabled
				A/D converter start requests by compare-match A are enabled
3	OS3	0	R/W	Output Select 3 and 2
2	OS2	0	R/W	These bits specify how the TMO0 pin output level is to be changed by compare-match B of TCORB_0 and TCNT_0.
				00: No change
				01: 0 is output
				10: 1 is output
				11: Output is inverted (toggle output)

Bit	Bit Name	Initial Value	R/W	Description
1	OS1	0	R/W	Output Select 1 and 0
0	OS0	0	R/W	These bits specify how the TMO0 pin output level is to be changed by compare-match A of TCORA_0 and TCNT_0.
				00: No change
				01: 0 is output
				10: 1 is output
				11: Output is inverted (toggle output)

• TCSR_1

Bit	Bit Name	Initial Value	R/W	Description
7	CMFB	0	R/(W)*	Compare-Match Flag B
				[Setting condition]
				When the values of TCNT_1 and TCORB_1 match
				[Clearing condition]
				Read CMFB when CMFB = 1, then write 0 in CMFB
6	CMFA	0	R/(W)*	Compare-Match Flag A
				[Setting condition]
				When the values of TCNT_1 and TCORA_1 match
				[Clearing condition]
				Read CMFA when CMFA = 1, then write 0 in CMFA
5	OVF	0	R/(W)*	Timer Overflow Flag
				[Setting condition]
				When TCNT_1 overflows from H'FF to H'00
				[Clearing condition]
				Read OVF when OVF = 1, then write 0 in OVF
4	_	1	R	Reserved
				This bit is always read as 1 and cannot be modified.

Bit	Bit Name	Initial Value	R/W	Description
3	OS3	0	R/W	Output Select 3 and 2
2	OS2	0	R/W	These bits specify how the TMO1 pin output level is to be changed by compare-match B of TCORB_1 and TCNT_1.
				00: No change
				01: 0 is output
				10: 1 is output
				11: Output is inverted (toggle output)
1	OS1	0	R/W	Output Select 1 and 0
0	OS0	0	R/W	These bits specify how the TMO1 pin output level is to be changed by compare-match A of TCORA_1 and TCNT_1.
				00: No change
				01: 0 is output
				10: 1 is output
				11: Output is inverted (toggle output)

• TCSR_Y

Bit	Bit Name	Initial Value	R/W	Description
7	CMFB	0	R/(W)*	Compare-Match Flag B
				[Setting condition]
				When the values of TCNT_Y and TCORB_Y match
				[Clearing condition]
				Read CMFB when CMFB = 1, then write 0 in CMFB
6	CMFA	0	R/(W)*	Compare-Match Flag A
				[Setting condition]
				When the values of TCNT_Y and TCORA_Y match
				[Clearing condition]
				Read CMFA when CMFA = 1, then write 0 in CMFA

Bit	Bit Name	Initial Value	R/W	Description
5	OVF	0	R/(W)*	Timer Overflow Flag
				[Setting condition]
				When TCNT_Y overflows from H'FF to H'00
				[Clearing condition]
				Read OVF when OVF = 1, then write 0 in OVF
4	ICIE	0	R/W	Input Capture Interrupt Enable
				Enables or disables the ICF interrupt request (ICIX) when the ICF bit in TCSR_X is set to 1.
				0: ICF interrupt request (ICIX) is disabled
				1: ICF interrupt request (ICIX) is enabled
3	OS3	0	R/W	Output Select 3 and 2
2	OS2	0	R/W	These bits specify how the TMOY pin output level is to be changed by compare-match B of TCORB_Y and TCNT_Y.
				00: No change
				01: 0 is output
				10: 1 is output
				11: Output is inverted (toggle output)
1	OS1	0	R/W	Output Select 1 and 0
0	OS0	0	R/W	These bits specify how the TMOY pin output level is to be changed by compare-match A of TCORA_Y and TCNT_Y.
				00: No change
				01: 0 is output
				10: 1 is output
				11: Output is inverted (toggle output)

TCSR_X

Bit	Bit Name	Initial Value	R/W	Description
7	CMFB	0	R/(W)*	Compare-Match Flag B
				[Setting condition]
				When the values of TCNT_X and TCORB_X match
				[Clearing condition]
				Read CMFB when CMFB = 1, then write 0 in CMFB
6	CMFA	0	R/(W)*	Compare-Match Flag A
				[Setting condition]
				When the values of TCNT_X and TCORA_X match
				[Clearing condition]
				Read CMFA when CMFA = 1, then write 0 in CMFA
5	OVF	0	R/(W)*	Timer Overflow Flag
				[Setting condition]
				When TCNT_X overflows from H'FF to H'00
				[Clearing condition]
				Read OVF when OVF = 1, then write 0 in OVF
4	ICF	0	R/(W)*	Input Capture Flag
				[Setting condition]
				When a rising edge and falling edge is detected in the external reset signal in that order
				[Clearing condition]
				Read ICF when ICF = 1, then write 0 in ICF
3	OS3	0	R/W	Output Select 3 and 2
2	OS2	0	R/W	These bits specify how the TMOX pin output level is to be changed by compare-match B of TCORB_X and TCNT_X.
				00: No change
				01: 0 is output
				10: 1 is output
				11: Output is inverted (toggle output)

Bit	Bit Name	Initial Value	R/W	Description
1	OS1	0	R/W	Output Select 1 and 0
0	OS0	0	R/W	These bits specify how the TMOX pin output level is to be changed by compare-match A of TCORA_X and TCNT_X.
				00: No change
				01: 0 is output
				10: 1 is output
				11: Output is inverted (toggle output)

12.3.7 Input Capture Registers R and F (TICRR and TICRF)

TICRR and TICRF are 8-bit read-only registers. While the ICST bit in TCONRI is set to 1, the contents of TCNT are transferred at the rising edge and falling edge of the external reset input (TMRIX) in that order. The ICST bit is cleared to 0 when one capture operation ends. TICRR and TICRF are initialized to H'00.

12.3.8 Timer Connection Register I (TCONRI)

TCONRI controls the input capture function.

		Initial		
Bit	Bit Name	Value	R/W	Description
7 to 5	_	All 0	R/W	Reserved
				The initial value should not be changed.
4	ICST	0	R/W	Input Capture Start Bit
				TMR_X has input capture registers (TICRR and TICRF). TICRR and TICRF can measure the width of a pulse by means of a single capture operation under the control of the ICST bit. When a rising edge followed by a falling edge is detected on TMRIX after the ICST bit is set to 1, the contents of TCNT at those points are captured into TICRR and TICRF, respectively, and the ICST bit is cleared to 0.
				[Clearing condition]
				When a rising edge followed by a falling edge is detected on TMRIX.
				[Setting condition]
				When 1 is written in ICST after reading ICST = 0.
3 to 0		All 0	R/W	Reserved
				The initial values should not be modified.

12.3.9 Timer XY Control Register (TCRXY)

TCRXY selects the TMR_X and TMR_Y output pins and internal clock.

Bit	Bit Name	Initial Value	R/W	Description
7, 6	_	All 1	R	Reserved
				These bits are always read as 1 and cannot be modified.
5	CKSX	0	R/W	TMR_X Clock Select
				For details about selection, see table 12.3.
4	CKSY	0	R/W	TMR_Y Clock Select
				For details about selection, see table 12.3.
3 to 0	_	All 1	R	Reserved
				These bits are always read as 1 and cannot be modified.

12.4 Operation

12.4.1 Pulse Output

Figure 12.3 shows an example for outputting an arbitrary duty pulse.

- 1. Clear the CCLR1 bit in TCR to 0, and set the CCLR0 bit in TCR to 1 so that TCNT is cleared according to the compare match of TCORA.
- 2. Set the OS3 to OS0 bits in TCSR to B'0110 so that 1 is output according to the compare match of TCORA and 0 is output according to the compare match of TCORB.

According to the above settings, the waveforms with the TCORA cycle and TCORB pulse width can be output without the intervention of software.

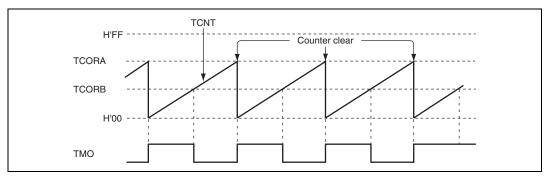


Figure 12.3 Pulse Output Example

12.5 Operation Timing

12.5.1 TCNT Count Timing

Figure 12.4 shows the TCNT count timing with an internal clock source. Figure 12.5 shows the TCNT count timing with an external clock source. The pulse width of the external clock signal must be at least 1.5 system clocks (ϕ) for a single edge and at least 2.5 system clocks (ϕ) for both edges. The counter will not increment correctly if the pulse width is less than these values.

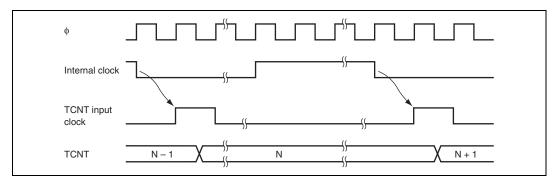


Figure 12.4 Count Timing for Internal Clock Input

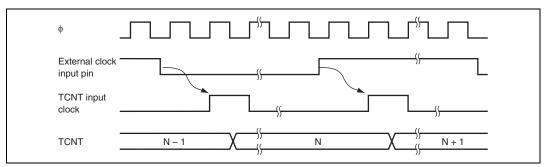


Figure 12.5 Count Timing for External Clock Input (Both Edges)

12.5.2 Timing of CMFA and CMFB Setting at Compare-Match

The CMFA and CMFB flags in TCSR are set to 1 by a compare-match signal generated when the TCNT and TCOR values match. The compare-match signal is generated at the last state in which the match is true, just when the timer counter is updated. Therefore, when TCNT and TCOR match, the compare-match signal is not generated until the next TCNT input clock. Figure 12.6 shows the timing of CMF flag setting.

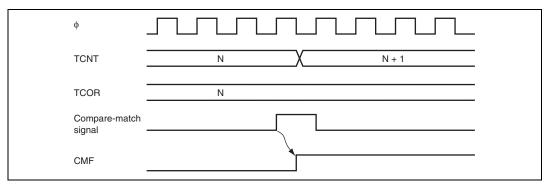


Figure 12.6 Timing of CMF Setting at Compare-Match

12.5.3 Timing of Timer Output at Compare-Match

When a compare-match signal occurs, the timer output changes as specified by the OS3 to OS0 bits in TCSR. Figure 12.7 shows the timing of timer output when the output is set to toggle by a compare-match A signal.

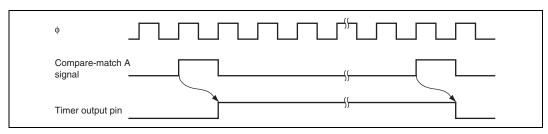


Figure 12.7 Timing of Toggled Timer Output by Compare-Match A Signal

12.5.4 Timing of Counter Clear at Compare-Match

TCNT is cleared when compare-match A or compare-match B occurs, depending on the setting of the CCLR1 and CCLR0 bits in TCR. Figure 12.8 shows the timing of clearing the counter by a compare-match.

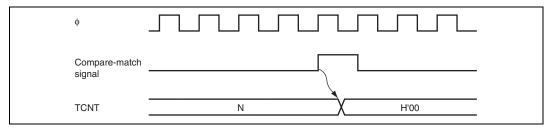


Figure 12.8 Timing of Counter Clear by Compare-Match

12.5.5 TCNT External Reset Timing

TCNT is cleared at the rising edge of an external reset input, depending on the settings of the CCLR1 and CCLR0 bits in TCR. The width of the clearing pulse must be at least 1.5 states. Figure 12.9 shows the timing of clearing the counter by an external reset input.

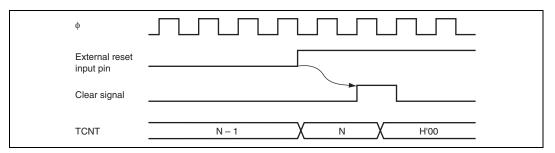


Figure 12.9 Timing of Counter Clear by External Reset Input

12.5.6 Timing of Overflow Flag (OVF) Setting

The OVF bit in TCSR is set to 1 when the TCNT overflows (changes from H'FF to H'00). Figure 12.10 shows the timing of OVF flag setting.

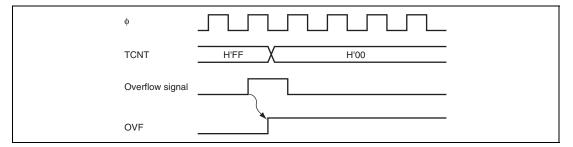


Figure 12.10 Timing of OVF Flag Setting

12.6 TMR 0 and TMR 1 Cascaded Connection

If bits CKS2 to CKS0 in either TCR_0 or TCR_1 are set to B'100, the 8-bit timers of the two channels are cascaded. With this configuration, the 16-bit count mode or compare-match count mode is available.

12.6.1 16-Bit Count Mode

When bits CKS2 to CKS0 in TCR_0 are set to B'100, the timer functions as a single 16-bit timer with TMR 0 occupying the upper 8 bits and TMR 1 occupying the lower 8 bits.

- Setting of compare-match flags
 - The CMF flag in TCSR_0 is set to 1 when a 16-bit compare-match occurs.
 - The CMF flag in TCSR 1 is set to 1 when a lower 8-bit compare-match occurs.
- Counter clear specification
 - If the CCLR1 and CCLR0 bits in TCR_0 have been set for counter clear at compare-match, the 16-bit counter (TCNT_0 and TCNT_1 together) is cleared when a 16-bit compare-match occurs. The 16-bit counter (TCNT_0 and TCNT_1 together) is also cleared when counter clear by the TMI0 pin has been set.
 - The settings of the CCLR1 and CCLR0 bits in TCR_1 are ignored. The lower 8 bits cannot be cleared independently.
- Pin output
 - Control of output from the TMO0 pin by bits OS3 to OS0 in TCSR_0 is in accordance with the 16-bit compare-match conditions.
 - Control of output from the TMO1 pin by bits OS3 to OS0 in TCSR_1 is in accordance with the lower 8-bit compare-match conditions.

12.6.2 Compare-Match Count Mode

When bits CKS2 to CKS0 in TCR_1 are B'100, TCNT_1 counts the occurrence of compare-match A for TMR_0. TMR_0 and TMR_1 are controlled independently. Conditions such as setting of the CMF flag, generation of interrupts, output from the TMO pin, and counter clearing are in accordance with the settings for each or TMR_0 and TMR_1.

12.7 TMR Y and TMR X Cascaded Connection

If bits CKS2 to CKS0 in either TCR_Y or TCR_X are set to B'100, the 8-bit timers of the two channels are cascaded. With this configuration, 16-bit count mode or compare-match count mode can be selected by the settings of the CKSX and CKSY bits in TCRXY.

12.7.1 16-Bit Count Mode

When bits CKS2 to CKS0 in TCR_Y are set to B'100 and the CKSY bit in TCRXY is set to 1, the timer functions as a single 16-bit timer with TMR_Y occupying the upper eight bits and TMR_X occupying the lower 8 bits.

- Setting of compare-match flags
 - The CMF flag in TCSR_Y is set to 1 when an upper 8-bit compare-match occurs.
 - The CMF flag in TCSR_X is set to 1 when a lower 8-bit compare-match occurs.
- Counter clear specification
 - If the CCLR1 and CCLR0 bits in TCR_Y have been set for counter clear at comparematch, only the upper eight bits of TCNT_Y are cleared. The upper eight bits of TCNT_Y are also cleared when counter clear by the TMRIY pin has been set.
 - The settings of the CCLR1 and CCLR0 bits in TCR_X are enabled, and the lower 8 bits of TCNT_X can be cleared by the counter.
- Pin output
 - Control of output from the TMOY pin by bits OS3 to OS0 in TCSR_Y is in accordance with the upper 8-bit compare-match conditions.
 - Control of output from the TMOX pin by bits OS3 to OS0 in TCSR_X is in accordance with the lower 8-bit compare-match conditions.

12.7.2 Compare-Match Count Mode

When bits CKS2 to CKS0 in TCR_X are set to B'100 and the CKSX bit in TCRXY is set to 1, TCNT_X counts the occurrence of compare-match A for TMR_Y. TMR_X and TMR_Y are controlled independently. Conditions such as setting of the CMF flag, generation of interrupts, output from the TMO pin, and counter clearing are in accordance with the settings for each channel.

12.7.3 **Input Capture Operation**

TMR_X has input capture registers (TICRR and TICRF). A narrow pulse width can be measured with TICRR and TICRF, using a single capture. If the falling edge of TMRIX (TMR_X input capture input signal) is detected after its rising edge has been detected, the value of TCNT X at that time is transferred to both TICRR and TICRF.

(1) Input Capture Signal Input Timing

Figure 12.11 shows the timing of the input capture operation.

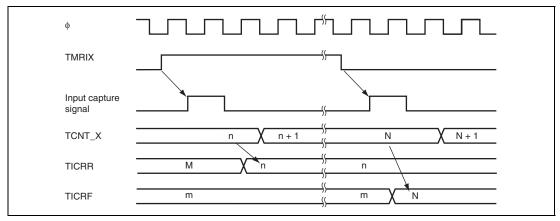


Figure 12.11 Timing of Input Capture Operation

If the input capture signal is input while TICRR and TICRF are being read, the input capture signal is delayed by one system clock (ϕ) cycle. Figure 12.12 shows the timing of this operation.

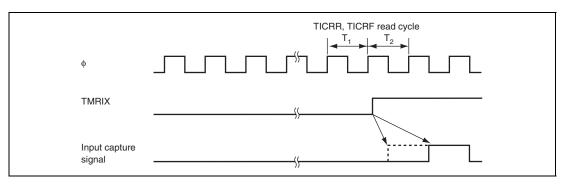


Figure 12.12 Timing of Input Capture Signal (Input capture signal is input during TICRR and TICRF read)

(2) Selection of Input Capture Signal Input

TMRIX (input capture input signal of TMR_X) is selected according to the setting of the ICST bit in TCONRI. The input capture signal selection is shown in table 12.5.

Table 12.5 Input Capture Signal Selection

TCONRI

Bit 4	
ICST	Description
0	Input capture function not used
1	TMIX pin input selection

12.8 Interrupt Sources

TMR_0, TMR_1, and TMR_Y can generate three types of interrupts: CMIA, CMIB, and OVI. TMR_X can generate four types of interrupts: CMIA, CMIB, OVI, and ICIX. Table 12.6 shows the interrupt sources and priorities. Each interrupt source can be enabled or disabled independently by interrupt enable bits in TCR or TCSR. Independent signals are sent to the interrupt controller for each interrupt.

Table 12.6 Interrupt Sources of 8-Bit Timers TMR_0, TMR_1, TMR_Y, and TMR_X

Channel	Name	Interrupt Source	Interrupt Flag	Interrupt Priority
TMR_0	CMIA0	TCORA_0 compare-match	CMFA	High
	CMIB0	TCORB_0 compare-match	CMFB	↑
	OVI0	TCNT_0 overflow	OVF	
TMR_1	CMIA1	TCORA_1 compare-match	CMFA	
	CMIB1	TCORB_1 compare-match	CMFB	
	OVI1	TCNT_1 overflow	OVF	
TMR_Y	CMIAY	TCORA_Y compare-match	CMFA	
	CMIBY	TCORB_Y compare-match	CMFB	
	OVIY	TCNT_Y overflow	OVF	
TMR_X	ICIX	Input capture	ICF	
	CMIAX	TCORA_X compare-match	CMFA	
	CMIBX	TCORB_X compare-match	CMFB	
	OVIX	TCNT_X overflow	OVF	Low

12.9 Usage Notes

12.9.1 Conflict between TCNT Write and Counter Clear

If a counter clear signal is generated during the T_2 state of a TCNT write cycle as shown in figure 12.13, clearing takes priority and the counter write is not performed.

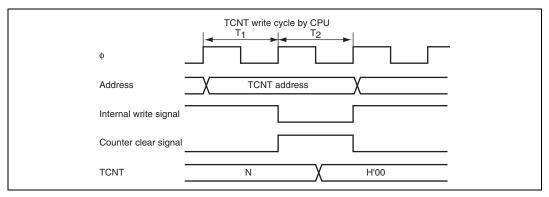


Figure 12.13 Conflict between TCNT Write and Clear

12.9.2 Conflict between TCNT Write and Count-Up

If a count-up occurs during the T_2 state of a TCNT write cycle as shown in figure 12.14, the counter write takes priority and the counter is not incremented.

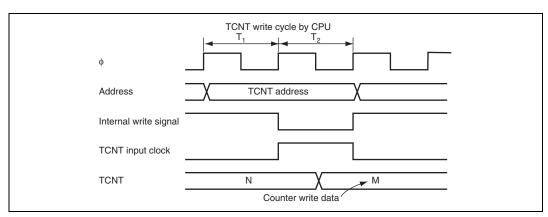


Figure 12.14 Conflict between TCNT Write and Count-Up

12.9.3 Conflict between TCOR Write and Compare-Match

If a compare-match occurs during the T₂ state of a TCOR write cycle as shown in figure 12.15, the TCOR write takes priority and the compare-match signal is disabled. With TMR_X, a TICR input capture conflicts with a compare-match in the same way as with a write to TCORC. In this case also, the input capture takes priority and the compare-match signal is disabled.

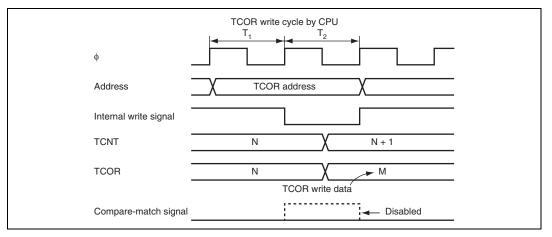


Figure 12.15 Conflict between TCOR Write and Compare-Match

12.9.4 Conflict between Compare-Matches A and B

If compare-matches A and B occur at the same time, the operation follows the output status that is defined for compare-match A or B, according to the priority of the timer output shown in table 12.7.

Table 12.7 Timer Output Priorities

Output Setting	Priority
Toggle output	High
1 output	<u> </u>
0 output	
No change	Low

12.9.5 Switching of Internal Clocks and TCNT Operation

TCNT may increment erroneously when the internal clock is switched over. Table 12.8 shows the relationship between the timing at which the internal clock is switched (by writing to the CKS1 and CKS0 bits) and the TCNT operation.

When the TCNT clock is generated from an internal clock, the falling edge of the internal clock pulse is detected. If clock switching causes a change from high to low level, as shown in no. 3 in table 12.8, a TCNT clock pulse is generated on the assumption that the switchover is a falling edge, and TCNT is incremented.

Erroneous incrementation can also happen when switching between internal and external clocks.

Table 12.8 Switching of Internal Clocks and TCNT Operation

No.	Timing of Switchover by Means of CKS1 and CKS0 Bits	TCNT Clock Operation
1	Clock switching from low to low level*1	Clock before switchover
		Clock after switchover
		TCNT clock
		TCNT N N + 1
		CKS bit rewrite
2	Clock switching from low to high level* ²	Clock before switchover
		Clock after switchover
		TCNT clock
		TCNT N N + 1 N + 2
		CKS bit rewrite

CKS bit rewrite

Timing of Switchover by Means of CKS1 and CKS0 Rits

No. and CKS0 Bits TCNT Clock Operation

3 Clock switching from high Clock before switchover to low level*3 Clock after switchover **TCNT** clock Ν N + 2**TCNT** N+1CKS bit rewrite 4 Clock switching from high Clock before switchover to high level Clock after switchover **TCNT** clock Ν N + 1N + 2**TCNT**

Notes: 1. Includes switching from low to stop, and from stop to low.

- 2. Includes switching from stop to high.
- 3. Includes switching from high to stop.
- Generated on the assumption that the switchover is a falling edge; TCNT is incremented.

12.9.6 Mode Setting with Cascaded Connection

If the 16-bit count mode and compare-match count mode are set simultaneously, the input clock pulses for TCNT_0 and TCNT_1, and TCNT_X and TCNT_Y are not generated, and thus the counters will stop operating. Simultaneous setting of these two modes should therefore be avoided.

12.9.7 Module Stop Mode Setting

TMR operation can be enabled or disabled using the module stop control register. The initial setting is for TMR operation to be halted. Register access is enabled by canceling the module stop mode. For details, see section 29, Power-Down Modes.

Section 13 16-Bit Cycle Measurement Timer (TCM)

This LSI has three channels on-chip 16-bit cycle measurement timers (TCM). Each TCM has a 16-bit counter that provides the basis for measuring the periods of input waveforms.

13.1 Features

- Capable of measuring the periods of input waveforms
- Sensed edge is selectable
- 16-bit compare match
- 16-bit resolution
- Selectable counter clock
 - Any of seven internal clocks or an external clock
- Five interrupt sources
 - Counter overflow
 - Cycle upper limit overflow
 - Cycle lower limit underflow
 - Compare match
 - Triggering of input capture

Figure 13.1 is a block diagram of the TCM.

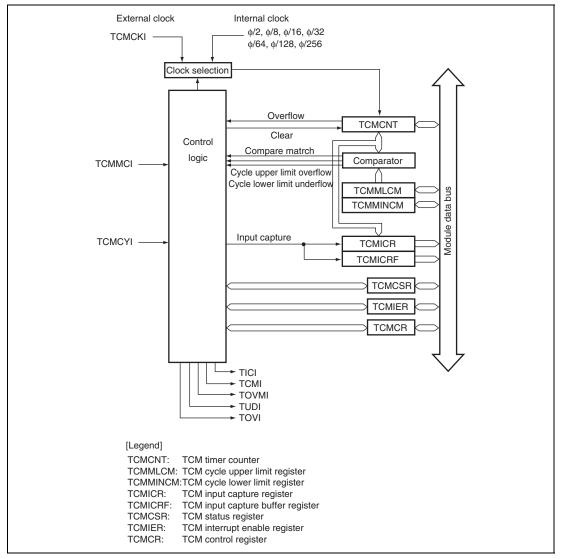


Figure 13.1 Block Diagram of the TCM

Input/Output Pins 13.2

Table 13.1 lists the input and output pins for the TCMs.

Table 13.1 Pin Configuration

Channel	Pin Name	I/O	Function
0	TCMCKI0	Input	External counter clock input
	(TCMMCI0)		Cycle measurement control input
	TCMCYI0	Input	External event input
1	TCMCKI1 (TCMMCI1)	Input	External counter clock input
			Cycle measurement control input
	TCMCYI1	Input	External event input
2	TCMCKI2	Input	External counter clock input
	(TCMMCI2)		Cycle measurement control input
	TCMCYI2	Input	External event input

13.3 Register Descriptions

The TCMs have the following registers.

Table 13.2 Register Configuration

Channel	Register Name	Abbreviation	R/W	Initial Value	Address	Data Bus Width
Channel 0	TCM timer counter_0	TCMCNT_0	R/W	H'0000	H'FBC0	16
	TCM cycle upper limit register_0	TCMMLCM_0	R/W	H'FFFF	H'FBC2	16
	TCM cycle lower limit register_0	TCMMINCM_0	R/W	H'0000	H'FBCC	16
	TCM input capture register_0	TCMICR_0	R	H'0000	H'FBC4	16
	TCM input capture buffer register_0	TCMICRF_0	R	H'0000	H'FBC6	16
	TCM status register_0	TCMCSR_0	R/W	H'00	H'FBC8	8
	TCM control register_0	TCMCR_0	R/W	H'00	H'FBC9	8
	TCM interrupt enable register_0	TCMIER_0	R/W	H'00	H'FBCA	8
Channel 1	TCM timer counter_1	TCMCNT_1	R/W	H'0000	H'FBD0	16
	TCM cycle upper limit register_1	TCMMLCM_1	R/W	H'FFFF	H'FBD2	16
	TCM cycle lower limit register_1	TCMMINCM_1	R/W	H'0000	H'FBDC	16
	TCM input capture register_1	TCMICR_1	R	H'0000	H'FBD4	16
	TCM input capture buffer register_1	TCMICRF_1	R	H'0000	H'FBD6	16
	TCM status register_1	TCMCSR_1	R/W	H'00	H'FBD8	8
	TCM control register_1	TCMCR_1	R/W	H'00	H'FBD9	8
	TCM interrupt enable register_1	TCMIER_1	R/W	H'00	H'FBDA	8
Channel 2	TCM timer counter_2	TCMCNT_2	R/W	H'0000	H'FBE0	16
	TCM cycle upper limit register_2	TCMMLCM_2	R/W	H'FFFF	H'FBE2	16
	TCM cycle lower limit register_2	TCMMINCM_2	R/W	H'0000	H'FBEC	16
	TCM input capture register_2	TCMICR_2	R	H'0000	H'FBE4	16
	TCM input capture buffer register_2	TCMICRF_2	R	H'0000	H'FBE6	16
	TCM status register_2	TCMCSR_2	R/W	H'00	H'FBE8	8
	TCM control register_2	TCMCR_2	R/W	H'00	H'FBE9	8
	TCM interrupt enable register_2	TCMIER_2	R/W	H'00	H'FBEA	8

13.3.1 TCM Timer Counter (TCMCNT)

TCMCNT is a 16-bit readable/writable up-counter. The input clock is selected by the bits CKS2 to CKS0 in TCMCR. When CKS2 to CKS0 are set to B'111, the external clock is selected. In this case, the rising or falling edge is selected by CKSEG in TCMCR.

When TCMCNT overflows (counting changes the value from H'FFFF to H'0000), OVF in TCMCSR is set to 1. When the CST bit in TCMCR is cleared in timer mode, TCMCR is initialized to H'0000. In cycle measurement mode, TCMCNT is cleared by detection of the first edge (the edge selected with the IEDG bit in TCMCR) of the measurement period (one period of the input waveform forms one measurement period).

In timer mode, TCMCNT is always writable. TCMCNT cannot be modified in cycle measurement mode. TCMCNT should always be accessed in 16-bit units and cannot be accessed in 8-bit units. TCMCNT is initialized to H'0000.

13.3.2 TCM Cycle Upper Limit Register (TCMMLCM)

TCMMLCM is a 16-bit readable/writable register. TCMMLCM is available as a compare match register when the TCMMDS bit in TCMCR is cleared (operation is in timer mode). TCMMLCM is available as a cycle upper limit register when the TCMMDS bit in TCMCR is set to 1 (operation is in cycle measurement mode).

In timer mode, the value in TCMMLCM is constantly compared with that in TCMCNT, when the values match, CMF in TCMCSR is set to 1. However, comparison is disabled in the second half of a cycle of writing to TCMMLCM.

In cycle measurement mode, a value that sets an upper limit on the measurement period can be set in TCMMLCM. When the second edge (first edge of the following cycle) of the measurement period is detected, the value in TCMCNT is transferred to TCMICR. At this time, the values in TCMICR and TCMMLCM are compared. The MAXOVF flag in TCMCSR is set to 1 if the value in TCMICR is greater than that in TCMMLCM. TCMMLCM should always be accessed in 16-bit units and cannot be accessed in 8-bit units. TCMMLCM is initialized to H'FFFF.

13.3.3 TCM Cycle Lower Limit Register (TCMMINCM)

TCMMINCM is a 16-bit readable/writable register. TCMMINCM is available as a cycle lower limit register when the TCMMDS bit in TCMCR is set to 1 (operation is in cycle measurement mode).

In cycle measurement mode, a value that sets a lower limit on the measurement period can be set in TCMMINCM. When the second edge (selectable with the IEDG bit in TCMCR) of the measurement period is detected, the value in TCMCNT is transferred to TCMICR. At this time, the values in TCMICR and TCMMINCM are compared. The MINUDF flag in TCMCSR is set to 1 if the value in TCMICR is smaller than that in TCMMINCM. TCMMLCM should always be accessed in 16-bit units and cannot be accessed in 8-bit units. TCMMINCM is initialized to H'0000.

13.3.4 TCM Input Capture Register (TCMICR)

TCMICR is a 16-bit read-only register. In timer mode, the value in TCMCNT is transferred to TCMICR on the edge selected by the IEDG bit in TCMCR. At the same time, the ICPF flag in TCMCSR is set to 1. In cycle measurement mode, the value in TCMCNT is transferred to TCMICR on detection of the second edge of the measurement period. At this time, the ICPF flag in TCMCSR is set to 1. TCMICR should always be accessed in 16-bit units and cannot be accessed in 8-bit units. TCMICR is initialized to H'0000.

13.3.5 TCM Input Capture Buffer Register (TCMICRF)

TCMICRF is a 16-bit read only register. TCMICRF can be used as TCMICR buffer register. When input capture is generated, the value in TCMICR is transferred to TCMICRF.

TCMICR and TCMICRF should always be accessed in 16-bit units and cannot be accessed in 8-bit units. TCMICRF is initialized to H'0000.

13.3.6 TCM Status Register (TCMCSR)

TCMCSR is an 8-bit readable/writable register that controls operation of the interrupt sources.

Bit	Bit Name	Initial Value	R/W	Description
7	OVF	0	R/(W)*	Timer Overflow
			, ,	This flag indicates that the TCMCNT has overflowed.
				[Setting condition]
				Overflow of TCMCNT (change in value from H'FFFF to H'0000)
				[Clearing condition]
				Reading OVF when OVF = 1 and then writing 0 to OVF.
6	MAXOVF	0	R/(W)*	Measurement Period Upper Limit Overflow
				This flag indicates that the measured number of cycles of the waveform for measurement in cycle measurement mode has reached the upper limit set in TCMMLCM, causing an overflow.
				[Setting condition]
				A greater value for TCMICR than TCMMLCM
				[Clearing condition]
				Reading MAXOVF when MAXOVF = 1 and then writing 0 to MAXOVF
5	CMF	0	R/(W)*	Compare Match Flag (only valid in timer mode)
				[Setting condition]
				When the values in TCMCNT and TCMMLCM match.
				[Clearing condition]
				Reading CMF when CMF = 1 and then writing 0 to CMF
				Note: CMF is not set in cycle measurement mode, even when the values in TCMCNT and TCMMLCM match.
4	CKSEG	0	R/W	External Clock Edge Select
				When bits CKS2 to CKS0 in TCMCR are set to B'111, this bit selects the edge for counting of external count clock edge.
				0: Count falling edges of the external clock.
				1: Count rising edges of the external clock.

Bit	Bit Name	Initial Value	R/W	Description
3	ICPF	0	R/(W)*	Input Capture Generation
				Timer mode: The flag indicates that the value in TCMCNT has been transferred to TCMICR on generation of an input capture signal. This flag is set when the input capture signal is generated, i.e. on detection of the edge selected by the IEDGD bit on the TCMCYI input pin.
				Cycle measurement mode: The flag indicates that the value in TCMCNT has been transferred to TCMICR on detection of the second edge (rising or falling as determined by the IEDG bit in TCMCR) during the measurement period.
				[Setting condition]
				Generation of the input capture signal
				[Clearing condition]
				Reading ICPF when ICPF = 1 and then writing 0 to ICPF
2	MINUDF	0	R/(W)*	Measurement Period Lower Limit Underflow
				This flag indicates that the measured number of cycles of the waveform for measurement in cycle measurement mode has reached the lower limit set in TCMMINCM, causing an underflow.
				[Setting condition]
				A smaller value for TCMICR than TCMMINCM
				[Clearing condition]
				Reading MINUDF when MINUDF = 1 and then writing 0 to MINUDF
1	MCICTL	0	R/W	TCMMCI Input Polarity Inversion
				0: TCMMCI input is inverted for use.
				1: TCMMCI input is directly used.
				Note: Change this bit when CST = 0 and TCMMDS = 0
0	_	0	R/W	Reserved
				The initial value should not be changed.

Note: * Only 0 can be written to clear the flag.

13.3.7 TCM Control Register (TCMCR)

TCMCR is an 8-bit readable/writable register. TCMCR selects input capture input edge, counter start, and counter clock, and controls operation mode.

Bit	Bit Name	Initial Value	R/W	Description
7	CST	0	R/W	Counter Start
				In timer mode, setting this bit to 1 starts counting by TCMCNT; clearing this bit stops counting by TCMCNT. Then, the counter is initialized to H'0000, and input-capture operation stops.
				Clear this bit and thus return TCMCNT to H'0000 in initialization for cycle measurement mode.
6	POCTL	0	R/W	TCMCYI Input Polarity Reversal
				0: Use the TCMCYI input directly
				1: Use the inverted TCMCYI input
				Note: Modify this bit while $CST = 0$ and $TCMMDS = 0$
5	CPSPE	0	R/W	Input Capture Stop Enable
				Controls whether or not counting up by TCMCNT and input- capture operation stop or continue when either of MAXOVF or MINUDF is set to 1 in cycle measurement mode. The bit does not affect operation in timer mode.
				0: Counting up and input-capture operation continue when the flag is set to 1.
				Counting up and input-capture operation are disabled when the flag is set to 1.

Bit	Bit Name	Initial Value	R/W	Description
4	IEDG	0	R/W	Input Edge Select
				In timer mode, selects the falling or rising edge of the TCMCYI input for use in input capture, in combination with the value of the POCTL bit.
				In cycle measurement mode, selects the falling or rising edge of the TCMCYI input for use in measurement, in combination with the value of the POCTL bit.
				POCTL = 0
				0: Selects the rising edge of the TCMCYI input
				1: Selects the falling edge of the TCMCYI input
				POCTL = 1
				0: Selects the falling edge of the TCMCYI input
				1: Selects the rising edge of the TCMCYI input
3	TCMMDS	0	R/W	TCM Mode Select
				Selects the TCM operating mode.
				 Timer mode The TCM provides compare match and input capture facilities.
				1: Cycle measurement mode Setting this bit to 1 starts counting by TCMCNT. TCMCNT should be initialized to H'0000. Clear the CST in TCMCR to 0 before setting to cycle measurement mode.
2	CKS2	0	R/W	Clock Select 2, 1, 0
1	CKS1	0	R/W	Selects the clock signal for input to TCMCNT.
0	CKS0	0	R/W	Note: Modify this bit when $CST = 0$ and $TCMMDS = 0$
				000: Count φ/2 internal clock
				001: Count φ/8 internal clock
				010: Count φ/16 internal clock
				011: Count φ/32 internal clock
				100: Count φ/64 internal clock
				101: Count φ/128 internal clock
				110: Count φ/256 internal clock
				111: Count external clock (select the external clock edge with CKSEG in TCMCSR.)

13.3.8 TCM Interrupt Enable Register (TCMIER)

TCMIER is an 8-bit readable/writable register that enables or disables interrupt requests.

Bit	Bit Name	Initial Value	R/W	Description
7	OVIE	0	R/W	Counter Overflow Interrupt Enable
				Enables or disables the issuing of interrupt requests on setting of the OVF flag in TCMCSR to 1.
				0: Disable interrupt requests by OVF
				1: Enable interrupt requests by OVF
6	MAXOVIE	0	R/W	Cycle Upper Limit Overflow Interrupt Enable
				Enables or disables the issuing of interrupt requests on setting of the MAXOVF flag in TCMCSR to 1.
				0: Disable interrupt requests by MAXOVF
				1: Enable interrupt requests by MAXOVF
5	CMIE	0	R/W	Compare Match Interrupt Enable
				Enables or disables the issuing of interrupt requests when the CMF bit in TCMCSR is set to 1.
				0: Disable interrupt requests by CMF
				1: Enable interrupt requests by CMF
4	TCMIPE	0	R/W	Input Capture Input Enable
				Enables or disables input to the pin. When using interrupt capture mode and cycle measurement mode, set this bit to 1.
				0: Disable input
				1: Enable input
				Note: Modify this bit when $CST = 0$ and $TCMMDS = 0$.
3	ICPIE	0	R/W	Input Capture Interrupt Enable
				Enables or disables interrupt requests when the ICPF flag in TCMCSR is set to 1.
				0: Disable interrupt requests by ICPF
				1: Enable interrupt requests by ICPF

Bit	Bit Name	Initial Value	R/W	Description
2	MINUDIE	0	R/W	Cycle Lower Limit Underflow Interrupt Enable
				Enables or disables the issuing of the TUDI interrupt requests when the MINUDF flag in TCMCSR is set to 1.
				0: Disable interrupt requests by MINUDF
				1: Enable interrupt requests by MINUDF
1	CMMS	0	R/W	Cycle Measurement Mode Selection
				Selects use of the TCMMCI signal in cycle measurement mode.
				 The TCMMCI signal is not used (cycle measurement is always performed).
				1: The TCMMCI signal is used. When MCICTL in TCMCSR is 0, cycle measurement is performed only while TCMMCI is low. When MCICTL is 1, cycle measurement is performed only while TCMMCI is high.
				Note: Change this bit when $CST = 0$ and $TCMMDS = 0$.
0	_	0	R	Reserved
				This bit is always read as 0 and cannot be modified.

13.4 Operation

The TCM operates in timer mode or cycle measurement mode. TCM is in timer mode after a reset.

13.4.1 Timer Mode

When the TCMMDS bit in TCMCR is cleared to 0, TCM operates in timer mode.

(1) Counter Operation

TCMCNT operates as a free running counter in timer mode. TCMCNT starts counting up when the CST bit in TCMCR is set to 1. When TCMCNT overflows (the value changes from H'FFFF to H'0000), the OVF bit in TCMCSR is set to 1 and an interrupt request is generated if the OVIE bit in TCMIER is 1. Figure 13.2 shows an example of free running counter operation. In addition, figure 13.3 shows TCMCNT count timing of external clock operation. The external clock should have a pulse width of no less than 1.5 cycles. The counter will not operate correctly if the pulses are narrower than this.

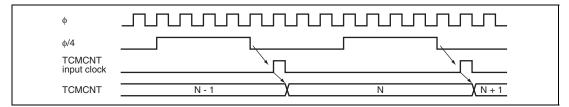


Figure 13.2 Example of Free Running Counter Operation

Figure 13.3 Count Timing of External Clock Operation (Falling Edges)

(2) Input Capture

The value in TCMCNT is transferred to TCMICR by detecting input edge of TCMCYI pin in timer mode. At this time, the ICPF flag in TCMCSR is set. Detection of rising or falling edges is selectable with the setting of the IEDG bit in TCMCR. Figure 13.4 shows an example of the timing of input capture operations and figure 13.5 shows buffer operation of input capture.

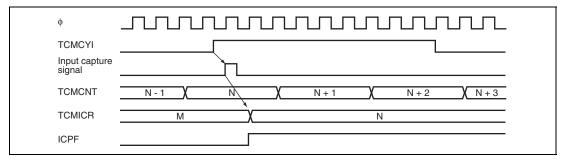


Figure 13.4 Input Capture Operation Timing (Sensing of Rising Edges)

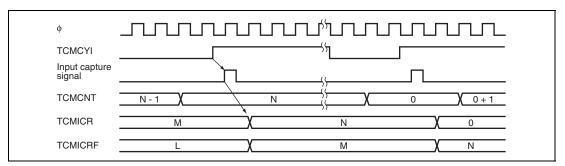


Figure 13.5 Buffer Operation of Input Capture

(3) CMF Set Timing when a Compare Match occurs

The CMF flag in TCMCSR is set in the last state where the values in TCMCNT and TCMMLCM match in timer mode. Therefore, a compare match signal is not generated until a further cycle of the TCMCNT input clock is generated after a match between the values in TCMCNT and TCMMLCM. For details, see section 13.6.2, Conflict between TCMMLCM Write and Compare Match. Figure 13.6 shows the timing with which the CMF flag is set.

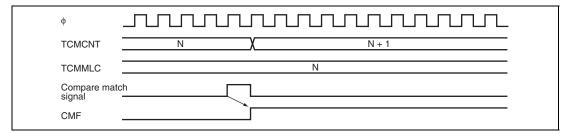


Figure 13.6 Timing of CMF Flag Setting on a Compare Match

13.4.2 **Cycle Measurement Mode**

When the TCMMDS bit in TCMCR is set to 1, the TCM operates in cycle measurement mode.

(1) Counter Operation

Setting the TCMMDS bit in TCMCR to 1 selects cycle measurement mode, in which counting up proceeds regardless of the setting of the CST bit in TCMCR. TCMCNT is cleared to H'0000 on detection of the first edge in the measurement period and counts up from there. Figure 13.7 shows an example of counter operation in cycle measurement mode.

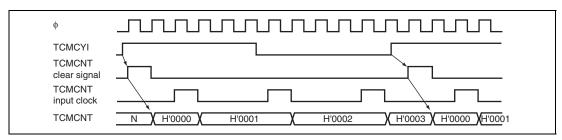


Figure 13.7 Example of Counter Operation in Cycle Measurement Mode

(2) Measuring a Cycle

In cycle measurement mode, one cycle of the input waveform for TCM form one measurement cycle. Start by setting TCMMDS = 0 and then set CST = 0, which clears TCMCNT to H'0000. After that, set an upper or lower limit on the measurement cycle in the TCMMLCM/TCMMINCM register. Finally, place the timer in cycle measurement mode by setting the TCMMDS bit in TCMCR to 1. TCMCNT will count cycles of the selected clock. On detection of the first edge (either rising or falling as selected with the IEDG bit in TCMCR) of the measurement cycle, TCMCNT is automatically cleared to H'0000. On detection of the second edge, the value in TCMCNT is transferred to TCMICR. At this time, the value in TCMICR is compared with the value in TCMMLCM/TCMMINCM. If TCMICR is larger than TCMMLCM, the MAXOVF bit in TCMCSR is set to 1. If TCMICR is smaller than TCMMINCM, the MINUDF bit in TCMCSR is set to 1. If generation of the corresponding interrupt request is enabled by the setting in TCMIER, the request is generated. In addition, on detection of the third edge, TCMCNT is cleared to H'0000, and the next round of measurement starts.

When the CPSPE bit in TCMCR has been cleared to 0, the next round of cycle measurement will start, even if the MAXOVF/MINUDF flag is set to 1.

If the MAXOVF/MINUDF flag is set to 1 while the CPSPE bit in TCMCR is set to 1, counting up by TCMCNT stops and so does cycle measurement. Subsequently clearing MAXOVF/MINUDF to 0 automatically clears TCMCNT to H'0000, and counting up for cycle measurement is then restarted.

Figure 13.8 shows an example of timing in speed measurement.

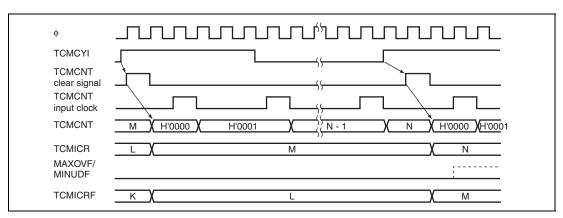


Figure 13.8 Example of Timing in Cycle Measurement

When the CMMS bit in TCMIER is set to 1, cycle measurement is performed only while the TCMMCI signal is high (MCICTL in TCMCSR is 1). Figure 13.9 shows an example of timing in cycle measurement when the CMMS bit is set to 1.

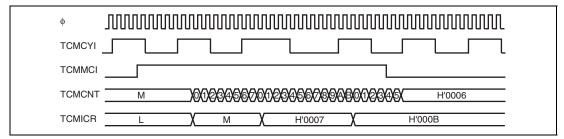


Figure 13.9 Example of Timing in Cycle Measurement when the CMMS Bit is Set to 1

(3) Determination of External Event (TCMCYI) Stoppage

The timer overflow flag can be used to determine the external event (TCMCYI) stopped state. Either of two sets of conditions represents the external event stopped state.

The external event can be considered to have stopped when a timer overflow is generated within the period from the start of cycle measurement mode to detection of the first edge (rising or falling as selected with the IEDG bit in TCMCR).

Figure 13.10 shows an example of the timing of the external event stopped state (1).

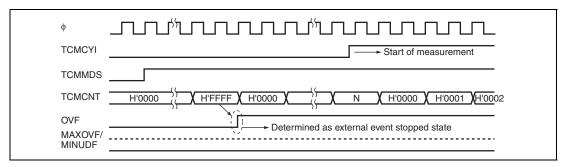


Figure 13.10 Example of Timing in External Event Stopped State (1)

Cycle measurement stops if MAXOVF/MINUDF is set to 1 while the CPSPE bit in TCMCR is set to 1. Subsequently clearing MAXOVF/MINUDF to 0 restarts cycle measurement. In this case, the external event can be considered to have stopped if a timer overflow is generated before detection of the first edge.

Figure 13.11 shows an example of the timing of the external event stopped state (2).

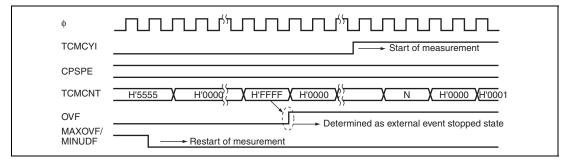


Figure 13.11 Example of Timing in External Event Stopped State (2)

Example of Settings for Cycle Measurement Mode (4)

Figure 13.12 shows an example of the flow when cycle measurement mode is to be used.

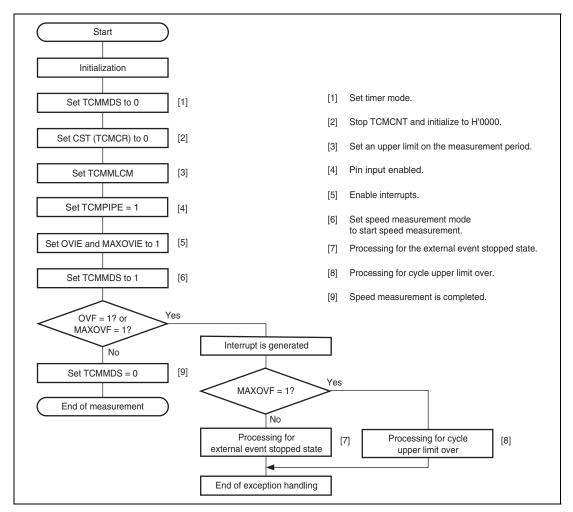


Figure 13.12 Example of Cycle Measurement Mode Settings

13.5 Interrupt Sources

TCM has five interrupt sources: TICI, TCMI, TOVMI, TUDI, and TOVI. Each interrupt source is either enabled or disabled by the corresponding interrupt enable bit in TCMIER and independently transferred to the interrupt controller. Since a single vector address is allocated for each type of interrupt source from all channels, the flags must be used to discriminate between the sources.

Table 13.3 lists the interrupt sources in priority order.

Table 13.3 TCM Interrupt Sources

Channel	Name	Interrupt Source	Interrupt Flag	Priority
TCM_0	TICI0	TCMICR_0 input capture	ICPF_0	High
	TCMI0	TCMMLCM_0 compare match	CMF_0	<u> </u>
	TOVMI0	TCMMLCM_0 overflow	MAXOVF_0	
	TUDI0	TCMMINCM_0 underflow	MINUDF_0	
	TOVI0	TCMCNT_0 overflow	OVF_0	
TCM_1	TICI1	TCMICR_1 input capture	ICPF_1	
	TCMI1	TCMMLCM_1 compare match	CMF_1	
	TOVMI1	TCMMLCM_1 overflow	MAXOVF_1	
	TUDI1	TCMMINCM_1 underflow	MINUDF_1	
	TOVI1	TCMCNT_1 overflow	OVF_1	
TCM_2	TICI2	TCMICR_2 input capture	ICPF_2	
	TCMI2	TCMMLCM_2 compare match	CMF_2	
	TOVMI2	TCMMLCM_2 overflow	MAXOVF_2	
	TUDI2	TCMMINCM_2 underflow	MINUDF_2	
	TOVI2	TCMCNT_2 overflow	OVF_2	Low

13.6 **Usage Notes**

13.6.1 **Conflict between TCMCNT Write and Count-Up Operation**

When a conflict between TCMCNT write and count-up operation occurs in the second half of the TCMCNT write cycle, TCMCNT is not incremented and writing to TCMCNT takes priority. Figure 13.13 shows the timing of this conflict.

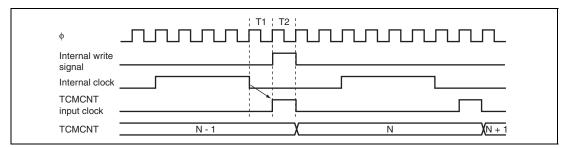


Figure 13.13 Conflict between TCMCNT Write and Count-Up Operation

13.6.2 **Conflict between TCMMLCM Write and Compare Match**

When a conflict between TCMMLCM write and a compare match should occur in the second half of a cycle of writing to TCMMLCM, writing to TCMMLCM takes priority and the compare match signal is inhibited. Figure 13.14 shows the timing of this conflict.

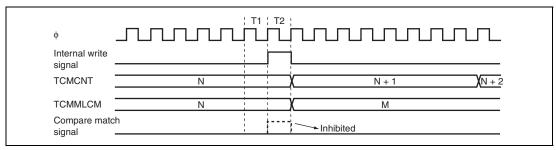


Figure 13.14 Conflict between TCMMLCM Write and Compare Match

13.6.3 Conflict between TCMICR Read and Input Capture

When operation is in timer mode and the corresponding input capture signal is detected during reading of TCMICR, the input capture signal is delayed by one system clock (ϕ). Figure 13.15 shows the timing of this conflict.

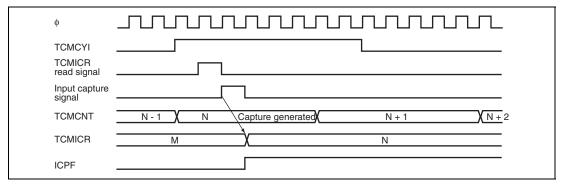
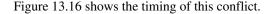



Figure 13.15 Conflict between TCMICR Read and Input Capture

13.6.4 Conflict between Edge Detection in Cycle Measurement Mode and Writing to TCMMLCM or TCMMINCM

If the selected edge of TCMCYI is detected in the second half of a cycle of writing to the register (TCMMLCM or TCMMINCM) in cycle measurement mode, the detected edge signal is delayed by one cycle of the system clock (ϕ) .

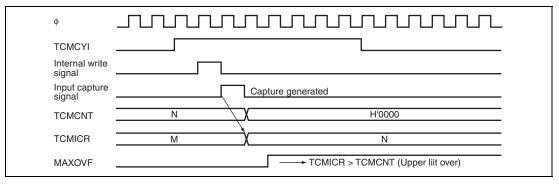


Figure 13.16 Conflict between Edge Detection and Register Write (Cycle Measurement Mode)

13.6.5 Conflict between Edge Detection in Cycle Measurement Mode and Clearing of TCMMDS Bit in TCMCR

If the CST bit in TCMCR is set to 1 in cycle measurement mode, and the TCMMDS bit in TCMCR is cleared, but the selected edge from TCMCYI is detected at the same time, detection of the selected edge will cause the timer to continue to operate in cycle measurement mode. The timer will not make the transition to timer mode until the next detection of the selected edge. Thus, ensure that the CST bit is cleared to 0 in cycle measurement mode.

Figure 13.17 shows the timing of this conflict.

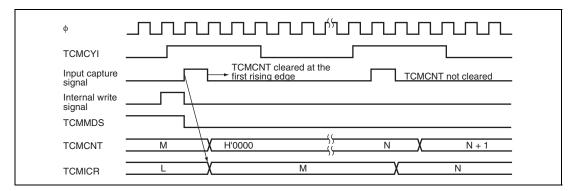


Figure 13.17 Conflict between Edge Detection and Clearing of TCMMDS (to Switch from Cycle Measurement Mode to Timer Mode)

13.6.6 Settings of TCMCKI and TCMMCI

TCMCKI and TCMMCI are multiplexed on the same pin of this LSI. Therefore, the selected external clock and the TCMMCI signal cannot be used at the same time. Do not make the settings CKS2 to CKS0 = B'111 and CMMS = B'1.

13.6.7 Setting for Module Stop Mode

The module-stop control register can be used to select either continuation or stoppage of TCM operation in module-stopped mode. The default setting is for TCM operation to stop. TCM registers become accessible on release from module stop mode. For details, see section 29, Power-Down Modes.

Section 14 Watchdog Timer (WDT)

This LSI incorporates two watchdog timer channels (WDT_0 and WDT_1). The watchdog timer can generate an internal reset signal or an internal NMI interrupt signal if a system crash prevents the CPU from writing to the timer counter, thus allowing it to overflow.

When this watchdog function is not needed, the WDT can be used as an interval timer. In interval timer operation, an interval timer interrupt is generated each time the counter overflows. A block diagram of the WDT 0 and WDT 1 are shown in figure 14.1.

14.1 **Features**

- Selectable from eight (WDT_0) or 24 (WDT_1) counter input clocks.
- Switchable between watchdog timer mode and interval timer mode

Watchdog Timer Mode:

If the counter overflows, whether an internal reset or an internal NMI interrupt is generated can be selected.

Interval Timer Mode:

If the counter overflows, an interval timer interrupt (WOVI) is generated.

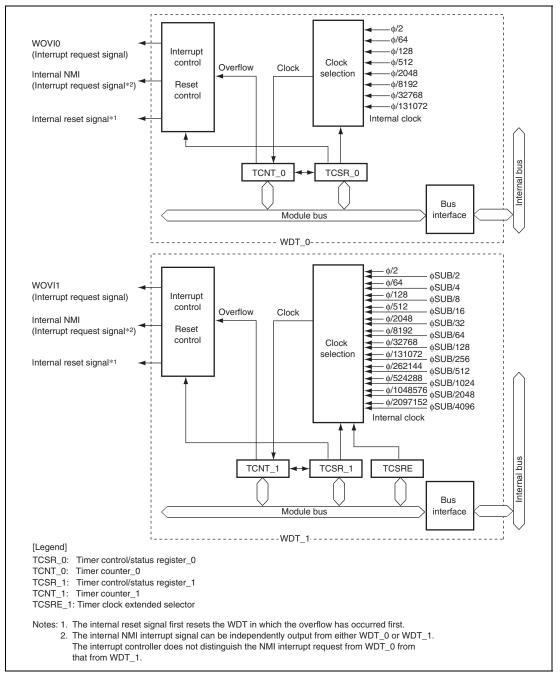


Figure 14.1 Block Diagram of WDT

Input/Output Pins 14.2

The WDT has the pins listed in table 14.1.

Table 14.1 Pin Configuration

Name	Pin Name	I/O	Function
External sub-clock input pin	EXCL	Input	Inputs the clock pulses to the WDT_1 prescaler counter

14.3 **Register Descriptions**

The WDT has the following registers. To prevent accidental overwriting, TCNT, TCSR, and TCSRE have to be written to in a method different from normal registers. For details, see section 14.6.1, Notes on Register Access. For details on the system control register, see section 3.2.2, System Control Register (SYSCR).

Table 14.2 Register Configuration

Channel	Register Name	Abbreviation	R/W	Initial Value	Address	Data Bus Width
Channel 0	Timer counter_0	TCNT_0	R/W	H'00	H'FFA8	16
					H'FFA9*	8
	Timer control/status	TCSR_0	R/W	H'00	H'FFA8	16
	register_0				H'FFA8*	8
Channel 1	Timer counter_1	TCNT_1	R/W	H'00	H'FFEA	16
					H'FFEB*	8
	Timer control/status	TCSR_1	R/W	H'00	H'FFEA	16
	register_1				H'FFEA*	8
	Timer clock	TCSRE_1	R/W	H'00	H'FFEC	16
	extended selector				H'FFEC*	8
	_				_	

Address in the upper cell: when writing. Note: Address in the lower cell: when reading

14.3.1 Timer Counter (TCNT)

TCNT is an 8-bit readable/writable up-counter.

TCNT is initialized to H'00 when the TME bit in timer control/status register (TCSR) is cleared to 0.

14.3.2 Timer Control/Status Register (TCSR)

TCSR selects the clock source to be input to TCNT, and the timer mode.

• TCSR_0

Dia.	Dia Mana	Initial	D/W	Paradallar
Bit	Bit Name	Value	R/W	Description
7	OVF	0	R/(W)*	Overflow Flag
				Indicates that TCNT has overflowed (changes from H'FF to H'00).
				[Setting condition]
				When TCNT overflows (changes from H'FF to H'00)
				When internal reset request generation is selected in watchdog timer mode, OVF is cleared automatically by the internal reset.
				[Clearing conditions]
				• When TCSR is read when OVF = 1, then 0 is written to OVF
				When 0 is written to TME
6	WT/IT	0	R/W	Timer Mode Select
				Selects whether the WDT is used as a watchdog timer or interval timer.
				0: Interval timer mode
				1: Watchdog timer mode
5	TME	0	R/W	Timer Enable
				When this bit is set to 1, TCNT starts counting.
				When this bit is cleared, TCNT stops counting and is initialized to H'00.

Bit	Bit Name	Initial Value	R/W	Description
4	_	0	R/(W)	Reserved
				The initial value should not be changed.
3	RST/NMI	0	R/W	Reset or NMI
				Selects to request an internal reset or an NMI interrupt when TCNT has overflowed.
				0: An NMI interrupt is requested
				1: An internal reset is requested
2	CKS2	0	R/W	Clock Select 2 to 0
1	CKS1	0	R/W	Selects the clock source to be input to TCNT. The
0	CKS0	0	R/W	overflow frequency for ϕ = 20 MHz is enclosed in parentheses.
				000: φ/2 (frequency: 25.6 μs)
				001: φ/64 (frequency: 819.2 μs)
				010:
				011: φ/512 (frequency: 6.6 ms)
				100:
				101:
				110: φ/32768 (frequency: 419.4 ms)
				111: φ/131072 (frequency: 1.68 s)

Note: * Only 0 can be written, to clear the flag.

TCSR_1

Bit	Bit Name	Initial Value	R/W	Description
7	OVF	0	R/(W)*1	Overflow Flag
			` ,	Indicates that TCNT has overflowed (changes from H'FF to H'00).
				[Setting condition]
				When TCNT overflows (changes from H'FF to H'00)
				When internal reset request generation is selected in watchdog timer mode, OVF is cleared automatically by the internal reset.
				[Clearing conditions]
				When TCSR is read when OVF = $1*^2$, then 0 is written to OVF
				When 0 is written to TME
6	WT/IT	0	R/W	Timer Mode Select
				Selects whether the WDT is used as a watchdog timer or interval timer.
				0: Interval timer mode
				1: Watchdog timer mode
5	TME	0	R/W	Timer Enable
				When this bit is set to 1, TCNT starts counting.
				When this bit is cleared, TCNT stops counting and is initialized to H'00.
4	PSS	0	R/W	Prescaler Select
				Selects the clock source to be input to TCNT.
				0: Counts the divided cycle of ϕ -based prescaler (PSM)
				 Counts the divided cycle of φSUB-based prescaler (PSS)
3	RST/NMI	0	R/W	Reset or NMI
				Selects to request an internal reset or an NMI interrupt when TCNT has overflowed.
				0: An NMI interrupt is requested
				1: An internal reset is requested

		Initial		
Bit	Bit Name	Value	R/W	Description
2	CKS2	0	R/W	Clock Select 2 to 0
1	CKS1	0	R/W	Selects the clock source to be input to TCNT. The
0	CKS0	0	R/W	overflow frequency for ϕ = 20 MHz and ϕ SUB = 32.768 kHz is enclosed in parentheses.
				When PSS = 0:
				000: φ/2 (frequency: 25.6 μs)
				001: φ/64 (frequency: 819.2 μs)
				010:
				011: φ/512 (frequency: 6.6 ms)
				100: φ/2048 (frequency: 26.2 ms)
				101: φ/8192 (frequency: 104.9 ms)
				110:
				111:
				When PSS = 1:
				000:
				001: φSUB/4 (cycle: 31.3 ms)
				010:
				011: φSUB/16 (cycle: 125 ms)
				100: φSUB/32 (cycle: 250 ms)
				101: φSUB/64 (cycle: 500 ms)
				110: φSUB/128 (cycle: 1 s)
				111: φSUB/256 (cycle: 2 s)

Notes: 1. Only 0 can be written, to clear the flag.

2. When OVF is polled with the interval timer interrupt disabled, OVF = 1 must be read at least twice.

14.3.3 Timer Clock Extended Selector (TCSRE)

TCSRE selects the clock source to be input to TCNT.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	EXCNTE	0	R/W	Enables the setting of the CKS3 to CKS0 bits in TCSRE.
				0: The setting of the CKS2 to CKS0 bits in TCSR is valid. The setting of the CKS3 to CKS0 bits in TCSRE is invalid.
				 The setting of the CKS3 to CKS0 bits in TCSRE is valid. The setting of the CKS2 to CKS0 bits in TCSR is invalid.
6 to 4	_	All 0		Reserved

	-	Initial	-	
Bit	Bit Name	Value	R/W	Description
3	CKS3	0	R/W	Clock Select 3 to 0
2	CKS2	0	R/W	Selects the clock source to be input to TCNT. The
1	CKS1	0	R/W	overflow cycle for ϕ = 20 MHz and ϕ SUB = 32.768 kHz enclosed in parentheses.
0	CKS0	0	R/W	When PSS = 0:
				0000: φ/2 (cycle: 25.6 μs)
				0001: φ/64 (cycle: 819.2 μs)
				0010: φ/128 (cycle: 1.6 ms)
				0011: φ/512 (cycle: 6.6 ms)
				0100: φ/2048 (cycle: 26.2 ms)
				0101: φ/8192 (cycle: 104.9 ms)
				0110: φ/32768 (cycle: 419.4 ms)
				0111: φ/131072 (cycle: 1.68 s)
				1000: φ/262144 (cycle: 3.36 s)
				1001: φ/524288 (cycle: 6.71 s)
				1010: φ/1048576 (cycle: 13.42 s)
				1011: φ/2097152 (cycle: 26.8 s)
				11xx: Setting not possible
				When PSS = 1:
				0000: φSUB/2 (cycle: 15.6 ms)
				0001: φSUB/4 (cycle: 31.3 ms)
				0010: φSUB/8 (cycle: 62.5 ms)
				0011: φSUB/16 (cycle: 125 ms)
				0100: φSUB/32 (cycle: 250 ms)
				0101: φSUB/64 (cycle: 500 ms)
				0110: φSUB/128 (cycle: 1 s)
				0111: φSUB/256 (cycle: 2 s)
				1000: φSUB/512 (cycle: 4 s)
				1001: φSUB/1024 (cycle: 8 s)
				1010: φSUB/2048 (cycle: 16 s)
				1011: φSUB/4096 (cycle: 32 s)
				11xx: Setting not possible
				Note: Valid only when the EXCNTE bit in TCSRE is 1.

14.4 Operation

14.4.1 Watchdog Timer Mode

To use the WDT as a watchdog timer, set the WT/IT bit and the TME bit in TCSR to 1. While the WDT is used as a watchdog timer, if TCNT overflows without being rewritten because of a system malfunction or another error, an internal reset or NMI interrupt request is generated. TCNT does not overflow while the system is operating normally. Software must prevent TCNT overflows by rewriting the TCNT value (normally be writing H'00) before overflows occurs.

If the RST/NMI bit of TCSR is set to 1, when the TCNT overflows, an internal reset signal for this LSI is issued for 131079 system clocks as shown in figure 14.2. If the RST/NMI bit is cleared to 0, when the TCNT overflows, an NMI interrupt request is generated.

An internal reset request from the watchdog timer, a reset input from the \overline{RES} pin, and a power-on reset are processed in the same vector. Reset source can be identified by the XRST bit status in SYSCR.

If a reset caused by a signal input to the RES pin occurs at the same time as a reset caused by a WDT overflow, the \overline{RES} pin reset has priority and the XRST bit in SYSCR is set to 1.

An NMI interrupt request from the watchdog timer and an interrupt request from the NMI pin are processed in the same vector. Do not handle an NMI interrupt request from the watchdog timer and an interrupt request from the NMI pin at the same time.

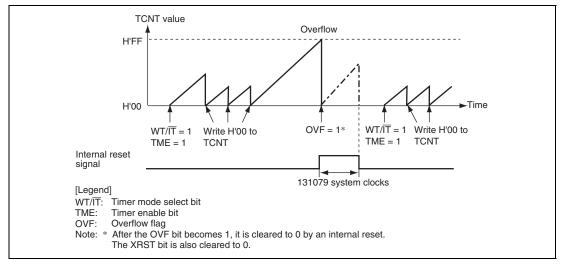


Figure 14.2 Watchdog Timer Mode (RST/ \overline{NMI} = 1) Operation

14.4.2 Interval Timer Mode

When the WDT is used as an interval timer, an interval timer interrupt (WOVI) is generated each time the TCNT overflows, as shown in figure 14.3. Therefore, an interrupt can be generated at intervals.

When the TCNT overflows in interval timer mode, an interval timer interrupt (WOVI) is requested at the same time the OVF flag of TCSR is set to 1.

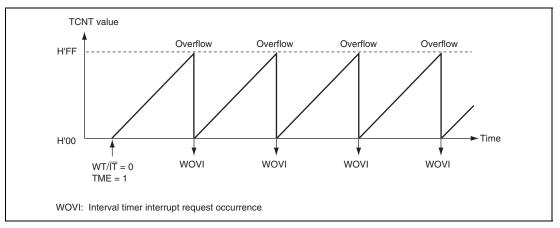


Figure 14.3 Interval Timer Mode Operation

14.5 Interrupt Sources

During interval timer mode operation, an overflow generates an interval timer interrupt (WOVI). The interval timer interrupt is requested whenever the OVF flag is set to 1 in TCSR. OVF must be cleared to 0 in the interrupt handling routine.

When the NMI interrupt request is selected in watchdog timer mode, an NMI interrupt request is generated by an overflow

Table 14.3 WDT Interrupt Source

Name	Interrupt Source	Interrupt Flag
WOVI	TCNT overflow	OVF

14.6 Usage Notes

14.6.1 Notes on Register Access

The watchdog timer's registers, TCNT, TCSR, and TCSRE differ from other registers in being more difficult to write to. The procedures for writing to and reading from these registers are given below.

(1) Writing to TCNT, TCSR, and TCSRE

TCNT, TCSR, and TCSRE must be written to by a word transfer instruction. They cannot be written to by a byte transfer instruction.

TCNT and TCSR both have the same write address. Therefore, satisfy the relative condition shown in figure 14.4 to write to TCNT or TCSR. To write to TCNT, the upper byte must contain the value H'5A and the lower byte must contain the write data before the transfer instruction execution. To write to TCSR, the upper byte must contain the value H'A5 and the lower byte must contain the write data. Same as this, to write to TCSRE, the upper byte must contain the value H'A5 and the lower byte must contain the write data.

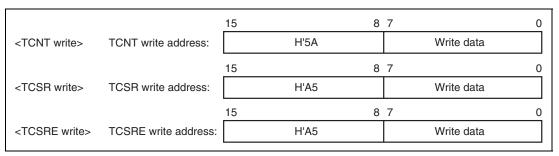


Figure 14.4 Writing to TCNT, TCSR, and TCSRE

(2) Reading from TCNT, TCSR, and TCSRE

These registers are read in the same way as other registers.

14.6.2 Contention between Timer Counter (TCNT) Writing and Incrementation

If incrementation would otherwise occur during a TCNT write cycle, writing takes priority and the timer counter is not incremented.

14.6.3 Changing Values of CKS2 to CKS0 Bits in TCSR or CKS3 to CKS0 Bits in TCSRE

If the CKS2 to CKS0 bits in TCSR or the CKS3 to CKS0 bits in TCSRE are_changed while the WDT is operating, counting may not be performed correctly. Software must stop the watchdog timer (by clearing the TME bit to 0) before changing the values of the CKS2 to CKS0 bits in TCSR or the CKS3 to CKS0 bits in TCSRE.

14.6.4 Changing Value of PSS Bit

If the PSS bit in TCSR is written to while the WDT is operating, errors could occur in the operation. Stop the watchdog timer (by clearing the TME bit to 0) before changing the values of PSS bit.

14.6.5 Switching between Watchdog Timer Mode and Interval Timer Mode

If the mode is switched from/to watchdog timer to/from interval timer, while the WDT is operating, errors could occur in the operation. Software must stop the watchdog timer (by clearing the TME bit to 0) before switching the mode.

14.6.6 Accessing WDT_1 Registers On Release from Watch Mode or Software Standby Mode

When input of the sub-clock to WDT_1 is enabled, if WDT_1 registers are to be accessed directly after release from watch mode or software standby mode because of an interrupt, insert a programmed wait of $65 \,\mu s$ before access to the registers.

Section 15 Serial Communication Interface (SCI)

This LSI has a serial communication interface (SCI) channel. The SCI can handle both asynchronous and clocked synchronous serial communication. Asynchronous serial data communication can be carried out with standard asynchronous communication chips such as a Universal Asynchronous Receiver/Transmitter (UART) or Asynchronous Communications Interface Adapter (ACIA). A function is also provided for serial communication between processors (multiprocessor communication function). The SCI also supports the smart card (IC card) interface based on ISO/IEC 7816-3 (Identification Card) as an enhanced asynchronous communication function.

15.1 Features

- Choice of asynchronous or clocked synchronous serial communication mode
- Full-duplex communication capability
 The transmitter and receiver are mutually independent, enabling transmission and reception to be executed simultaneously. Double-buffering is used in both the transmitter and the receiver, enabling continuous transmission and continuous reception of serial data.
- On-chip baud rate generator allows any bit rate to be selected
 The External clock can be selected as a transfer clock source (except for the smart card interface).
- Choice of LSB-first or MSB-first transfer (except in the case of asynchronous mode 7-bit data)
- Four interrupt sources
 Four interrupt sources transmit-end, transmit-data-empty, receive-data-full, and receive error that can issue requests.

Asynchronous Mode:

- Data length: 7 or 8 bits
- Stop bit length: 1 or 2 bits
- Parity: Even, odd, or none
- Receive error detection: Parity, overrun, and framing errors
- Break detection: Break can be detected by reading the RxD pin level directly in case of a framing error
- Multiprocessor communication capability

Clocked Synchronous Mode:

- Data length: 8 bits
- Receive error detection: Overrun errors

Smart Card Interface:

- An error signal can be automatically transmitted on detection of a parity error during reception.
- Data can be automatically re-transmitted on detection of an error signal during transmission.
- Both direct convention and inverse convention are supported.

Figure 15.1 shows a block diagram of SCI.

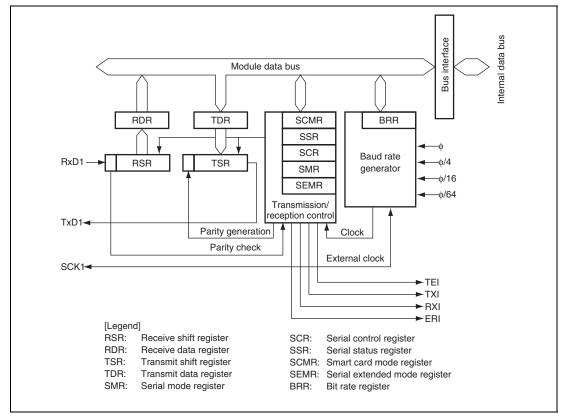


Figure 15.1 Block Diagram of SCI

Input/Output Pins 15.2

Table 15.1 shows the input/output pins for each SCI channel.

Table 15.1 Pin Configuration

Channel	Pin Name*	Input/Output	Function
1	SCK1	Input/Output	Channel 1 clock input/output
	RxD1	Input	Channel 1 receive data input
	TxD1	Output	Channel 1 transmit data output

Pin names SCK, RxD, and TxD are used in the text for all channels, omitting the Note: channel designation.

Register Descriptions 15.3

The SCI has the following registers for each channel. Some bits in the serial mode register (SMR), serial status register (SSR), and serial control register (SCR) have different functions in different modes—normal serial communication interface mode and smart card interface mode; therefore, the bits are described separately for each mode in the corresponding register sections.

Channel	Register Name	Abbreviation	n R/W	Initial Value	Address	Data Bus Width
Channel 1	Serial mode register_1	SMR_1	R/W	H'00	H'FF88	8
	Bit rate register_1	BRR_1	R/W	H'FF	H'FF89	8
	Serial control register_1	SCR_1	R/W	H'00	H'FF8A	8
	Transmit data register_1	TDR_1	R/W	H'FF	H'FF8B	8
	Serial status register_1	SSR_1	R/W	H'84	H'FF8C	8
	Receive data register_1	RDR_1	R	H'00	H'FF8D	8
	Smart card mode register_1	SCMR_1	R/W	H'F2	H'FF8E	8
	Serial extended mode register_1	SEMR_1	R/W	H'00	H'FF8F	8

15.3.1 Receive Shift Register (RSR)

RSR is a shift register used to receive serial data that converts it into parallel data. When one frame of data has been received, it is transferred to RDR automatically. RSR cannot be directly accessed by the CPU.

15.3.2 Receive Data Register (RDR)

RDR is an 8-bit register that stores receive data. When the SCI has received one frame of serial data, it transfers the received serial data from RSR to RDR where it is stored. After this, RSR can receive the next data. Since RSR and RDR function as a double buffer in this way, continuous receive operations be performed. After confirming that the RDRF bit in SSR is set to 1, read RDR. RDR cannot be written to by the CPU. The initial value of RDR is H'00.

15.3.3 Transmit Data Register (TDR)

TDR is an 8-bit register that stores transmit data. When the SCI detects that TSR is empty, it transfers the transmit data written in TDR to TSR and starts transmission. The double-buffered structures of TDR and TSR enable continuous serial transmission. If the next transmit data has already been written to TDR when one frame of data is transmitted, the SCI transfers the written data to TSR to continue transmission. Although TDR can be read from or written to by the CPU at all times, write transmit data to TDR for only once after confirming that the TDRE bit in SSR is set to 1. The initial value of TDR is H'FF.

15.3.4 Transmit Shift Register (TSR)

TSR is a shift register that transmits serial data. To perform serial data transmission, the SCI first transfers transmit data from TDR to TSR, and then sends the data to the TxD pin. TSR cannot be directly accessed by the CPU.

15.3.5 Serial Mode Register (SMR)

SMR is used to set the SCI's serial transfer format and select the baud rate generator clock source. Some bits in SMR have different functions in normal mode and smart card interface mode.

• Bit Functions in Normal Serial Communication Interface Mode (when SMIF in SCMR = 0)

Bit	Bit Name	Initial Value	R/W	Description
7	C/A	0	R/W*	Communication Mode
				0: Asynchronous mode
				1: Clocked synchronous mode
6	CHR	0	R/W*	Character Length (enabled only in asynchronous mode)
				0: Selects 8 bits as the data length.
				1: Selects 7 bits as the data length. LSB-first is fixed and the MSB of TDR is not transmitted in transmission.
				In clocked synchronous mode, a fixed data length of 8 bits is used.
5	PE	0	R/W*	Parity Enable (enabled only in asynchronous mode)
				When this bit is set to 1, the parity bit is added to transmit data before transmission, and the parity bit is checked in reception. For a multiprocessor format, parity bit addition and checking are not performed regardless of the PE bit setting.
4	O/E	0	R/W*	Parity Mode (enabled only when the PE bit is 1 in asynchronous mode)
				0: Selects even parity.
				1: Selects odd parity.
				If even parity is selected, the parity bit is determined to make an even number of 1s in the transmitted/received character and the parity bit. Likewise, if odd parity is selected, the parity bit is determined to make an odd number of 1s in the transmitted/received character and the parity bit.

Bit	Bit Name	Initial Value	R/W	Description
3	STOP	0	R/W*	Stop Bit Length (enabled only in asynchronous mode)
				Selects the stop bit length in transmission.
				0: 1 stop bit
				1: 2 stop bits
				In reception, only the first stop bit is checked. If the second stop bit is 0, it is treated as the start bit of the next transmit frame.
2	MP	0	R/W*	Multiprocessor Mode (enabled only in asynchronous mode)
				When this bit is set to 1, the multiprocessor communication function is enabled. The PE bit and O/E bit settings are invalid in multiprocessor mode.
1	CKS1	0	R/W*	Clock Select 1 and 0
0	CKS0	0	R/W*	These bits select the clock source for the baud rate generator.
				00: \(\phi \) clock \((n = 0) \)
				01: φ/4 clock (n = 1)
				10: φ/16 clock (n = 2)
				11: φ/64 clock (n = 3)
	* Th			For the relation between the bit rate register setting and the baud rate, see section 15.3.9, Bit Rate Register (BRR). n is the decimal display of the value of n in BRR (see section 15.3.9, Bit Rate Register (BRR)).

Note: * These bits can be written to only when TE = RE = 0.

• Bit Functions in Smart Card Interface Mode (when SMIF in SCMR = 1)

Bit	Bit Name	Initial Value	R/W	Description
7	GM	0	R/W*1	GSM Mode
				Setting this bit to 1 allows GSM mode operation. In GSM mode, the TEND set timing is put forward to 11.0 etu*2 from the start and the clock output control function is appended. For details, see section 15.7.8, Clock Output Control.
6	BLK	0	R/W*1	Setting this bit to 1 allows block transfer mode operation. For details, see section 15.7.3, Block Transfer Mode.
5	PE	0	R/W*1	Parity Enable
				When this bit is set to 1, the parity bit is added to transmit data before transmission, and the parity bit is checked in reception. Set this bit to 1 in smart card interface mode.
4	O/E	0	R/W*1	Parity Mode
				0: Selects even parity
				1: Selects odd parity
				For details on the usage of this bit in smart card interface mode, see section 15.7.2, Data Format (Except in Block Transfer Mode).

Bit	Bit Name	Initial Value	R/W	Description
3	BCP1	0	R/W*1	Basic Clock Pulse 1 and 0
2	BCP0	0	R/W*1	These bits, together with the BCP2 bit in SCMR, select the number of basic clock cycles in a 1-bit data transfer time in smart card interface mode.
				Setting of BCP2, BCP1, and BCP0 bits:
				000: 93 clock cycles (S = 93)
				001: 128 clock cycles (S = 128)
				010: 186 clock cycles (S = 186)
				011: 512 clock cycles (S = 512)
				100: 32 clock cycles (S = 32) (initial value)
				101: 64 clock cycles (S = 64)
				110: 372 clock cycles (S = 372)
				111: 256 clock cycles (S = 256)
				For details, see section 15.7.4, Receive Data Sampling Timing and Reception Margin. S is described in section 15.3.9, Bit Rate Register (BRR).
1	CKS1	0	R/W*1	Clock Select 1 and 0
0	CKS0	0	R/W*1	These bits select the clock source for the baud rate generator.
				00: φ clock (n = 0)
				01: φ/4 clock (n = 1)
				10: φ/16 clock (n = 2)
				11: φ/64 clock (n = 3)
				For the relation between the bit rate register setting and the baud rate, see section 15.3.9, Bit Rate Register (BRR). n is the decimal display of the value of n in BRR (see section 15.3.9, Bit Rate Register (BRR)).

Notes: 1. These bits can be written to only when TE = RE = 0.

2. etu: Elementary time unit (time taken to transfer one bit)

15.3.6 Serial Control Register (SCR)

SCR is a register that performs enabling or disabling of SCI transfer operations and interrupt requests, and selection of the transfer clock source. For details on interrupt requests, see section 15.8, Interrupt Sources. Some bits in SCR have different functions in normal mode and smart card interface mode.

• Bit Functions in Normal Serial Communication Interface Mode (when SMIF in SCMR = 0)

Bit	Bit Name	Initial Value	R/W	Description
7	TIE	0	R/W	Transmit Interrupt Enable
				When this bit is set to 1, a TXI interrupt request is enabled.
				A TXI interrupt request can be cancelled by reading 1 from the TDRE flag and then clearing the flag to 0, or by clearing the TIE bit to 0.
6	RIE	0	R/W	Receive Interrupt Enable
				When this bit is set to 1, RXI and ERI interrupt requests are enabled.
				RXI and ERI interrupt requests can be cancelled by reading 1 from the RDRF, FER, PER, or ORER flag and then clearing the flag to 0, or by clearing the RIE bit to 0.
5	TE	0	R/W*1	Transmit Enable
				When this bit is set to 1, transmission is enabled.
				Under this condition, serial transmission is started by writing transmit data to TDR and clearing the TDRE flag in SSR to 0. Note that SMR should be set prior to setting the TE bit to 1 in order to designate the transmission format.
				If transmission is halted by clearing this bit to 0, the TDRE flag in SSR is fixed to 1.

Bit	Bit Name	Initial Value	R/W	Description
4	RE	0	R/W*1	Receive Enable
				When this bit is set to 1, reception is enabled.
				Under this condition, serial reception is started by detecting the start bit in asynchronous mode or the synchronous clock input in clocked synchronous mode. Note that SMR should be set prior to setting the RE bit to 1 in order to designate the reception format.
				Even if reception is halted by clearing this bit to 0, the RDRF, FER, PER, and ORER flags are not affected and the previous value is retained.
3	MPIE	0	R/W	Multiprocessor Interrupt Enable (enabled only when the MP bit in SMR is 1 in asynchronous mode)
				When this bit is set to 1, receive data in which the multiprocessor bit is 0 is skipped, and setting of the RDRF, FER, and ORER status flags in SSR is disabled. On receiving data in which the multiprocessor bit is 1, this bit is automatically cleared and normal reception is resumed. For details, see section 15.5, Multiprocessor Communication Function.
				When receive data including MPB = 0 in SSR is being received, transfer of the received data from RSR to RDR, detection of receive errors, and the settings of RDRF, FER, and ORER flags in SSR are not performed. When receive data including MPB = 1 is received, the MPB bit in SSR is set to 1, the MPIE bit is automatically cleared to 0, and RXI and ERI interrupt requests (in the case where the RIE bit in SCR is set to 1) and setting of the FER and ORER flags are enabled.
2	TEIE	0	R/W	Transmit End Interrupt Enable
				When this bit is set to 1, a TEI interrupt request is enabled.
				A TEI interrupt request can be cancelled by reading 1 from the TDRE flag and then clearing the flag to 0 in order to clear the TEND flag to 0, or by clearing the TEIE bit to 0.

Bit	Bit Name	Initial Value	R/W	Description
1	CKE1	0	R/W*2	Clock Enable 1 and 0
0	CKE0	0	R/W* ²	These bits select the clock source and SCK pin function.
				Asynchronous mode
				00: Internal clock (SCK pin functions as I/O port.)
				01: Internal clock (Outputs a clock of the same frequency as the bit rate from the SCK pin.)
				1x: External clock (Inputs a clock with a frequency 16 times the bit rate from the SCK pin.)
				Clocked synchronous mode
				0x: Internal clock (SCK pin functions as clock output.)
				1x External clock (SCK pin functions as clock input.)

[Legend]

x: Don't care

A. Don't care

- Notes: 1. Only when TE = RE = 0, 1 can be written to these bits. Once either the TE or RE bit has been set to 1, only writing of TE = RE = 0 is possible.
 - 2. These bits can be written to only when TE = RE = 0.
- Bit Functions in Smart Card Interface Mode (when SMIF in SCMR = 1)

Bit	Bit Name	Initial Value	R/W	Description
7	TIE	0	R/W	Transmit Interrupt Enable
				When this bit is set to 1, a TXI interrupt request is enabled.
6	RIE	0	R/W	Receive Interrupt Enable
				When this bit is set to 1, RXI and ERI interrupt requests are enabled.
5	TE	0	R/W*1	Transmit Enable
				When this bit is set to 1, transmission is enabled.
4	RE	0	R/W*1	Receive Enable
				When this bit is set to 1, reception is enabled.

Bit	Bit Name	Initial Value	R/W	Description
3	MPIE	0	R/W	Multiprocessor Interrupt Enable (enabled only when the MP bit in SMR is 1 in asynchronous mode)
				Write 0 to this bit in smart card interface mode.
2	TEIE	0	R/W	Transmit End Interrupt Enable
				Write 0 to this bit in smart card interface mode.
1	CKE1	0	R/W* ²	Clock Enable 1 and 0
0	CKE0	0	R/W* ²	Controls the clock output from the SCK pin. In GSM mode, clock output can be dynamically switched. For details, see section 15.7.8, Clock Output Control.
				• When GM in SMR = 0
				00: Output disabled (SCK pin functions as I/O port.)
				01: Clock output
				1x: Reserved
				• When GM in SMR = 1
				00: Output fixed to low
				01: Clock output
				10: Output fixed to high
				11: Clock output

[Legend]

x: Don't care

Notes: 1. Only when TE = RE = 0, 1 can be written to these bits. Once either the TE or RE bit has been set to 1, only writing of TE = RE = 0 is possible.

2. These bits can be written to only when TE = RE = 0.

15.3.7 Serial Status Register (SSR)

SSR is a register containing status flags of the SCI and multiprocessor bits for transfer. TDRE, RDRF, ORER, PER, and FER can only be cleared. Some bits in SSR have different functions in normal mode and smart card interface mode.

• Bit Functions in Normal Serial Communication Interface Mode (when SMIF in SCMR = 0)

Bit	Bit Name	Initial Value	R/W	Description	
7	TDRE	1	R/(W)*	Transmit Data Register Empty	
				Indicates whether TDR contains transmit data.	
				[Setting conditions]	
				When the TE bit in SCR is 0	
				 When data is transferred from TDR to TSR and TDR is ready for data write 	
				[Clearing condition]	
				• When 0 is written to TDRE after reading TDRE = 1	
6	RDRF	0	R/(W)*	* Receive Data Register Full Indicates that receive data is stored in RDR.	
				[Setting condition]	
				When serial reception ends normally and receive data is transferred from RSR to RDR	
				[Clearing condition]	
				• When 0 is written to RDRF after reading RDRF = 1	
				Even when the RE bit in SCR is cleared, the RDRF flag is not affected and it retains its previous value.	
				Note that when the next serial reception is completed while the RDRF flag is being set to 1, an overrun error occurs and the received data is lost.	

Bit	Bit Name	Initial Value	R/W	Description
5	ORER	0	R/(W)*	Overrun Error
				Indicates that an overrun error has occurred during reception and the reception ends abnormally.
				[Setting condition]
				 When the next serial reception is completed while RDRF = 1
				In RDR, receive data prior to an overrun error occurrence is retained, but data received after the overrun error occurrence is lost. When the ORER flag is set to 1, subsequent serial reception cannot be continued. Note that in clocked synchronous mode, serial transmission cannot also continue.
				[Clearing condition]
				 When 0 is written to ORER after reading ORER = 1
				Even when the RE bit in SCR is cleared, the ORER flag is not affected and it retains its previous value.
4	FER	0	R/(W)*	Framing Error
				[Setting condition]
				When the stop bit is 0
				In 2-stop-bit mode, only the first stop bit is checked whether it is 1 and the second stop bit is not checked. Note that the receive data when a framing error occurs is transferred to RDR, but the RDRF flag is not set. In addition, if the FER flag is being set to 1, the subsequent receive data cannot be transferred to RDR. In clocked synchronous mode, serial transmission cannot also continue. [Clearing condition]
				• When 0 is written to FER after reading FER =
				1
				Even when the RE bit in SCR is cleared, the FER flag is not affected and it retains its previous value.

Bit	Bit Name	Initial Value	R/W	Description	
3	PER	0	R/(W)*	Parity Error	
				[Setting condition]	
				When a parity error is detected during	
				reception	
				The receive data when a parity error occurs is transferred to RDR, but the RDRF flag is not set. Note that when the PER flag is being set to 1, the subsequent receive data cannot be transferred to RDR.	
				[Clearing condition]	
				 When 0 is written to PER after reading PER = 1 	
				Even when the RE bit in SCR is cleared, the PER flag is not affected and it retains its previous value.	
2	TEND	1	R	Transmit End	
				[Setting conditions]	
				When the TE bit in SCR is 0	
				 When TDRE = 1 at transmission of the last bit of a 1-byte serial transmit character 	
				[Clearing condition]	
				 When 0 is written to TDRE after reading TDRE = 1 	
1	MPB	0	R	Multiprocessor Bit	
				MPB stores the multiprocessor bit in the receive frame.	
0	MPBT	0	R/W	Multiprocessor Bit Transfer	
				MPBT stores the multiprocessor bit to be added to the transmit frame.	

Note: * Only 0 can be written to clear the flag. • Bit Functions in Smart Card Interface Mode (when SMIF in SCMR = 1)

Bit	Bit Name	Initial Value	R/W	Description	
7	TDRE	1	R/(W)*1	Transmit Data Register Empty	
				Indicates whether TDR contains transmit data.	
				[Setting conditions]	
				When the TE bit in SCR is 0	
				 When data is transferred from TDR to TSR, and TDR can be written to. 	
				[Clearing condition]	
				 When 0 is written to TDRE after reading TDRE = 1 	
6	RDRF	0	R/(W)*1	Receive Data Register Full	
				Indicates that receive data is stored in RDR.	
				[Setting condition]	
				 When serial reception ends normally and receive data is transferred from RSR to RDR 	
				[Clearing condition]	
				• When 0 is written to RDRF after reading RDRF = 1	
				Even when the RE bit in SCR is cleared, the RDRF flag is not affected and it retains its previous value.	
				Note that when the next serial reception is completed while the RDRF flag is being set to 1, an overrun error occurs and the received data is lost.	

Bit	Bit Name	Initial Value	R/W	Description	
5	ORER	0	R/(W)*1	Overrun Error	
				[Setting condition]	
				 When the next serial reception is completed while RDRF = 1 	
				In RDR, receive data prior to an overrun error occurrence is retained, but data received after the overrun error occurrence is lost. When the ORER flag is set to 1, subsequent serial reception cannot be continued.	
				[Clearing condition]	
				 When 0 is written to ORER after reading ORER = 1 	
				Even when the RE bit in SCR is cleared, the ORER flag is not affected and it retains its previous value.	
4	ERS	0	R/(W)*1	Error Signal Status	
				[Setting condition]	
				When a low error signal is sampled	
				[Clearing condition]	
				• When 0 is written to ERS after reading ERS = 1	

Bit	Bit Name	Initial Value	R/W	Description
3	PER	0	R/(W)*1	Parity Error
			Indicates that a parity error has occurred during reception and the reception ends abnormally.	
				[Setting condition]
				 When a parity error is detected during reception
				The receive data when a parity error occurs is transferred to RDR, but the RDRF flag is not set. Note that when the PER flag is being set to 1, the subsequent receive data cannot be transferred to RDR.
				[Clearing condition]
				• When 0 is written to PER after reading PER = 1
				Even when the RE bit in SCR is cleared, the PER flag is not affected and it retains its previous value.

Bit	Bit Name	Initial Value	R/W	Description	
2	TEND	1	R	Transmit End	
				TEND is set to 1 when the receiving end acknowledges no error signal and the next transmit data is ready to be transferred to TDR. [Setting conditions]	
				 When TE in SCR is 0 	
				 When ERS = 0 and TDRE = 1 after a specified time passed after the start of 1-byte data transfer. The set timing depends on the register setting as follows. 	
				When GM = 0 and BLK = 0, 2.5 etu *2 after transmission start	
				When GM = 0 and BLK = 1, 1.5 etu *2 after transmission start	
				When GM = 1 and BLK = 0, 1.0 etu* 2 after transmission start	
				When GM = 1 and BLK = 1, 1.0 etu* ² after transmission start	
				[Clearing condition]	
				 When 0 is written to TDRE after reading TDRE = 1 	
1	MPB	0	R	Multiprocessor Bit	
				Not used in smart card interface mode.	
0	MPBT	0	R/W	Multiprocessor Bit Transfer	
				Write 0 to this bit in smart card interface mode.	

Notes: 1. Only 0 can be written to clear the flag.

2. etu: Elementary time unit (time taken to transfer one bit)

15.3.8 Smart Card Mode Register (SCMR)

SCMR selects smart card interface mode and its format.

Bit	Bit Name	Initial Value	R/W	Description
7	BCP2	1	R/W*	Basic Clock Pulse 2
				This bit, together with the BCP1 and BCP0 bits in SMR, selects the number of basic clock cycles in a 1-bit data transfer time in smart card interface mode.
				For the setting, see section 15.3.5, Serial Mode Register (SMR).
6 to 4	_	All 1	R	Reserved
				These bits are always read as 1 and cannot be modified.
3	SDIR	0	R/W*	Smart Card Data Transfer Direction
				Selects the serial/parallel conversion format.
				0: Data transfer with LSB-first
				1: Data transfer with MSB-first
				This bit is valid only when the 8-bit data format is used for transmission/reception; when the 7-bit data format is used, data is always transmitted/received with LSB-first.
2	SINV	0	R/W*	Smart Card Data Invert
				Specifies inversion of the data logic level. The SINV bit does not affect the logic level of the parity bit. When the parity bit is inverted, invert the O/Ē bit in SMR.
				TDR contents are transmitted as they are. Receive data is stored as it is in RDR.
				TDR contents are inverted before being transmitted. Receive data is stored in inverted form in RDR.

Bit	Bit Name	Initial Value	R/W	Description
1	_	1	R	Reserved
				This bit is always read as 1 and cannot be modified.
0	SMIF	0	R/W*	Smart Card Interface Mode Select
				When this bit is set to 1, smart card interface mode is selected.
				Normal asynchronous or clocked synchronous mode
				1: Smart card interface mode

Note: * These bits can be written to only when TE = RE = 0.

15.3.9 Bit Rate Register (BRR)

BRR is an 8-bit register that adjusts the bit rate. As the SCI performs baud rate generator control independently for each channel, different bit rates can be set for each channel. Table 15.2 shows the relationships between the N setting in BRR and bit rate B for normal asynchronous mode and clocked synchronous mode, and smart card interface mode. The initial value of BRR is H'FF. BRR can always be read from the CPU but can only be written to when TE = RE = 0.

Table 15.2 Relationships between N Setting in BRR and Bit Rate B

Mode		Bit R	ate	Error
Asynchro	nous mode		$\phi \times 10^{6}$ $64 \times 2^{2n-1} \times (N+1)$	Error (%) = $\left\{\frac{\phi \times 10^6}{B \times 64 \times 2^{2n-1} \times (N+1)} - 1\right\} \times 100$
Clocked	synchronou		$\frac{\phi \times 10^{6}}{3 \times 2^{2n-1} \times (N+1)}$	_
Smart car	rd interface	mode B = -	$\frac{\phi \times 10^{6}}{6 \times 2^{2n+1} \times (N+1)}$	Error (%) = $\left\{ \frac{\phi \times 10^6}{\text{B} \times \text{S} \times 2^{2n+1} \times (\text{N}+1)} - 1 \right\} \times 100$
[Legend]	B:	Bit rate (bit/s)		
	N:	BRR setting for b	oaud rate generator	$(0 \le N \le 255)$
	ф:	Operating freque	ency (MHz)	
	n and S:	Determined by th	ne SMR settings sho	own in the following tables

SN		
CKS1	CKS0	n
0	0	0
0	1	1
1	0	2
1	1	3
	•	•

SCMR Setting	ng SMR Setting		
BCP2	BCP1	BCP0	s
0	0	0	93
0	0	1	128
0	1	0	186
0	1	1	512
1	0	0	32
1	0	1	64
1	1	0	372
1	1	1	256

Table 15.3 shows sample N settings in BRR in normal asynchronous mode. Table 15.4 shows the maximum bit rate settable for each frequency. Table 15.6 and 15.8 show sample N settings in BRR in clocked synchronous mode and smart card interface mode, respectively. In smart card interface mode, the number of basic clock cycles S in a 1-bit data transfer time can be selected. For details, see section 15.7.4, Receive Data Sampling Timing and Reception Margin. Tables 15.5 and 15.7 show the maximum bit rates with external clock input.

Table 15.3 Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (1)

Operating Frequency ϕ (MF

	8			9.83	04		10			12	2			
Bit Rate (bit/s)	e n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)		
110	2	141	0.03	2	174	-0.26	2	177	-0.25	2	212	0.03		
150	2	103	0.16	2	127	0.00	2	129	0.16	2	155	0.16		
300	1	207	0.16	1	255	0.00	2	64	0.16	2	77	0.16		
600	1	103	0.16	1	127	0.00	1	129	0.16	1	155	0.16		
1200	0	207	0.16	0	255	0.00	1	64	0.16	1	77	0.16		
2400	0	103	0.16	0	127	0.00	0	129	0.16	0	155	0.16		
4800	0	51	0.16	0	63	0.00	0	64	0.16	0	77	0.16		
9600	0	25	0.16	0	31	0.00	0	32	-1.36	0	38	0.16		
19200	0	12	0.16	0	15	0.00	0	15	1.73	0	19	-2.34		
31250	0	7	0.00	0	9	-1.70	0	9	0.00	0	11	0.00		
38400		_		0	7	0.00	0	7	1.73	0	9	-2.34		

		12.2	88		14	ļ.	14.7456				16	
Bit Rate (bit/s)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)
110	2	217	0.08	2	248	-0.17	3	64	0.70	3	70	0.03
150	2	159	0.00	2	181	0.16	2	191	0.00	2	207	0.16
300	2	79	0.00	2	90	0.16	2	95	0.00	2	103	0.16
600	1	159	0.00	1	181	0.16	1	191	0.00	1	207	0.16
1200	1	79	0.00	1	90	0.16	1	95	0.00	1	103	0.16
2400	0	159	0.00	0	181	0.16	0	191	0.00	0	207	0.16
4800	0	79	0.00	0	90	0.16	0	95	0.00	0	103	0.16
9600	0	39	0.00	0	45	-0.93	0	47	0.00	0	51	0.16
19200	0	19	0.00	0	22	-0.93	0	23	0.00	0	25	0.16
31250	0	11	2.40	0	13	0.00	0	14	-1.70	0	15	0.00
38400	0	9	0.00		_	_	0	11	0.00	0	12	0.16

[Legend]

Note: Make the settings so that the error does not exceed 1%.

^{—:} Can be set, but there will be a degree of error.

Table 15.3 Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (2)

Operating Frequency f (MHz)

		17.20	32		18	В	19.6608				20)
Bit Rate (bit/s)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)
110	3	75	0.48	3	79	-0.12	3	86	0.31	3	88	-0.25
150	2	223	0.00	2	233	0.16	2	255	0.00	3	64	0.16
300	2	111	0.00	2	116	0.16	2	127	0.00	2	129	0.16
600	1	223	0.00	1	233	0.16	1	255	0.00	2	64	0.16
1200	1	111	0.00	1	116	0.16	1	127	0.00	1	129	0.16
2400	0	223	0.00	0	233	0.16	0	255	0.00	1	64	0.16
4800	0	111	0.00	0	116	0.16	0	127	0.00	0	129	0.16
9600	0	55	0.00	0	58	-0.69	0	63	0.00	0	64	0.16
19200	0	27	0.00	0	28	1.02	0	31	0.00	0	32	-1.36
31250	0	16	1.20	0	17	0.00	0	19	-1.70	0	19	0.00
38400	0	16	0.00	0	14	-2.34	0	15	0.00	0	15	1.73

[Legend]

Can be set, but there will be a degree of error.

 Table 15.4
 Maximum Bit Rate for Each Frequency (Asynchronous Mode)

	Maximum Bit				Maximum Bit		
φ (MHz)	Rate (bit/s)	n	N	φ (MHz)	Rate (bit/s)	n	N
8	250000	0	0	14.7456	460800	0	0
9.8304	307200	0	0	16	500000	0	0
10	312500	0	0	17.2032	537600	0	0
12	375000	0	0	18	562500	0	0
12.288	384000	0	0	19.6608	614400	0	0
14	437500	0	0	20	625000	0	0

Table 15.5 Maximum Bit Rate with External Clock Input (Asynchronous Mode)

φ (MHz)	External Input Clock (MHz)	Maximum Bit Rate (bit/s)	φ (MHz)	External Input Clock (MHz)	Maximum Bit Rate (bit/s)
8	2.0000	125000	14.7456	3.6864	230400
9.8304	2.4576	153600	16	4.0000	250000
10	2.5000	156250	17.2032	4.3008	268800
12	3.0000	187500	18	4.5000	281250
12.288	3.0720	192000	19.6608	4.9152	307200
14	3.5000	218750	20	5.0000	312500

Table 15.6 BRR Settings for Various Bit Rates (Clocked Synchronous Mode)

			(Operating F	requency	/ φ (MHz)		
Bit Rate		8		10		16		20
(bit/s)	n	N	n	N	n	N	n	N
110								
250	3	124	_	_	3	249		
500	2	249		_	3	124		_
1k	2	124	_	_	2	249	_	_
2.5k	1	199	1	249	2	99	2	124
5k	1	99	1	124	1	199	1	249
10k	0	199	0	249	1	99	1	124
25k	0	79	0	99	0	159	0	199
50k	0	39	0	49	0	79	0	99
100k	0	19	0	24	0	39	0	49
250k	0	7	0	9	0	15	0	19
500k	0	3	0	4	0	7	0	9
1M	0	1			0	3	0	4
2.5M			0	0*			0	1
5M							0	0*

[Legend]

Blank: Setting prohibited.

—: Can be set, but there will be a degree of error.

*: Continuous transfer or reception is not possible.

Table 15.7 Maximum Bit Rate with External Clock Input (Clocked Synchronous Mode)

φ (MHz)	External Input Clock (MHz)	Maximum Bit Rate (bit/s)	φ (MHz)	External Input Clock (MHz)	Maximum Bit Rate (bit/s)
8	1.3333	1333333.3	16	2.6667	2666666.7
10	1.6667	1666666.7	18	3.0000	3000000.0
12	2.0000	2000000.0	20	3.3333	3333333.3
14	2.3333	2333333.3			

Table 15.8 BRR Settings for Various Bit Rates (Smart Card Interface Mode, n = 0, S= 372)

				Op	erating	Frequency ϕ (WHZ)			
Bit Rate (bit/s)			10.00		1	3.00		14.2848		
	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	
9600	0	1	30	0	1	-8.99	0	1	0.00	

Operating Frequency ϕ (MHz)

Bit Rate			16.00		1	8.00	20.00			
(bit/s)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	
9600	0	1	12.01	0	2	-15.99	0	2	-6.65	

Table 15.9 Maximum Bit Rate for Each Frequency (Smart Card Interface Mode, S = 372)

φ (MHz)	Maximum Bit Rate (bit/s)	n	N	φ (MHz)	Maximum Bit Rate (bit/s)	n	N
10.00	13441	0	0	16.00	21505	0	0
13.00	17473	0	0	 18.00	24194	0	0
14.2848	19200	0	0	 20.00	26882	0	0

15.3.10 Serial Extended Mode Register (SEMR)

SEMR selects the base clock for a 1-bit period in asynchronous mode.

Bit	Bit Name	Initial Value	R/W	Description
7 to 4	_	All 0	_	Reserved
				These bits are always read as 0.
3	ABCS	0	R/W*	Asynchronous Mode Base Clock Select (valid only in asynchronous mode)
				Selects the base clock for a 1-bit period.
				Operates on a base clock with a frequency of 16 times the transfer rate
				1: Operates on a base clock with a frequency of 8 times the transfer rate
2 to 0	_	All 0	_	Reserved
				These bits are always read as 0.

Note: * This bit can be written to only when TE = RE = 0.

15.4 Operation in Asynchronous Mode

Figure 15.2 shows the general format for asynchronous serial communication. One frame consists of a start bit (low level), followed by transmit/receive data, a parity bit, and finally stop bits (high level). In asynchronous serial communication, the transmission line is usually held in the mark state (high level). The SCI monitors the transmission line, and when it goes to the space state (low level), recognizes a start bit and starts serial communication. Inside the SCI, the transmitter and receiver are independent units, enabling full-duplex communication. Both the transmitter and the receiver also have a double-buffered structure, so that data can be read or written during transmission or reception, enabling continuous data transfer and reception.



Figure 15.2 Data Format in Asynchronous Communication (Example with 8-Bit Data, Parity, Two Stop Bits)

15.4.1 Data Transfer Format

Table 15.11 shows the data transfer formats that can be used in asynchronous mode. Any of 12 transfer formats can be selected according to the SMR setting. For details on the multiprocessor bit, see section 15.5, Multiprocessor Communication Function.

Table 15.10 Serial Transfer Formats (Asynchronous Mode)

SMR Settings				Serial Transmit/Receive Format and Frame Length
CHR	PE	MP	STOP	1 2 3 4 5 6 7 8 9 10 11 12
0	0	0	0	S 8-bit data STOP
0	0	0	1	STOPSTOP
0	1	0	0	S 8-bit data P STOP
0	1	0	1	S 8-bit data P STOPSTOP
1	0	0	0	S 7-bit data STOP
1	0	0	1	S 7-bit data STOP STOP
1	1	0	0	S 7-bit data P STOP
1	1	0	1	S 7-bit data P STOP STOP
0	_	1	0	S 8-bit data MPB STOP
0	_	1	1	S 8-bit data MPB STOP STOP
1	_	1	0	S 7-bit data MPB STOP
1	_	1	1	S 7-bit data MPB STOPSTOP

[Legend]

S: Start bit
STOP: Stop bit
P: Parity bit
MPB: Multiprocessor bit

15.4.2 Receive Data Sampling Timing and Reception Margin in Asynchronous Mode

In asynchronous mode, the SCI operates on a basic clock with a frequency of 16 times (8 times in double-speed operation) the bit rate. In reception, the SCI samples the falling edge of the start bit using the basic clock, and performs internal synchronization. Since receive data is latched internally at the rising edge of the 8th pulse (4th pulse in double-speed operation) of the basic clock, data is latched at the middle of each bit, as shown in figure 15.3. Thus the reception margin in asynchronous mode is determined by formula (1) below.

$$M = \{\{0.5 - \frac{1}{2N}\} - (L - 0.5) F - \frac{|D - 0.5|}{N} (1 + F)\} \times 100 [\%] \cdots Formula (1)$$

M: Reception margin (%)

N: Ratio of bit rate to clock (N = 16 when ABCS = 0, N = 8 when ABCS = 1)

D: Clock duty (D = 0.5 to 1.0)

L: Frame length (L = 9 to 12)

F: Absolute value of clock rate deviation

Assuming values of F = 0, D = 0.5, and N = 16 in formula (1), the reception margin is determined by the formula below.

$$M = \{0.5 - 1/(2 \times 16)\} \times 100 \, [\%] = 46.875\%$$

However, this is only the computed value, and a margin of 20% to 30% should be allowed in system design.

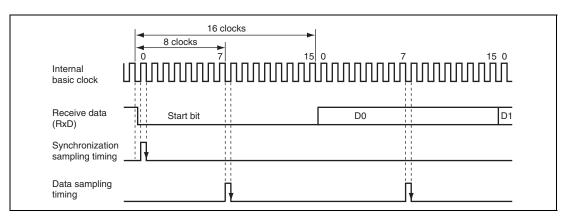


Figure 15.3 Receive Data Sampling Timing in Asynchronous Mode

15.4.3 Clock

Either an internal clock generated by the on-chip baud rate generator or an external clock input at the SCK pin can be selected as the SCI's transfer clock, according to the setting of the C/\overline{A} bit in SMR and the CKE1 and CKE0 bits in SCR. When an external clock is input at the SCK pin, the clock frequency should be 16 times (8 times in double-speed operation) the bit rate used.

When the SCI is operated on an internal clock, the clock can be output from the SCK pin. The frequency of the clock output in this case is equal to the bit rate, and the phase is such that the rising edge of the clock is in the middle of the transmit data, as shown in figure 15.4.

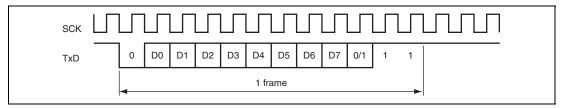


Figure 15.4 Relation between Output Clock and Transmit Data Phase (Asynchronous Mode)

15.4.4 Double-Speed Operation

In addition to the operation described in section 15.4.3, Clock, double-speed operation is possible by setting the ABCS bit in SEMR.

In double-speed operation, the clock whose frequency is 16 times of the normal bit rate can be operated at a frequency of 8 times. The same base clock can be used for operation at a doubled transfer rate.

Double-speed operation can be set for either the internal clock generated by the on-chip baud rate generator or the external clock input from the SCK pin.

15.4.5 SCI Initialization (Asynchronous Mode)

Before transmitting and receiving data, you should first clear the TE and RE bits in SCR to 0, then initialize the SCI as shown in figure 15.5. When the operating mode, transfer format, etc., is changed, the TE and RE bits must be cleared to 0 before making the change using the following procedure. When the TE bit is cleared to 0, the TDRE flag in SSR is set to 1. Note that clearing the RE bit to 0 does not initialize the contents of the RDRF, PER, FER, and ORER flags in SSR, or the contents of RDR. When the external clock is used in asynchronous mode, the clock must be supplied even during initialization.

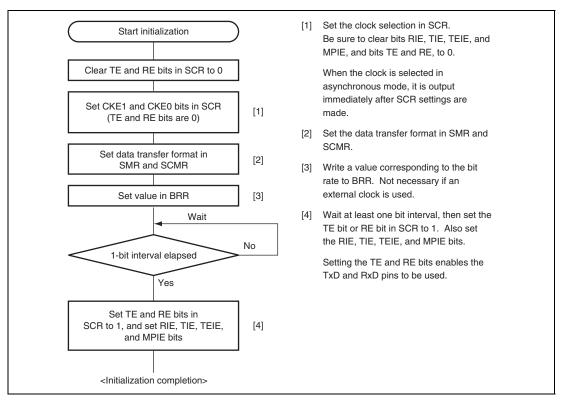


Figure 15.5 Sample SCI Initialization Flowchart

15.4.6 Serial Data Transmission (Asynchronous Mode)

Figure 15.6 shows an example of the operation for transmission in asynchronous mode. In transmission, the SCI operates as described below.

- 1. The SCI monitors the TDRE flag in SSR, and if it is cleared to 0, recognizes that data has been written to TDR, and transfers the data from TDR to TSR.
- 2. After transferring data from TDR to TSR, the SCI sets the TDRE flag to 1 and starts transmission. If the TIE bit in SCR is set to 1 at this time, a transmit data empty interrupt request (TXI) is generated. Because the TXI interrupt routine writes the next transmit data to TDR before transmission of the current transmit data has finished, continuous transmission can be enabled.
- 3. Data is sent from the TxD pin in the following order: start bit, transmit data, parity bit or multiprocessor bit (may be omitted depending on the format), and stop bit.
- 4. The SCI checks the TDRE flag at the timing for sending the stop bit.
- 5. If the TDRE flag is 0, the data is transferred from TDR to TSR, the stop bit is sent, and then serial transmission of the next frame is started.
- 6. If the TDRE flag is 1, the TEND flag in SSR is set to 1, the stop bit is sent, and then the "mark state" is entered in which 1 is output. If the TEIE bit in SCR is set to 1 at this time, a TEI interrupt request is generated.

Figure 15.7 shows a sample flowchart for transmission in asynchronous mode.

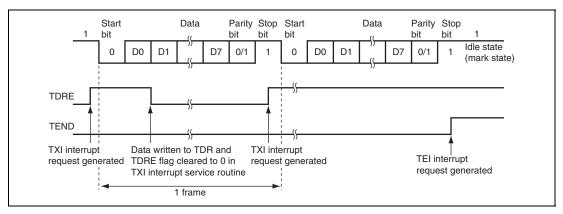


Figure 15.6 Example of Operation in Transmission in Asynchronous Mode (Example with 8-Bit Data, Parity, One Stop Bit)

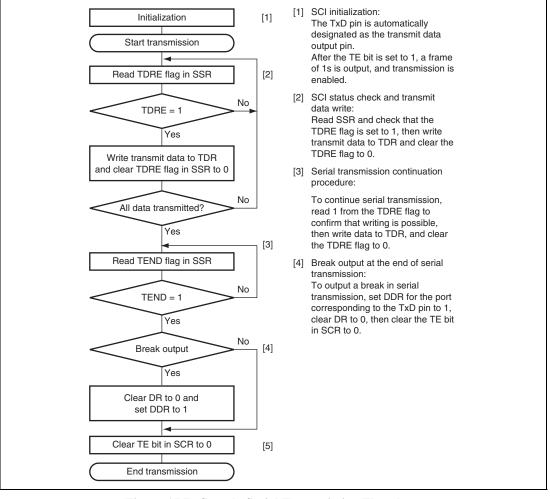


Figure 15.7 Sample Serial Transmission Flowchart

15.4.7 Serial Data Reception (Asynchronous Mode)

Figure 15.8 shows an example of the operation for reception in asynchronous mode. In serial reception, the SCI operates as described below.

- 1. The SCI monitors the communication line, and if a start bit is detected, performs internal synchronization, receives receive data in RSR, and checks the parity bit and stop bit.
- 2. If an overrun error (when reception of the next data is completed while the RDRF flag in SSR is still set to 1) occurs, the ORER flag in SSR is set to 1. If the RIE bit in SCR is set to 1 at this time, an ERI interrupt request is generated. Receive data is not transferred to RDR. The RDRF flag remains to be set to 1.
- 3. If a parity error is detected, the PER flag in SSR is set to 1 and receive data is transferred to RDR. If the RIE bit in SCR is set to 1 at this time, an ERI interrupt request is generated.
- 4. If a framing error (when the stop bit is 0) is detected, the FER flag in SSR is set to 1 and receive data is transferred to RDR. If the RIE bit in SCR is set to 1 at this time, an ERI interrupt request is generated.
- 5. If reception finishes successfully, the RDRF flag in SSR is set to 1, and receive data is transferred to RDR. If the RIE bit in SCR is set to 1 at this time, an RXI interrupt request is generated. Because the RXI interrupt routine reads the receive data transferred to RDR before reception of the next receive data has finished, continuous reception can be enabled.

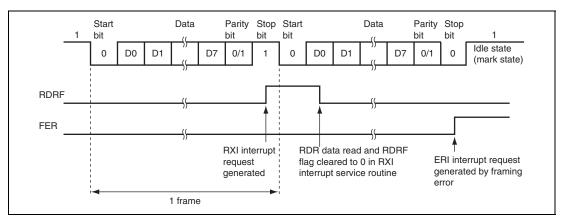


Figure 15.8 Example of SCI Operation in Reception (Example with 8-Bit Data, Parity, One Stop Bit)

Table 15.11 shows the states of the SSR status flags and receive data handling when a receive error is detected. If a receive error is detected, the RDRF flag retains its state before receiving data. Reception cannot be resumed while a receive error flag is set to 1. Accordingly, clear the ORER, FER, PER, and RDRF flags to 0 before resuming reception. Figure 15.9 shows a sample flowchart for serial data reception.

Table 15.11 SSR Status Flags and Receive Data Handling

SSR Status Flag

RDRF*	ORER	FER	PER	Receive Data	Receive Error Type
1	1	0	0	Lost	Overrun error
0	0	1	0	Transferred to RDR	Framing error
0	0	0	1	Transferred to RDR	Parity error
1	1	1	0	Lost	Overrun error + framing error
1	1	0	1	Lost	Overrun error + parity error
0	0	1	1	Transferred to RDR	Framing error + parity error
1	1	1	1	Lost	Overrun error + framing error + parity error

The RDRF flag retains the state it had before data reception. Note:

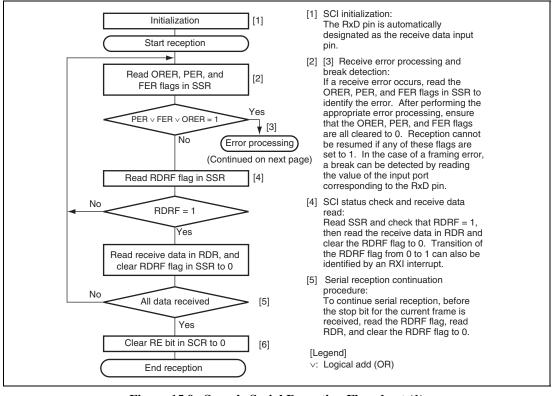


Figure 15.9 Sample Serial Reception Flowchart (1)

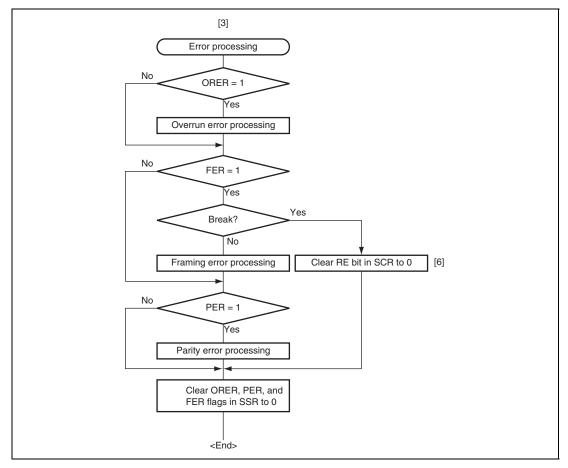


Figure 15.9 Sample Serial Reception Flowchart (2)

15.5 Multiprocessor Communication Function

Use of the multiprocessor communication function enables data transfer to be performed among a number of processors sharing communication lines by means of asynchronous serial communication using the multiprocessor format, in which a multiprocessor bit is added to the transfer data. When multiprocessor communication is carried out, each receiving station is addressed by a unique ID code. The serial communication cycle consists of two component cycles: an ID transmission cycle which specifies the receiving station, and a data transmission cycle for the specified receiving station. The multiprocessor bit is used to differentiate between the ID transmission cycle and the data transmission cycle. If the multiprocessor bit is 1, the cycle is an ID transmission cycle, and if the multiprocessor bit is 0, the cycle is a data transmission cycle. Figure 15.10 shows an example of inter-processor communication using the multiprocessor format. The transmitting station first sends the ID code of the receiving station with which it wants to perform serial communication as data with a 1 multiprocessor bit added. It then sends transmit data as data with a 0 multiprocessor bit added. When data with a 1 multiprocessor bit is received, the receiving station compares that data with its own ID. The station whose ID matches then receives the data sent next. Stations whose ID does not match continue to skip data until data with a 1 multiprocessor bit is again received.

The SCI uses the MPIE bit in SCR to implement this function. When the MPIE bit is set to 1, transfer of receive data from RSR to RDR, error flag detection, and setting the RDRF, FER, and ORER status flags in SSR to 1 are prohibited until data with a 1 multiprocessor bit is received. On reception of a receive character with a 1 multiprocessor bit, the MPB bit in SSR is set to 1 and the MPIE bit is automatically cleared, thus normal reception is resumed. If the RIE bit in SCR is set to 1 at this time, an RXI interrupt is generated.

When the multiprocessor format is selected, the parity bit setting is invalid. All other bit settings are the same as those in normal asynchronous mode. The clock used for multiprocessor communication is the same as that in normal asynchronous mode.

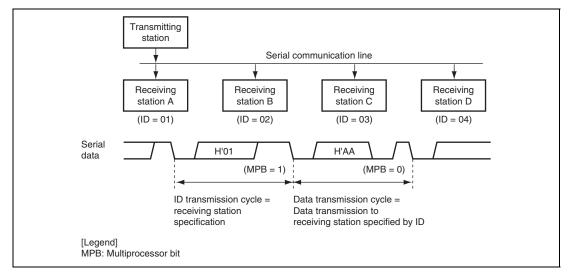


Figure 15.10 Example of Communication Using Multiprocessor Format (Transmission of Data H'AA to Receiving Station A)

15.5.1 Multiprocessor Serial Data Transmission

Figure 15.11 shows a sample flowchart for multiprocessor serial data transmission. For an ID transmission cycle, set the MPBT bit in SSR to 1 before transmission. For a data transmission cycle, clear the MPBT bit in SSR to 0 before transmission. All other SCI operations are the same as those in asynchronous mode.

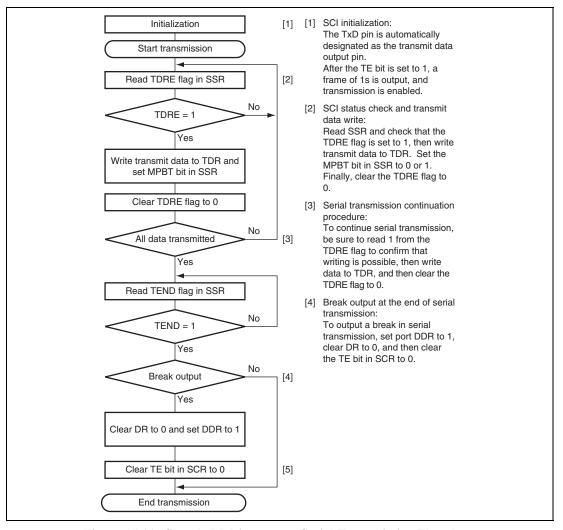


Figure 15.11 Sample Multiprocessor Serial Transmission Flowchart

15.5.2 Multiprocessor Serial Data Reception

Figure 15.13 shows a sample flowchart for multiprocessor serial data reception. If the MPIE bit in SCR is set to 1, data is skipped until data with a 1 multiprocessor bit is sent. On receiving data with a 1 multiprocessor bit, the receive data is transferred to RDR. An RXI interrupt request is generated at this time. All other SCI operations are the same as in asynchronous mode. Figure 15.12 shows an example of SCI operation for multiprocessor format reception.

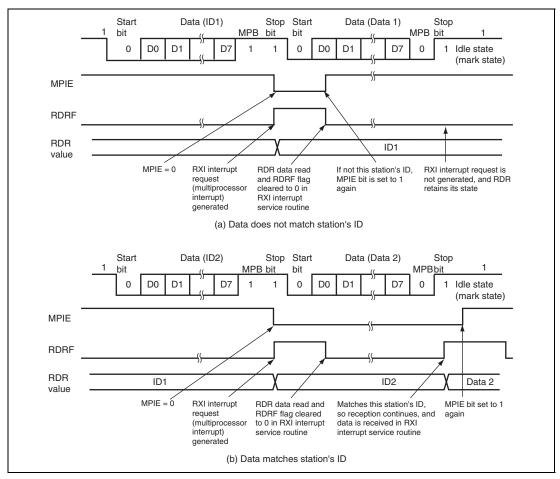


Figure 15.12 Example of SCI Operation in Reception (Example with 8-Bit Data, Multiprocessor Bit, One Stop Bit)

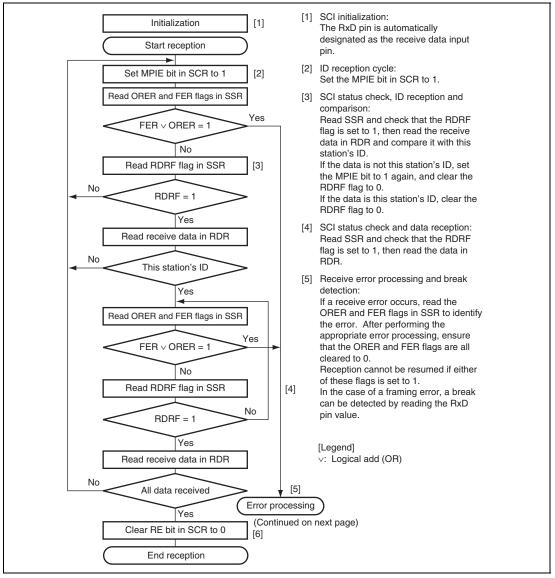


Figure 15.13 Sample Multiprocessor Serial Reception Flowchart (1)

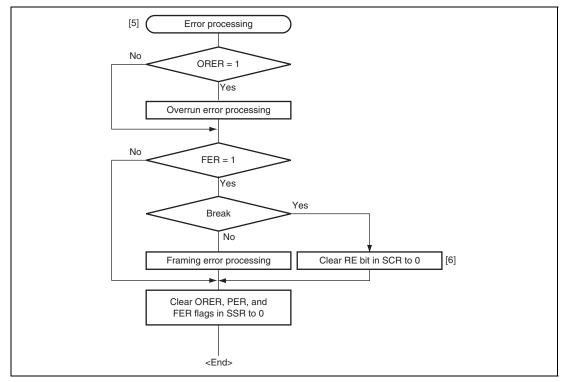


Figure 15.13 Sample Multiprocessor Serial Reception Flowchart (2)

15.6 Operation in Clocked Synchronous Mode

Figure 15.14 shows the general format for clocked synchronous communication. In clocked synchronous mode, data is transmitted or received in synchronization with clock pulses. One character in transfer data consists of 8-bit data. In data transmission, the SCI outputs data from one falling edge of the synchronization clock to the next. In data reception, the SCI receives data in synchronization with the rising edge of the synchronization clock. After 8-bit data is output, the transmission line holds the MSB state. In clocked synchronous mode, no parity or multiprocessor bit is added. Inside the SCI, the transmitter and receiver are independent units, enabling full-duplex communication by use of a common clock. Both the transmitter and the receiver also have a double-buffered structure, so that the next transmit data can be written during transmission or the previous receive data can be read during reception, enabling continuous data transfer.

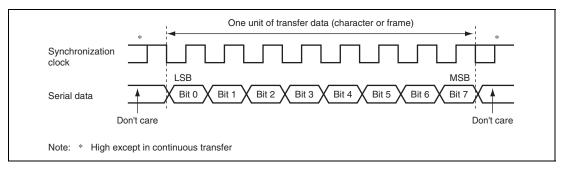


Figure 15.14 Data Format in Synchronous Communication (LSB-First)

15.6.1 Clock

Either an internal clock generated by the on-chip baud rate generator or an external synchronization clock input at the SCK pin can be selected, according to the setting of the CKE1 and CKE0 bits in SCR. When the SCI is operated on an internal clock, the synchronization clock is output from the SCK pin. Eight synchronization clock pulses are output in the transfer of one character, and when no transfer is performed the clock is fixed high.

15.6.2 SCI Initialization (Clocked Synchronous Mode)

Before transmitting and receiving data, you should first clear the TE and RE bits in SCR to 0, then initialize the SCI as described in a sample flowchart in figure 15.15. When the operating mode, transfer format, etc., is changed, the TE and RE bits must be cleared to 0 before making the change using the following procedure. When the TE bit is cleared to 0, the TDRE flag in SSR is set to 1. However, clearing the RE bit to 0 does not initialize the RDRF, PER, FER, and ORER flags in SSR, or RDR.

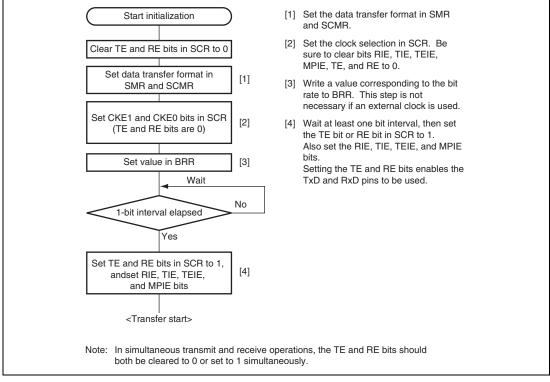


Figure 15.15 Sample SCI Initialization Flowchart

15.6.3 Serial Data Transmission (Clocked Synchronous Mode)

Figure 15.16 shows an example of SCI operation for transmission in clocked synchronous mode. In serial transmission, the SCI operates as described below.

- 1. The SCI monitors the TDRE flag in SSR, and if it is 0, recognizes that data has been written to TDR, and transfers the data from TDR to TSR.
- 2. After transferring data from TDR to TSR, the SCI sets the TDRE flag to 1 and starts transmission. If the TIE bit in SCR is set to 1 at this time, a TXI interrupt request is generated. Because the TXI interrupt routine writes the next transmit data to TDR before transmission of the current transmit data has finished, continuous transmission can be enabled.
- 8-bit data is sent from the TxD pin synchronized with the output clock when output clock mode has been specified and synchronized with the input clock when use of an external clock has been specified.
- 4. The SCI checks the TDRE flag at the timing for sending the last bit.
- 5. If the TDRE flag is cleared to 0, data is transferred from TDR to TSR, and serial transmission of the next frame is started.
- 6. If the TDRE flag is set to 1, the TEND flag in SSR is set to 1, and the TxD pin maintains the output state of the last bit. If the TEIE bit in SCR is set to 1 at this time, a TEI interrupt request is generated. The SCK pin is fixed high.

Figure 15.17 shows a sample flowchart for serial data transmission. Even if the TDRE flag is cleared to 0, transmission will not start while a receive error flag (ORER, FER, or PER) is set to 1. Make sure to clear the receive error flags to 0 before starting transmission. Note that clearing the RE bit to 0 does not clear the receive error flags.

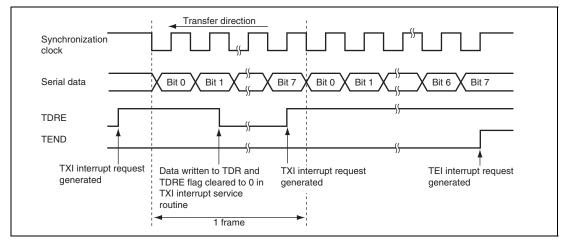


Figure 15.16 Sample SCI Transmission Operation in Clocked Synchronous Mode

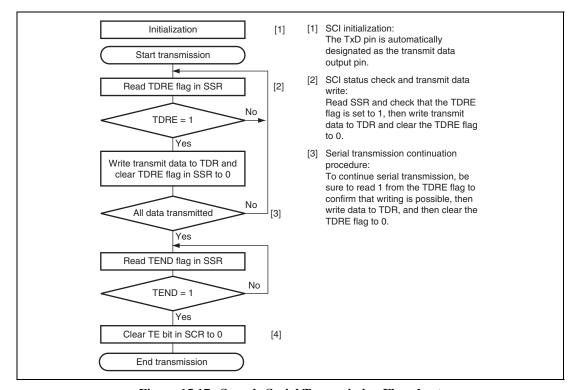


Figure 15.17 Sample Serial Transmission Flowchart

15.6.4 Serial Data Reception (Clocked Synchronous Mode)

Figure 15.18 shows an example of SCI operation for reception in clocked synchronous mode. In serial reception, the SCI operates as described below.

- 1. The SCI performs internal initialization in synchronization with a synchronization clock input or output, starts receiving data, and stores the receive data in RSR.
- 2. If an overrun error (when reception of the next data is completed while the RDRF flag is still set to 1) occurs, the ORER bit in SSR is set to 1. If the RIE bit in SCR is set to 1 at this time, an ERI interrupt request is generated. Receive data is not transferred to RDR. The RDRF flag remains to be set to 1.
- 3. If reception finishes successfully, the RDRF bit in SSR is set to 1, and receive data is transferred to RDR. If the RIE bit in SCR is set to 1 at this time, an RXI interrupt request is generated. Because the RXI interrupt routine reads the receive data transferred to RDR before reception of the next receive data has finished, continuous reception can be enabled.

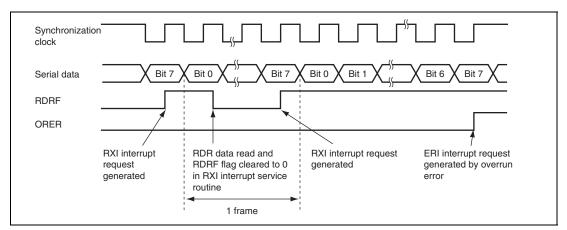


Figure 15.18 Example of SCI Receive Operation in Clocked Synchronous Mode

Reception cannot be resumed while a receive error flag is set to 1. Accordingly, clear the ORER, FER, PER, and RDRF bits to 0 before resuming reception. Figure 15.19 shows a sample flowchart for serial data reception.

Page 425 of 1054

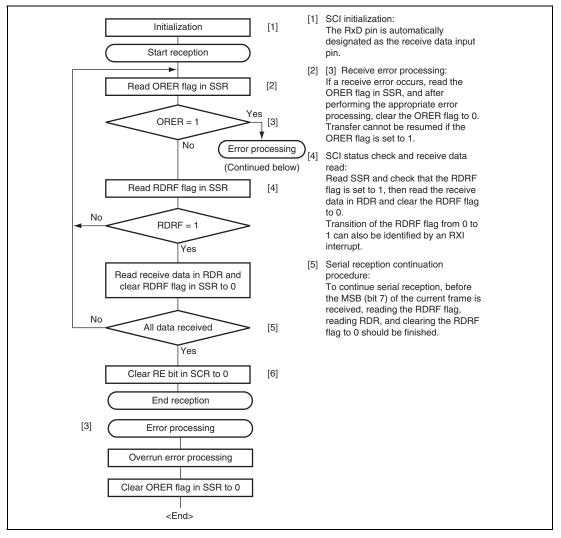


Figure 15.19 Sample Serial Reception Flowchart

Page 426 of 1054

15.6.5 Simultaneous Serial Data Transmission and Reception (Clocked Synchronous Mode)

Figure 15.20 shows a sample flowchart for simultaneous serial transmit and receive operations. After initializing the SCI, the following procedure should be used for simultaneous serial data transmit and receive operations. To switch from transmit mode to simultaneous transmit and receive mode, after checking that the SCI has finished transmission and the TDRE and TEND flags in SSR are set to 1, clear the TE bit in SCR to 0. Then simultaneously set the TE and RE bits to 1 with a single instruction. To switch from receive mode to simultaneous transmit and receive mode, after checking that the SCI has finished reception, clear the RE bit to 0. Then after checking that the RDRF bit in SSR and receive error flags (ORER, FER, and PER) are cleared to 0, simultaneously set the TE and RE bits to 1 with a single instruction.

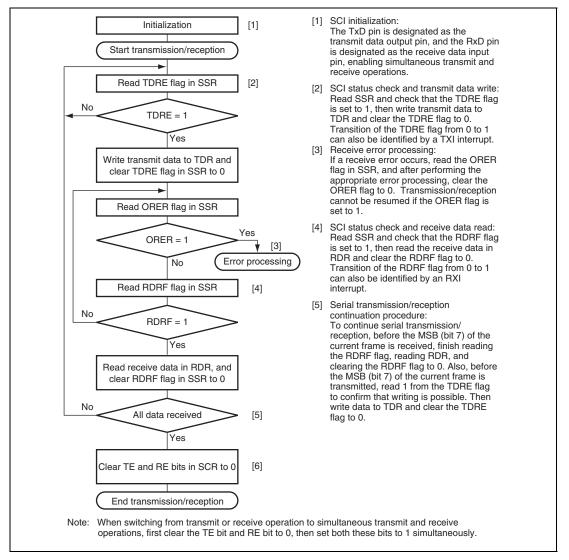


Figure 15.20 Sample Flowchart of Simultaneous Serial Transmission and Reception

15.7 Smart Card Interface Description

The SCI supports the IC card (smart card) interface based on the ISO/IEC 7816-3 (Identification Card) standard as an enhanced serial communication interface function. Smart card interface mode can be selected using the appropriate register.

15.7.1 Sample Connection

Figure 15.21 shows a sample connection between the smart card and this LSI. As in the figure, since this LSI communicates with the IC card using a single transmission line, interconnect the TxD and RxD pins and pull up the data transmission line to VCC using a resistor. Setting the RE and TE bits in SCR to 1 with the IC card not connected enables closed transmission/reception allowing self diagnosis. To supply the IC card with the clock pulses generated by the SCI, input the SCK pin output to the CLK pin of the IC card. A reset signal can be supplied via the output port of this LSI.

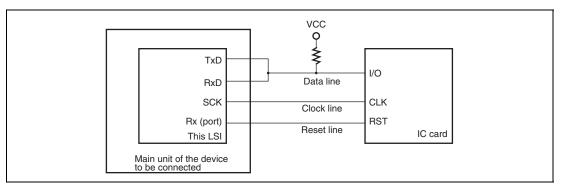


Figure 15.21 Pin Connection for Smart Card Interface

15.7.2 Data Format (Except in Block Transfer Mode)

Figure 15.22 shows the data transfer formats in smart card interface mode.

- One frame contains 8-bit data and a parity bit in asynchronous mode.
- During transmission, at least 2 etu (elementary time unit: time required for transferring one bit) is secured as a guard time after the end of the parity bit before the start of the next frame.
- If a parity error is detected during reception, a low error signal is output for 1 etu after 10.5 etu has passed from the start bit.
- If an error signal is sampled during transmission, the same data is automatically re-transmitted after two or more etu.

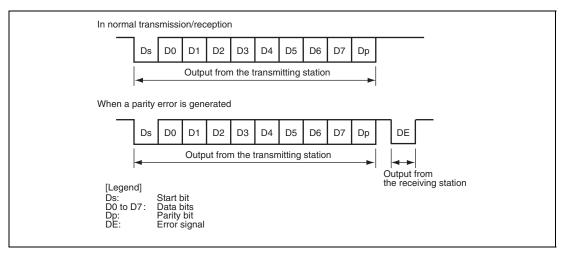


Figure 15.22 Data Formats in Normal Smart Card Interface Mode

For communication with the IC cards of the direct convention and inverse convention types, follow the procedure below.

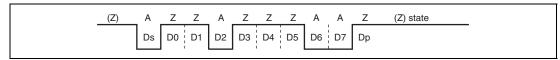


Figure 15.23 Direct Convention (SDIR = SINV = O/E = 0)

For the direct convention type, logic levels 1 and 0 correspond to states Z and A, respectively, and data is transferred with LSB-first as the start character, as shown in figure 15.23. Therefore, data in the start character in the figure is H'3B. When using the direct convention type, write 0 to both the SDIR and SINV bits in SCMR. Write 0 to the O/E bit in SMR in order to use even parity, which is prescribed by the smart card standard.

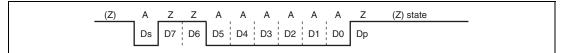


Figure 15.24 Inverse Convention (SDIR = SINV = O/E = 1)

For the inverse convention type, logic levels 1 and 0 correspond to states A and Z, respectively and data is transferred with MSB-first as the start character, as shown in figure 15.24. Therefore, data in the start character in the figure is H'3F. When using the inverse convention type, write 1 to both the SDIR and SINV bits in SCMR. The parity bit is logic level 0 to produce even parity, which is prescribed by the smart card standard, and corresponds to state Z. Since the SINV bit of this LSI only inverts data bits D7 to D0, write 1 to the O/E bit in SMR to invert the parity bit in both transmission and reception.

15.7.3 Block Transfer Mode

Page 430 of 1054

Block transfer mode is different from normal smart card interface mode in the following respects.

- If a parity error is detected during reception, no error signal is output. Since the PER bit in SSR is set by error detection, clear the bit before receiving the parity bit of the next frame.
- During transmission, at least 1 etu is secured as a guard time after the end of the parity bit before the start of the next frame.
- Since the same data is not re-transmitted during transmission, the TEND flag in SSR is set 11.5 etu after transmission start.
- Although the ERS flag in block transfer mode displays the error signal status as in normal smart card interface mode, the flag is always read as 0 because no error signal is transferred.

15.7.4 Receive Data Sampling Timing and Reception Margin

Only the internal clock generated by the internal baud rate generator can be used as a communication clock in smart card interface mode. In this mode, the SCI can operate using a basic clock with a frequency of 93, 128, 186, 512, 32, 64, 372, or 256 times the bit rate according to the BCP2, BCP1, and BCP0 settings. At reception, the falling edge of the start bit is sampled using the internal basic clock in order to perform internal synchronization. Receive data is sampled at the 46th, 64th, 93rd, 256th, 16th, 32nd, 186th, and 128th rising edges of the basic clock pulses so that it can be latched at the center of each bit as shown in figure 15.25. The reception margin here is determined by the following formula.

$$M = \left| \; (0.5 - \frac{1}{2N} \;) - (L - 0.5) \; F - \frac{\left| \; D - 0.5 \; \right|}{N} \; (1 + F) \; \right| \; \times \; 100 \; [\%] \quad \cdots \quad \text{Formula (1)}$$

M: Reception margin (%)

N: Ratio of bit rate to clock (N = 93, 128, 186, 512, 32, 64, 372, or 256)

D: Clock duty (D = 0 to 1.0)

L: Frame length (L = 10)

F: Absolute value of clock rate deviation

Assuming values of F = 0, D = 0.5, and N = 372 in formula (1), the reception margin is determined by the formula below.

$$M = \{ 0.5 - 1 / (2 \times 372) \} \times 100 [\%] = 49.866\%$$

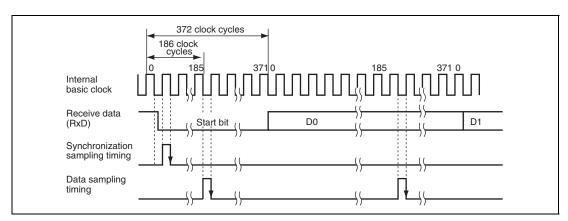


Figure 15.25 Receive Data Sampling Timing in Smart Card Interface Mode (When Clock Frequency is 372 Times the Bit Rate)

15.7.5 Initialization

Before starting transmitting and receiving data, initialize the SCI using the following procedure. Initialization is also necessary before switching from transmission to reception and vice versa.

- 1. Clear the TE and RE bits in SCR to 0.
- 2. Clear the error flags ORER, ERS, and PER in SSR to 0.
- 3. Set the GM, BLK, O/E, BCP1, BCP0, CKS1, and CKS0 bits in SMR, and the BCP2 bit in SCMR, appropriately. Also set the PE bit to 1.
- 4. Set the SMIF, SDIR, and SINV bits in SCMR appropriately. When the SMIF bit is set to 1, the TxD and RxD pins are changed from port pins to SCI pins, placing the pins into high impedance state.
- 5. Set the value corresponding to the bit rate in BRR.
- 6. Set the CKE1 and CKE0 bits in SCR appropriately. Clear the TIE, RIE, TE, RE, MPIE, and TEIE bits to 0 simultaneously. When the CKE0 bit is set to 1, the SCK pin is allowed to output clock pulses.
- 7. Set the TIE, RIE, TE, and RE bits in SCR appropriately after waiting for at least 1 bit interval. Setting prohibited the TE and RE bits to 1 simultaneously except for self diagnosis.

To switch from reception to transmission, first verify that reception has completed, and initialize the SCI. At the end of initialization, RE and TE should be set to 0 and 1, respectively. Reception completion can be verified by reading the RDRF flag or PER and ORER flags. To switch from transmission to reception, first verify that transmission has completed, and initialize the SCI. At the end of initialization, TE and RE should be set to 0 and 1, respectively. Transmission completion can be verified by reading the TEND flag.

15.7.6 Serial Data Transmission (Except in Block Transfer Mode)

Data transmission in smart card interface mode (except in block transfer mode) is different from that in normal serial communication interface mode in that an error signal is sampled and data is re-transmitted. Figure 15.26 shows the data re-transfer operation during transmission.

- 1. If an error signal from the receiving end is sampled after one frame of data has been transmitted, the ERS bit in SSR is set to 1. Here, an ERI interrupt request is generated if the RIE bit in SCR is set to 1. Clear the ERS bit to 0 before the next parity bit is sampled.
- 2. For the frame in which an error signal is received, the TEND bit in SSR is not set to 1. Data is re-transferred from TDR to TSR allowing automatic data retransmission.
- 3. If no error signal is returned from the receiving end, the ERS bit in SSR is not set to 1. In this case, one frame of data is determined to have been transmitted including re-transfer, and the TEND bit in SSR is set to 1. Here, a TXI interrupt request is generated if the TIE bit in SCR is set to 1. Writing transmit data to TDR starts transmission of the next data.

Figure 15.28 shows a sample flowchart for transmission. In transmission, the TEND and TDRE flags in SSR are simultaneously set to 1, thus generating a TXI interrupt request when TIE in SCR is set. If an error occurs, the SCI automatically re-transmist the same data. During re-transmission, TEND remains 0. Therefore, the SCI automatically transmit the specified number of bytes, including re-transmission in the case of error. However, the ERS flag is not automatically cleared; the ERS flag must be cleared by previously setting the RIE bit to 1 to enable an ERI interrupt request to be generated at error occurrence.

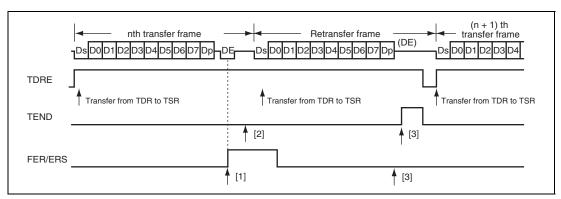


Figure 15.26 Data Re-transfer Operation in SCI Transmission Mode

Note that the TEND flag is set in different timings depending on the GM bit setting in SMR, which is shown in figure 15.27.

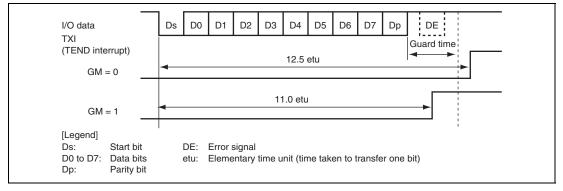


Figure 15.27 TEND Flag Set Timings during Transmission

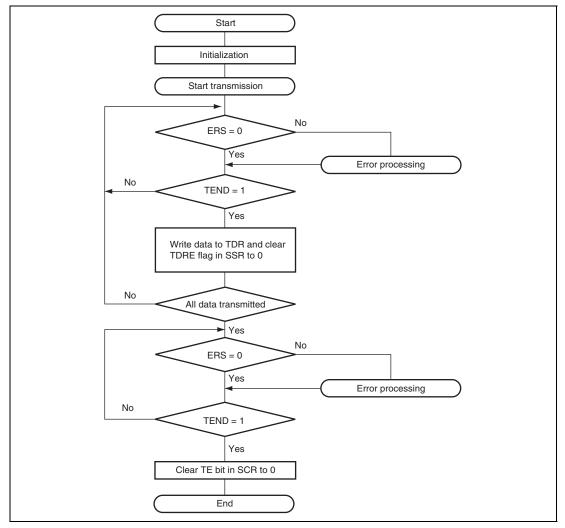


Figure 15.28 Sample Transmission Flowchart

15.7.7 Serial Data Reception (Except in Block Transfer Mode)

Data reception in smart card interface mode is identical to that in normal serial communication interface mode. Figure 15.29 shows the data re-transfer operation during reception.

- 1. If a parity error is detected in receive data, the PER bit in SSR is set to 1. Here, an ERI interrupt request is generated if the RIE bit in SCR is set to 1. Clear the PER bit to 0 before the next parity bit is sampled.
- 2. For the frame in which a parity error is detected, the RDRF bit in SSR is not set to 1.
- 3. If no parity error is detected, the PER bit in SSR is not set to 1. In this case, data is determined to have been received successfully, and the RDRF bit in SSR is set to 1. Here, an RXI interrupt request is generated if the RIE bit in SCR is set.

Figure 15.30 shows a sample flowchart for reception. In reception, setting the RIE bit to 1 allows an RXI interrupt request to be generated when the RDRF flag is set to 1. If an error occurs during reception, i.e., either the ORER or PER flag is set to 1, a transmit/receive error interrupt (ERI) request is generated and the error flag must be cleared. Even if a parity error occurs and PER is set to 1 in reception, receive data is transferred to RDR, thus allowing the data to be read.

Note: For operations in block transfer mode, see section 15.4, Operation in Asynchronous Mode.

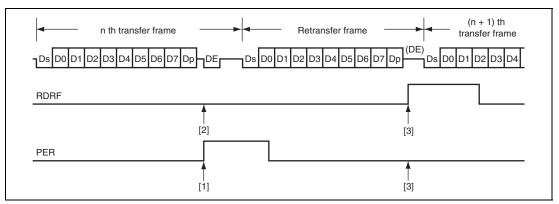


Figure 15.29 Data Re-transfer Operation in SCI Reception Mode

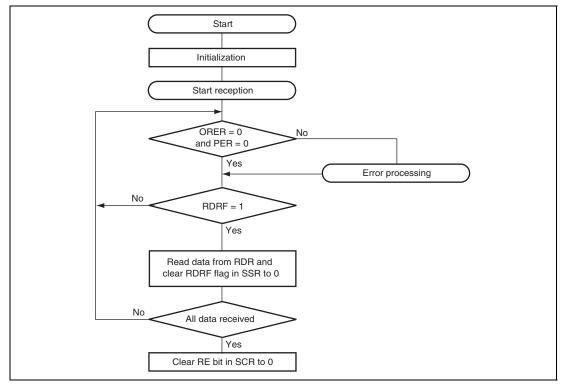


Figure 15.30 Sample Reception Flowchart

15.7.8 Clock Output Control

Clock output can be fixed using the CKE1 and CKE0 bits in SCR when the GM bit in SMR is set to 1. Specifically, the minimum width of a clock pulse can be specified.

Figure 15.31 shows an example of clock output fixing timing when the CKE0 bit is controlled with GM = 1 and CKE1 = 0.

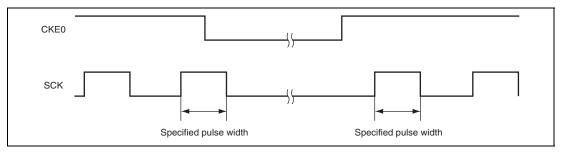


Figure 15.31 Clock Output Fixing Timing

At power-on and transitions to/from software standby mode, use the following procedure to secure the appropriate clock duty ratio.

(1) At Power-On

To secure the appropriate clock duty ratio simultaneously with power-on, use the following procedure.

- 1. Initially, port input is enabled in the high-impedance state. To fix the potential level, use a pull-up or pull-down resistor.
- 2. Fix the SCK pin to the specified output using the CKE1 bit in SCR.
- 3. Set SMR and SCMR to enable smart card interface mode.
- 4. Set the CKE0 bit in SCR to 1 to start clock output.

(2) At Transition from Smart Card Interface Mode to Software Standby Mode

- 1. Set the port data register (ODR) and data direction register (DDR) corresponding to the SCK pins to the values for the output fixed state in software standby mode.
- 2. Write 0 to the TE and RE bits in SCR to stop transmission/reception. Simultaneously, set the CKE1 bit to the value for the output fixed state in software standby mode.
- 3. Write 0 to the CKE0 bit in SCR to stop the clock.
- 4. Wait for one cycle of the serial clock. In the mean time, the clock output is fixed to the specified level with the duty ratio retained.
- 5. Make the transition to software standby mode.

(3) At Transition from Software Standby Mode to Smart Card Interface Mode

- 1. Cancel software standby mode.
- 2. Write 1 to the CKE0 bit in SCR to start clock output. A clock signal with the appropriate duty ratio is then generated.

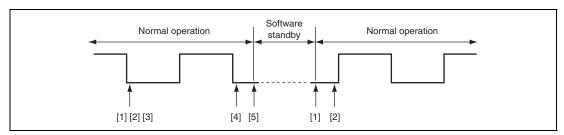


Figure 15.32 Clock Stop and Restart Procedure

15.8 Interrupt Sources

15.8.1 Interrupts in Normal Serial Communication Interface Mode

Table 15.12 shows the interrupt sources in normal serial communication interface mode. A different interrupt vector is assigned to each interrupt source, and individual interrupt sources can be enabled or disabled using the enable bits in SCR.

When the TDRE flag in SSR is set to 1, a TXI interrupt request is generated. When the TEND flag in SSR is set to 1, a TEI interrupt request is generated. The TDRE flag cannot be cleared to 0 when the TE bit in SCR is 0. Therefore, the TIE bit in SCR should not be set to 1.

When the RDRF flag in SSR is set to 1, an RXI interrupt request is generated. When the ORER, PER, or FER flag in SSR is set to 1, an ERI interrupt request is generated.

A TEI interrupt is requested when the TEND flag is set to 1 while the TEIE bit is set to 1. If a TEI interrupt and a TXI interrupt are requested simultaneously, the TXI interrupt has priority for acceptance. However, note that if the TDRE and TEND flags are cleared simultaneously by the TXI interrupt routine, the SCI cannot branch to the TEI interrupt routine later.

Table 15.12 SCI Interrupt Sources

Channel	Name	Interrupt Source	Interrupt Flag	Priority
1	ERI1	Receive error	ORER, FER, PER	High
	RXI1	Receive data full	RDRF	↑
	TXI1	Transmit data empty	TDRE	
	TEI1	Transmit end	TEND	Low

15.8.2 Interrupts in Smart Card Interface Mode

Table 15.13 shows the interrupt sources in smart card interface mode. A TEI interrupt request cannot be used in this mode.

Table 15.13 SCI Interrupt Sources

Channel	Name	Interrupt Source	Interrupt Flag	Priority
1	ERI1	Receive error, error signal detection	ORER, PER, ERS	High ∱
	RXI1	Receive data full	RDRF	_
	TXI1	Transmit data empty	TDRE	Low

In transmission, if the TEND flag in SSR is set to 1, a TXI interrupt request is generated. If an error occurs, the SCI automatically re-transmits the same data. During re-transmission, the TEND flag remains 0. Therefore, the SCI automatically transmits the specified number of bytes, including re-transmission in the case of error. However, the ERS flag in SSR, which is set at error occurrence, is not automatically cleared; the ERS flag must be cleared by previously setting the RIE bit in SCR to 1 to enable an ERI interrupt request to be generated at error occurrence.

In reception, an RXI interrupt request is generated when the RDRF flag in SSR is set to 1. If an error occurs, the RDRF flag is not set but the error flag is set. Therefore, an ERI interrupt request is issued to the CPU instead; the error flag must be cleared.

15.9 Usage Notes

15.9.1 Module Stop Mode Setting

SCI operation can be disabled or enabled using the module stop control register. The initial setting is for SCI operation to be halted. Register access is enabled by clearing module stop mode. For details, see section 29, Power-Down Modes.

15.9.2 Break Detection and Processing

When framing error detection is performed, a break can be detected by reading the RxD pin value directly. In a break, the input from the RxD pin becomes all 0s, and so the FER flag in SSR is set, and the PER flag may also be set. Note that, since the SCI continues the receive operation even after receiving a break, even if the FER flag is cleared to 0, it will be set to 1 again.

15.9.3 Mark State and Break Sending

When the TE bit in SCR is 0, the TxD pin is used as an I/O port whose direction (input or output) and level are determined by ODR and DDR of the port. This can be used to set the TxD pin to mark state (high level) or send a break during serial data transmission. To maintain the communication line at mark state until TE is set to 1, set both DDR and ODR to 1. Since the TE bit is cleared to 0 at this point, the TxD pin becomes an I/O port, and 1 is output from the TxD pin. To send a break during serial transmission, first set DDR to 1 and ODR to 0, and then clear the TE bit to 0. When the TE bit is cleared to 0, the transmitter is initialized regardless of the current transmission state, the TxD pin becomes an I/O port, and 0 is output from the TxD pin.

15.9.4 Receive Error Flags and Transmit Operations (Clocked Synchronous Mode Only)

Transmission cannot be started when a receive error flag (ORER) is SSR is set to 1, even if the TDRE flag in SSR is cleared to 0. Be sure to clear the receive error flags to 0 before starting transmission. Note also that the receive error flags cannot be cleared to 0 even if the RE bit in SCR is cleared to 0.

15.9.5 Relation between Writing to TDR and TDRE Flag

Data can be written to TDR irrespective of the TDRE flag status in SSR. However, if the new data is written to TDR when the TDRE flag is 0, that is, when the previous data has not been transferred to TSR yet, the previous data in TDR is lost. Be sure to write transmit data to TDR after verifying that the TDRE flag is set to 1.

15.9.6 **Operation When Entering Power-Down Modes**

Transmission (1)

Before making the transition to module stop or software standby, stop all transmit operations (TE = TIE = TEIE = 0). TSR, TDRE, and TEND are reset. The states of the output pins during each mode depend on the port settings, and the pins output a high-level signal after mode is cancelled and then the TE is set to 1 again. If the transition is made during data transmission, the data being transmitted will be undefined.

To transmit data in the same transmission mode after mode cancellation, set TE to 1, read SSR, write to TDR, clear TDRE in this order, and then start transmission. To transmit data in a different transmission mode, initialize the SCI first.

Figure 15.33 shows a sample flowchart for mode transition during transmission. Figures 15.34 and 15.35 show the pin states during transmission.

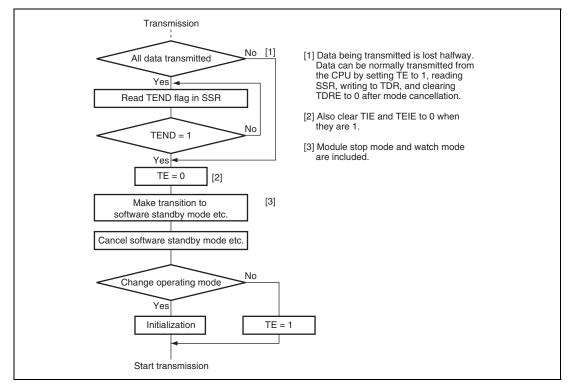


Figure 15.33 Sample Flowchart for Mode Transition during Transmission

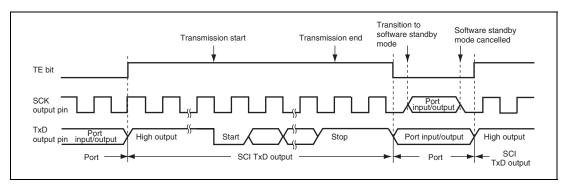


Figure 15.34 Pin States during Transmission in Asynchronous Mode (Internal Clock)

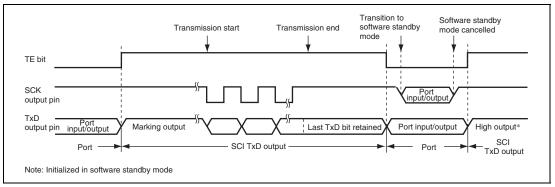


Figure 15.35 Pin States during Transmission in Clocked Synchronous Mode (Internal Clock)

(2) Reception

Before making the transition to module stop, software standby or watch mode, stop reception (RE = 0). If transition is made during data reception, the data being received will be invalid.

To receive data in the same reception mode after mode cancellation, set RE to 1, and then start reception. To receive data in a different reception mode, initialize the SCI first.

Figure 15.36 shows a sample flowchart for mode transition during reception.

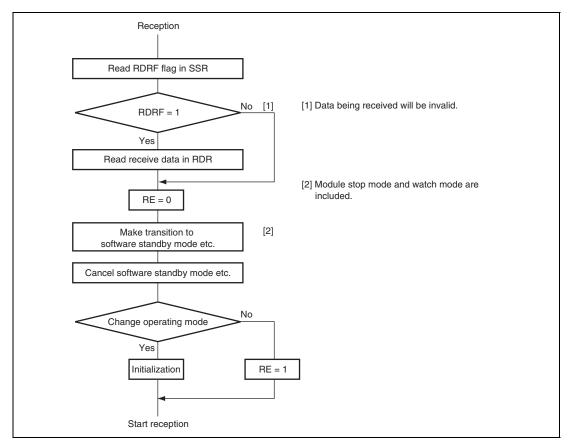


Figure 15.36 Sample Flowchart for Mode Transition during Reception

15.9.7 Note on Writing to Registers in Transmission, Reception, and Simultaneous Transmission and Reception

After 1 is set to the TE and RE bits in SCR to start transmission, reception, and simultaneous transmission and reception, do not write to SMR, SCR, BRR, SCMR, and SEMR. Also, do not overwrite the same value as the register value. However, this does not apply when a register is written to clear the TE and RE bits in SCR to 0 after transmission, reception, or simultaneous transmission and reception is completed. Reading is always allowed.

Section 16 Serial Communication Interface with FIFO (SCIF)

This LSI has single-channel serial communication interface with FIFO buffers (SCIF) that supports asynchronous serial communication.

The SCIF enables asynchronous serial communication with standard asynchronous communication LSIs such as a Universal Asynchronous Receiver/Transmitter (UART). The SCIF also has independent 16-stage FIFO buffers for transmission and reception to provide efficient high-speed continuous communication.

In addition, the SCIF can be connected to the LPC interface for direct control from the LPC host.

16.1 Features

- Full-duplex communication:
 - The transmitter and receiver are independent, enabling transmission and reception to be executed simultaneously. Both the transmitter and receiver use 16-stage FIFO buffering, enabling continuous transmission and continuous reception of serial data.
- On-chip baud rate generator allows any bit rate to be selected
- Modem control function
- Data length: Selectable from 5, 6, 7, and 8 bits
- Parity: Selectable from even parity, odd parity, and no parity
- Stop bit length: Selectable from 1, 1.5, and 2 bits
- Receive error detection: Parity, overrun, and framing errors
- Break detection

Figure 16.1 shows a block diagram of the SCIF.

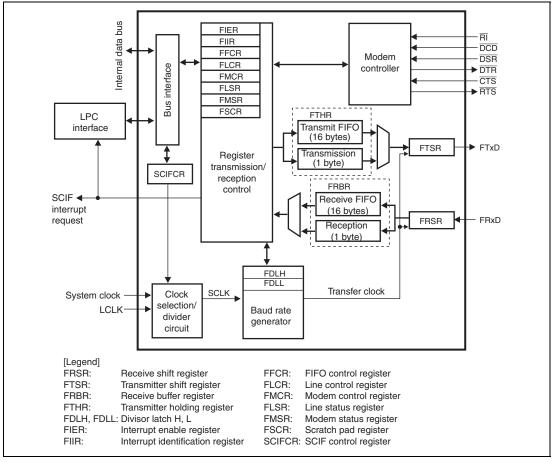


Figure 16.1 Block Diagram of SCIF

16.2 Input/Output Pins

Table 16.1 lists the SCIF input/output pins.

Table 16.1 Pin Configuration

Pin Name	Input/Output	Function
FTxD	Output	Transmit data output
FRxD	Input	Receive data input
RI	Input	Ring indicator input
DCD	Input	Data carrier detect input
DSR	Input	Data set ready input
DTR	Output	Data terminal ready output
CTS	Input	Transmission permission input
RTS	Output	Transmission request output

16.3 Register Descriptions

The SCIF has the following registers. The register configuration of the SCIF is shown below. Access to the registers is switched by the SCIFE bit in HICR5 and bit 3 in MSTPCRB. For details, see table 16.3. For the SCIF address registers H and L (SCIFADRH, SCIFADRL) and serial IRQ control register 4 (SIRQCR4), see section 20, LPC Interface (LPC).

Table 16.2 Register Configuration

					Data Bus
Register Name	Abbreviation	R/W	Initial Value	Address	Width
Host interface control register 5	HICR5	R/W	H'00	H'FE33	8
Module stop control register B	MSTPCRB	R/W	H'00	H'FF99	8
Receive buffer register	FRBR	R	H'00	H'FC20	8
Transmitter holding register	FTHR	W	_	=	
Divisor latch L	FDLL	R/W	H'00	=	
Interrupt enable register	FIER	R/W	H'00	H'FC21	8
Divisor latch H	FDLH	R/W	H'00	=	
Interrupt identification register	FIIR	R	H'01	H'FC22	8
FIFO control register	FFCR	W	H'00	_	
Line control register	FLCR	R/W	H'00	H'FC23	8
Modem control register	FMCR	R/W	H'00	H'FC24	8
Line status register	FLSR	R	H'60	H'FC25	8
Modem status register	FMSR	R	_	H'FC26	8
Scratch pad register	FSCR	R/W	H'00	H'FC27	8
SCIF control register	SCIFCR	R/W	H'00	H'FC28	8
SCIF address register H	SCIFADRH	R/W	H'03	H'FDC4	8
SCIF address register L	SCIFADRL	R/W	H'F8	H'FDC5	8
Serial IRQ control register 4	SIRQCR4	R/W	H'00	H'FE3B	8

Table 16.3 Register Access

SCIFE Bit in HICR5		0		1
Bit 3 in MSTPCRB	0	1	0	1
SCIFCR	H8S CPU access* ²	Access disabled	H8S CPU access* ²	Access disabled
Other than SCIFCR	H8S CPU access* ²	Access disabled	LPC access*1	LPC access*1

Notes: 1. When LPC access is set, writing from the H8S CPU is disabled. The read value is H'FF.

2. When H8S CPU access is set, writing from the LPC is disabled. The read value is H'00.

16.3.1 Receive Shift Register (FRSR)

FRSR is a register that receives data and converts serial data input from the FRxD pin to parallel data. It stores the data in the order received from the LSB (bit 0). When one frame of serial data has been received, the data is transferred to FRBR.

FRSR cannot be read from the CPU/LPC interface.

16.3.2 Receive Buffer Register (FRBR)

FRBR is an 8-bit read-only register that stores received serial data. It can read data correctly when the DR bit in FLSR is set.

When the FIFO is disabled, the data in FRBR must be read before the next data is received. If new data is received before the remaining data is read, the data is overwritten, resulting in an overrun error.

When this register is read with the FIFO enabled, the first buffer of the receive FIFO is read. When the receive FIFO becomes full, the subsequent receive data is lost, resulting in an overrun error.

Bit	Bit Name	Initial Value	R/W	Description
7 to 0	7 to 0 Bit 7 to All 0		R	Stores received serial data.
	bit 0			The data is 16 bytes when the FIFO is enabled.

16.3.3 Transmitter Shift Register (FTSR)

FTSR is a register that converts parallel data to serial data and then transmits the serial data from the FTxD pin. When one frame transmission of serial data is completed, the next data is transferred from FTHR. The serial data is transmitted from the LSB (bit 0).

FTSR cannot be written from the H8S CPU/LPC interface.

16.3.4 Transmitter Holding Register (FTHR)

FTHR is an 8-bit write-only register that stores serial transmit data. It is accessible when the DLAB bit in FLCR is 0. Write transmit data while the THRE bit in FLCR is set to 1.

Data can be written to FTHR when the THRE bit is set with the FIFO disabled. If data is written to FTHR when the THRE bit is not set, the data is overwritten.

While the THRE bit is set with the FIFO enabled, up to 16 bytes of data can be written. If data is written with the FIFO full, the written data is lost.

Bit	Bit Name	Initial Value	R/W	Description
7 to 0 Bit 7 to bit 0		_	- W	Stores serial data to be transmitted.
	bit 0			The data is 16 bytes when the FIFO is enabled.

16.3.5 Divisor Latch H, L (FDLH, FDLL)

The FDLH and FDLL are registers used to set the baud rate. They are accessible when the DLAB bit in FLCR is 1. Frequency division ranging from 1 to $(2^{16} - 1)$ can be set with these registers. The frequency divider circuit stops when both of FDLH and FDLL are 0 (initial value).

FDLH

Bit	Bit Name	Initial Value	R/W	Description
7 to 0	Bit 7 to bit 0	All 0	R/W	Upper 8 bits of divisor latch

FDLL

Bit	Bit Name	Initial Value	R/W	Description
7 to 0	Bit 7 to bit 0	All 0	R/W	Lower 8 bits of divisor latch

Baud rate = (Clock frequency input to baud rate generator) / $(16 \times \text{divisor value})$

16.3.6 Interrupt Enable Register (FIER)

FIER is a register that enables or disables interrupts. It is accessible when the DLAB bit in FLCR is 0.

Bit	Bit Name	Initial Value	R/W	Description
7 to 4	_	All 0	R	Reserved
				This bit is always read as 0 and cannot be modified.
3	EDSSI	0	R/W	Modem Status Interrupt Enable
				0: Modem status interrupt disabled
				1: Modem status interrupt enabled
2	ELSI	0	R/W	Receive Line Status Interrupt Enable
				0: Receive line status interrupt disabled
				1: Receive line status interrupt enabled
1	ETBEI	0	R/W	FTHR Empty Interrupt Enable
				0: FTHR empty interrupt disabled
				1: FTHR empty interrupt enabled
0	ERBFI	0	R/W	Receive Data Ready Interrupt Enable
				A character timeout interrupt is included when the FIFO is enabled.
				0: Receive data ready interrupt disabled
				1: Receive data ready interrupt enabled

16.3.7 Interrupt Identification Register (FIIR)

FIIR consists of bits that identify interrupt sources. For details, see table 16.4.

Bit	Bit Name	Initial Value	R/W	Description
7	FIFOE1	0	R	FIFO Enable 1, 0
6	FIFOE0	0	R	These bits indicate the transmit/receive FIFO setting.
				00: Transmit/receive FIFOs disabled
				11: Transmit/receive FIFOs enabled
5, 4	_	All 0	R	Reserved
				These bits are always read as 0 and cannot be modified.
3	INTID2	0	R	Interrupt ID2, ID1, ID0
2	INTID1	0	R	These bits Indicate the interrupt of the highest
1	INTID0	0	R	priority among the pending interrupts.
				000: Modem status
				001: FTHR empty
				010: Receive data ready
				011: Receive line status
				110: Character timeout (when the FIFO is enabled)
0	INTPEND	1	R	Interrupt Pending
				Indicates whether one or more interrupts are pending.
				0: Interrupt pending
				1: No interrupt pending

Table 16.4 Interrupt Control Function

FIIR					Setting/Cl	earing of Interrupt	
	INTI	D					Clearing of
2	1	0	INTPEND	Priority	Type of Interrupt	Interrupt Source	Interrupt
0	0	0	1	_	No interrupt	None	_
0	1	1	0	1 (high)	Receive line status	Overrun error, parity error, framing error, break interrupt	FLSR read
0	1	0	0	2	Receive data ready	Receive data remaining, FIFO trigger level	FRBR read or receive FIFO is below trigger level.
1	1	0	0	2	Character timeout (with FIFO enabled)	No data is input to or output from the receive FIFO for the 4-character time period while one or more characters remain in the receive FIFO.	FRBR read
0	0	1	0	3	FTHR empty	FTHR empty	FIIR read or FTHR write
0	0	0	0	4 (low)	Modem status	CTS, DSR, RI, DCD	FMSR read

16.3.8 FIFO Control Register (FFCR)

FFCR is a write-only register that controls transmit/receive FIFOs.

1, 0
,
receive FIFO
oe modified.
nen 1 is written. This bit is
en 1 is written.
ed.

16.3.9 Line Control Register (FLCR)

FLCR sets formats of the transmit/receive data.

Bit	Bit Name	Initial Value	R/W	Description
7	DLAB	0	R/W	Divisor Latch Address
				FDLL and FDLH are placed at the same addresses as the FRBR/FTHR and FIER addresses. This bit selects which register is to be accessed.
				0: FRBR/FTHR and FIER access enabled
				1: FDLL and FDLH access enabled
6	BREAK	0	R/W	Break Control
				Generates a break by driving the serial output signal FTxD low.
				The break state is released by clearing this bit.
				0: Break released
				1: Break generated
5	STICK PARITY	0	R	Stick Parity
				These bits are not supported in this LSI.
				These bits are always read as 0 and cannot be modified.
4	EPS	0	R/W	Parity Select
				Selects even or odd parity when the PEN bit is 1.
				0: Odd parity
				1: Even parity
3	PEN	0	R/W	Parity Enable
				Selects whether to add a parity bit for data transmission and whether to perform a parity check for data reception.
				0: No parity bit added/parity check disabled
				1: Parity bit added/parity check enabled

Bit	Bit Name	Initial Value	R/W	Description
2	STOP	0	R/W	Stop Bit
				Specifies the stop bit length for data transmission. For data reception, only the first stop bit is checked regardless of the setting.
				0: 1 stop bit
				1: 1.5 stop bits (data length: 5 bits) or 2 stop bits
				(data length: 6 to 8 bits)
1	CLS1	0	R/W	Character Length Select 1, 0
0	CLS0	0	R/W	These bits specify transmit/receive character data length.
				00: Data length is 5 bits
				01: Data length is 6 bits
				10: Data length is 7 bits
				11: Data length is 8 bits

16.3.10 Modem Control Register (FMCR)

FMCR controls output signals.

Bit	Bit Name	Initial Value	R/W	Description
7 to 5	_	All 0	R	Reserved
				These bits are always read as 1 and cannot be modified.
4	LOOP	0	R/W	Loopback Test
	BACK			The transmit data output is internally connected to the receive data input, and the transmit data output pin (FRxD) becomes 1. The receive data input pin is disconnected from external sources. The four modem control input pins (DSR, CTS, RI, and DCD) are disconnected from external sources, and the pins are internally connected to the four modem control output signals (DTR, RTS, OUT1, and OUT2), respectively. The transmit data is received immediately in loopback mode. Enabling/disabling of interrupts is set by the OUT2LOOP bit in SCIFCR and FIER. 0: Loopback function disabled
				1: Loopback function enabled

Bit	Bit Name	Initial Value	R/W	Description
3	OUT2	0	R/W	OUT2
				Normal operation
				Enables or disables the SCIF interrupt.
				0: Interrupt disabled
				1: Interrupt enabled
				Loopback test
				Internally connected to the $\overline{\text{DCD}}$ input pin.
2	OUT1	0	R/W	OUT1
				Normal operation
				No effect on operation
				Loopback test
				Internally connected to the $\overline{\text{RI}}$ input pin.
1	RTS	0	R/W	Request to Send
				Controls the RTS output.
				0: RTS output is high level
				1: RTS output is low level
0	DTR	0	R/W	Data Terminal Ready
				Controls the DTR output.
				0: DTR output is high level
				1: DTR output is low level

16.3.11 Line Status Register (FLSR)

FLSR is a read-only register that indicates the status information of data transmission.

Bit	Bit Name	Initial Value	R/W	Description
7	RXFIFOERR	0	R	Receive FIFO Error
				Indicates that at least one data error (parity error, framing error, or break interrupt) has occurred when the FIFO is enabled.
				0: No receive FIFO error
				[Clearing condition]
				When FRBR is read or FLSR is read while there is no remaining data that could cause an error after an FIFO clear.
				1: A receive FIFO error
				[Setting condition]
				When at least one data error (parity error, framing error, or break interrupt) has occurred in the FIFO.
6	TEMT	1	R	Transmitter Empty
				Indicates whether transmit data remains.
				When the FIFO is disabled
				0: Transmit data remains in FTHR or FTSR.
				[Clearing condition]
				Transmit data is written to FTHR.
				1: No transmit data remains in FTHR and FTSR.
				[Setting condition]
				When no transmit data remains in FTHR and FTSR.
				When the FIFO is enabled
				Transmit data remains in the transmit FIFO or FTSR.
				[Clearing condition]
				Transmit data is written to FTHR.
				1: No transmit data remains in the transmit FIFO and FTSR.
				[Setting condition]
				When no transmit data remains in the transmit FIFO and FTSR.

Bit	Bit Name	Initial Value	R/W	Description
5	THRE	1	R	FTHR Empty
				Indicates that FTHR is ready to accept new data for transmission.
				When the FIFO is enabled
				0: Transmit data of one or more bytes remains in the transmit FIFO.
				[Clearing condition]
				Transmit data is written to FTHR.
				1: No transmit data remains in the transmit FIFO.
				[Setting condition]
				When the transmit FIFO becomes empty
				When the FIFO is disabled
				0: Transmit data remains in FTHR.
				[Clearing condition]
				Transmit data is written to FTHR
				1: No transmit data in FTHR
				[Setting condition]
				When data transfer from FTHR to FTSR is completed
4	BI	0	R	Break Interrupt
				Indicates detection of the receive data break signal. When the FIFO is enabled, a break interrupt occurs in any receive data in the FIFO, and this bit is set when the receive data is in the first FIFO buffer. Reception of the next data starts after the input receive data becomes mark and a valid start bit is received.
				0: Break signal not detected
				[Clearing condition]
				FLSR read
				1: Break signal detected
				[Setting condition]
				When input receive data stays at space (low level) for a reception time exceeding the length of one frame

Bit	Bit Name	Initial Value	R/W	Description
3	FE	0	R	Framing Error
				Indicates that the stop bit of the receive data is invalid. When the FIFO is enabled, this error occurs in any receive data in the FIFO, and this bit is set when the receive data is in the first FIFO buffer. The UART attempts resynchronization after a framing error occurs. The UART, which assumes that the framing error is due to the next start bit, samples the start bit and treats it as a start bit.
				0: No framing error
				[Clearing condition]
				FLSR read
				1: A framing error
				[Setting condition]
				Invalid stop bit in the receive data
2	PE	0	R	Parity Error
				This bit indicates a parity error in the receive data when the PEN bit in FLCR is 1. When the FIFO is enabled, this error occurs in any receive data in the FIFO, and this bit is set when the receive data is in the first FIFO buffer.
				0: No parity error
				[Clearing condition]
				FLSR read
				If this bit is set during an overrun error, read FLSR twice.
				1: A parity error
				[Setting condition]
				Detection of parity error in receive data

Bit	Bit Name	Initial Value	R/W	Description
1	OE	0	R	Overrun Error
				Indicates occurrence of an overrun error.
				When the FIFO is disabled
				When reception of the next data has been completed without the receive data in FRBR having been read, an overrun error occurs and the previous data is lost.
				When the FIFO is enabled
				When the FIFO is full and reception of the next data has been completed, an overrun error occurs. The FIFO data is stopped, but the last received data is lost.
				0: No overrun error
				[Clearing condition]
				FLSR read
				1: An overrun error
				[Setting condition]
				Occurrence of an overrun error
0	DR	0	R	Data Ready
				Indicates that receive data is stored in FRBR or the FIFO.
				0: No receive data
				[Clearing condition]
				FRBR is read or all of the FIFO data is read.
				1: Receive data remains.
				[Setting condition]
				Reception of data

16.3.12 Modem Status Register (FMSR)

FMSR is a read-only register that indicates the status of or a change in the modem control pins.

Bit	Bit Name	Initial Value	R/W	Description
7	DCD	Undefined	R	Data Carrier Detect
				Indicates the inverted state of the $\overline{\mbox{DCD}}$ input pin.
6	RI	Undefined	R	Ring Indicator
				Indicates the inverted state of the $\overline{\mbox{RI}}$ input pin.
5	DSR	Undefined	R	Data Set Ready
				Indicates the inverted state of the $\overline{\text{DSR}}$ input pin.
4	CTS	Undefined	R	Clear to Send
				Indicates the inverted state of the $\overline{\text{CTS}}$ input pin.
3	DDCD	0	R	Delta Data Carrier Indicator
				Indicates a change in the $\overline{\text{DCD}}$ input signal after the DDCD bit is read.
				0: No change in the $\overline{\text{DCD}}$ input signal after FMSR read
				[Clearing condition]
				FMSR read
				1: A change in the $\overline{\text{DCD}}$ input signal after FMSR read
				[Setting condition]
				A change in the $\overline{\text{DCD}}$ input signal
2	TERI	0	R	Trailing Edge Ring Indicator
				Indicates a rise in the $\overline{\text{RI}}$ input signal after the TERI bit is read.
				0: No change in the $\overline{\text{RI}}$ input signal after FMSR read
				[Clearing condition]
				FMSR read
				1: A rise in the \overline{RI} input signal after FMSR read
				[Setting condition]
				A rise in the RI input pin

Bit	Bit Name	Initial Value	R/W	Description
1	DDSR	0	R	Delta Data Set Ready Indicator
				Indicates a change in the $\overline{\text{DSR}}$ input signal after the DDSR bit is read.
				0: No change in the $\overline{\text{DSR}}$ input signal after FMSR read
				[Clearing condition]
				FMSR read
				1: A change in the DSR input signal after FMSR read
				[Setting condition]
				A change in the $\overline{\text{DSR}}$ input signal
0	DCTS	0	R	Delta Clear to Send Indicator
				Indicates a change in the $\overline{\text{CTS}}$ input signal after the DCTS bit is read.
				0: No change in the CTS input signal after FMSR read
				[Clearing condition]
				FMSR read
				A change in the CTS input signal after FMSR read
				[Setting condition]
				A change in the CTS input signal

16.3.13 Scratch Pad Register (FSCR)

FSCR is not used for SCIF control, but is used to temporarily store program data.

Bit	Bit Name	Initial Value	R/W	Description
7 to 0	Bit 7 to bit 0	All 0	R/W	Temporarily stores program data.

16.3.14 SCIF Control Register (SCIFCR)

SCIFCR controls SCIF operations, and is accessible only from the CPU.

Bit	Bit Name	Initial Value	R/W	Description
7	SCIFOE1	0	R/W	These bits enable or disable PORT output of the
6	SCIFOE0	0	R/W	SCIF.
				For details, see table 16.5.
5	_	0	R/W	Reserved
				The initial value should not be modified.
4	OUT2LOOP	0	R/W	Enables or disables interrupts during a loopback test.
				0: Interrupt enabled
				1: Interrupt disabled
3	CKSEL1	0	R/W	These bits select the clock (SCLK) to be input to
2	CKSEL0	0	R/W	the baud rate generator.
				00: LCLK divided by 18
				01: System clock divided by 11
				10: Reserved for LCLK (not selectable)
				11: Reserved for system clock (not selectable)
1	SCIFRST	0	R/W	Resets the baud rate generator, FRSR, and FTSR.
				0: Normal operation
				1: Reset
0	REGRST	0	R/W	Resets registers (except SCIFCR) accessible from the H8S CPU or LPC interface.
				0: Normal operation
				1: Reset

Table 16.5 SCIF Output Setting

Bit 3 in HICR5	0	0	0	0	1	1	1	1
Bit 7 in SCIFCR	0	0	1	1	0	0	1	1
Bit 6 in SCIFCR	0	1	0	1	0	1	0	1
PB7* ¹ , PB5* ¹ , PF7* ² , and PF5* ² pins	PORT	PORT	SCIF	PORT	SCIF	PORT	SCIF	PORT
P50 pin	PORT	PORT	SCIF	SCIF	SCIF	SCIF	SCIF	SCIF

Notes: 1. P51, PB2 to PB4, and PB6 are input to the SCIF even when the outputs on the PB7, PB5, and P50 pins are set to PORT.

2. These pin functions are switched according to the EXSCIFS bit in PTCNT0. For details, refer to section 9, I/O Ports.

16.4 Operation

16.4.1 Baud Rate

The SCIF includes a baud rate generator and can set the desired baud rate using registers FDLH, FDLL, and the CKSEL bit in SCIFCR. Table 16.6 shows an example of baud rate settings.

Table 16.6 Example of Baud Rate Settings

	00		0	1	01	
CKSEL1, CKSEL0	LCLK (33 MHz) divided by 18		System (20 M divided	ЛHz)	System Clock (10 MHz) divided by 11	
Baud rate	FDLH, FDLL (Hex)	Error (%)	FDLH, FDLL (Hex)	Error (%)	FDLH, FDLL (Hex)	Error (%)
50	08F4	0.01 %	08E1	0.01 %	0470	0.03 %
75	05F8	0.01 %	05EB	0.01 %	02F6	0.06 %
110	0412	0.03 %	0409	0.01 %	0205	0.09 %
300	017E	0.01 %	017B	0.06 %	00BD	0.21 %
600	00BF	0.01 %	00BD	0.21 %	005F	0.32 %
1200	005F	0.51 %	005F	0.32 %	002F	0.74 %
1800	0040	0.54 %	003F	0.21 %	0020	1.36 %
2400	0030	0.54 %	002F	0.74 %	0018	1.36 %
4800	0018	0.54 %	0018	1.36 %	000C	1.36 %
9600	000C	0.54 %	000C	1.36 %	0006	1.36 %
14400	8000	0.54 %	0008	1.36 %	0004	1.36 %
19200	0006	0.54 %	0006	1.36 %	0003	1.36 %
38400	0003	0.54 %	0003	1.36 %	_	_
57600	0002	0.54 %	0002	1.36 %	0001	1.36 %
115200	0001	0.54 %	0001	1.36 %	_	_

16.4.2 **Operation in Asynchronous Communication**

Figure 16.2 illustrates the typical format for asynchronous serial communication. One frame consists of a start bit (low level), followed by transmit/receive data (LSB-first: from the least significant bit), a parity bit, and a stop bit (high level). In asynchronous serial communication, the transmission line is usually held high in the mark state (high level). The SCIF monitors the transmission line, and when it detects the space state (low level), recognizes a start bit and starts serial communication. Inside the SCIF, the transmitter and receiver are independent units, enabling full-duplex communication. Both of the transmitter and receiver also have a 16-stage FIFO buffered structure so that data can be read or written during transmission or reception, enabling continuous data transmission and reception.

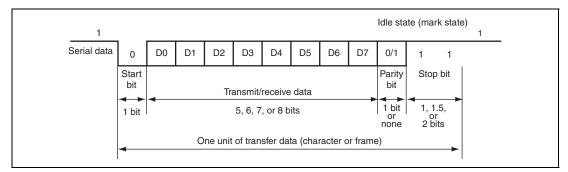


Figure 16.2 Data Format in Serial Transmission/Reception (Example with 8-Bit Data, Parity and 2 Stop Bits)

16.4.3 Initialization of the SCIF

(1) Initialization of the SCIF

Use an example of the flowchart in figure 16.3 to initialize the SCIF before transmitting or receiving data.

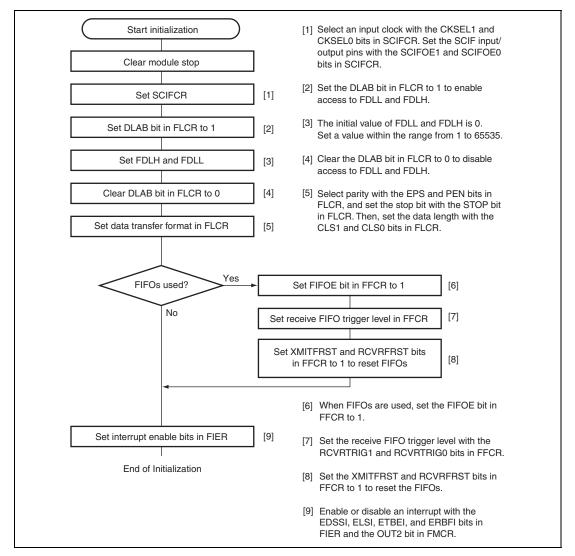
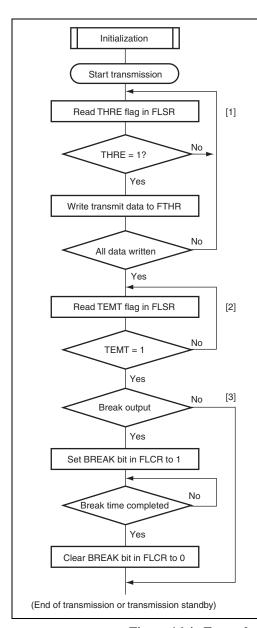



Figure 16.3 Example of Initialization Flowchart

(2) Serial Data Transmission

Figure 16.4 shows an example of the data transmission flowchart.

- [1] Confirm that the THRE flag in FLSR is 1, and write transmit data to FTHR. When FIFOs are used, write 1-byte to 16-byte transmit data. When the OUT2 bit in FMCR and the ETBEI bit in FIER are set to 1, an FTHR empty interrupt occurs. When data is written to FTHR, it is transferred automatically to FTSR. The data is then transmitted from the FTXD pin in the order of the start bit, transmit data, parity bit, and stop bit.
- [2] Read the TEMT flag in FLSR, and confirm that TEMT is set to 1 to ensure that all transmit data has been transmitted.
- [3] To output a break at the end of serial transmission, set the BREAK bit in FLCR to 1. After completion of the break time, clear the BREAK bit in FLCR to 0 to clear the break.

Figure 16.4 Example of Data Transmission Flowchart

(3) Serial Data Reception

Figure 16.5 shows an example of the data reception flowchart.

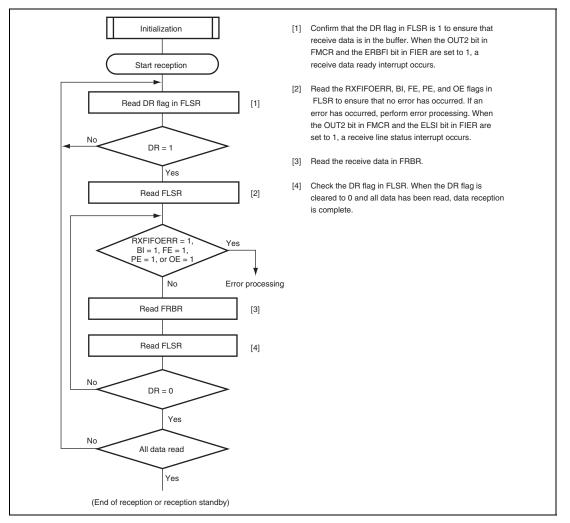


Figure 16.5 Example of Data Reception Flowchart

16.4.4 **Data Transmission/Reception with Flow Control**

The following shows examples of data transmission/reception for flow control using CTS and RTS.

Initialization **(1)**

Figure 16.6 shows an example of the initialization flowchart.

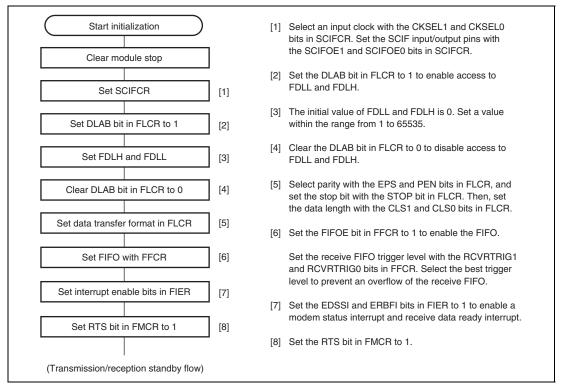


Figure 16.6 Example of Initialization Flowchart

(2) Data Transmission/Reception Standby

Figure 16.7 shows an example of the data transmission/reception standby flowchart.

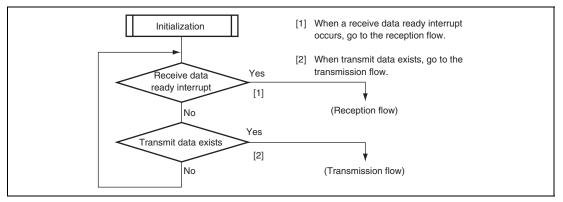


Figure 16.7 Example of Data Transmission/Reception Standby Flowchart

Data Transmission (3)

Figure 16.8 shows an example of the data transmission flowchart.

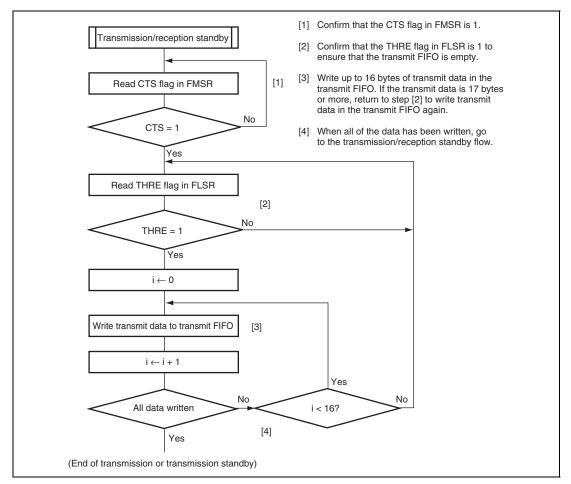


Figure 16.8 Example of Data Transmission Flowchart

(4) Suspension of Data Transmission

Page 476 of 1054

Figure 16.9 shows an example of the data transmission suspension flowchart.

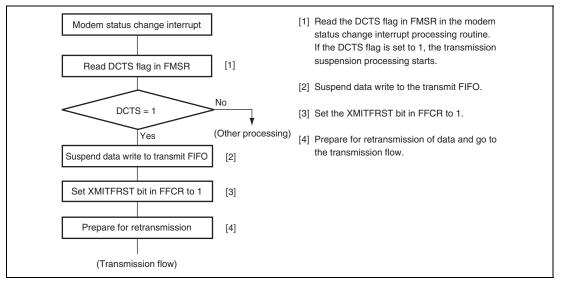


Figure 16.9 Example of Data Transmission Suspension Flowchart

Data Reception (5)

Figure 16.10 shows an example of the data reception flowchart.

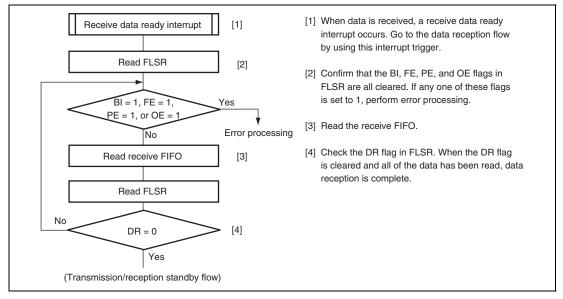


Figure 16.10 Example of Data Reception Flowchart

(6) Suspension of Data Reception

Page 478 of 1054

Figure 16.11 shows an example of the data reception suspension flowchart.

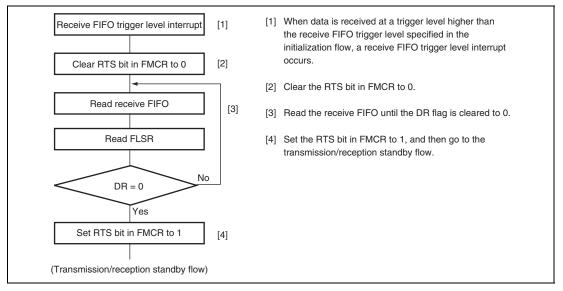


Figure 16.11 Example of Data Reception Suspension Flowchart

16.4.5 Data Transmission/Reception Through the LPC Interface

As shown in table 16.3, setting the SCIFE bit in HICR5 to 1 allows registers (except SCIFCR) to be accessed from the LPC interface. The initial setting of SCIFCR by the CPU and setting of the SCIFE bit in HICR5 to 1 enable the flow settings for initialization and data transmission/reception shown in figures 16.3 to 16.5 to be made from the LPC interface. Table 16.7 shows the correspondence between LPC interface I/O address and access to the SCIF registers. For details of the LPC interface settings, see section 20, LPC interface (LPC).

Table 16.7 Correspondence Between LPC Interface I/O Address and the SCIF Registers

LPC Inter	face I/O A			SCIF		
Bits 15 to 3	Bit 2	Bit 1	Bit 0	R/W	Condition	Register
SCIFADR (bits 15 to 3)	0	0	0	R	FLCR[7] = 0	FRBR
				W	FLCR[7] = 0	FTHR
				R/W	FLCR[7] = 1	FDLL
SCIFADR (bits 15 to 3)	0	0	1	R/W	FLCR[7] = 0	FIER
				R/W	FLCR[7] = 1	FDLH
SCIFADR (bits 15 to 3)	0	1	0	R	_	FIIR
				W	_	FFCR
SCIFADR (bits 15 to 3)	0	1	1	R/W	_	FLCR
SCIFADR (bits 15 to 3)	1	0	0	R/W	_	FMCR
SCIFADR (bits 15 to 3)	1	0	1	R	_	FLSR
SCIFADR (bits 15 to 3)	1	1	0	R	_	FMSR
SCIFADR (bits 15 to 3)	1	1	1	R/W	_	FSCR

Table 16.8 shows the range of initialization of the registers related to data transmission/reception through the LPC interface, making a classification by each mode.

Table 16.8 Register States

								LPC
Register		System Reset	SCIFRST	REGRST	XMITFRST	RCVRFRST	LPC Reset	Shutdown, LPC Abort
SCIFADRH	Bits 15 to 8	Initialized	Stopped	Stopped	Stopped	Stopped	Stopped	Stopped
SCIFADRL	Bits 7 to 0	Initialized	Stopped	Stopped	Stopped	Stopped	Stopped	Stopped
HICR5	SCIFE	Initialized	Stopped	Stopped	Stopped	Stopped	Stopped	Stopped
SIRQCR4	Bits 7 to 4, SCSIRQ3 to 0	Initialized	Stopped	Stopped	Stopped	Stopped	Stopped	Stopped
SCIFCR	SCIFOE1, SCIFOE0, OUT2LOOP, CKSEL1, CKSEL0, SCIFRST, REGRST	Initialized	Stopped	Stopped	Stopped	Stopped	Stopped	Stopped
FRBR	Bits 7 to 0	Initialized	Stopped	Initialized	Stopped	Stopped	Initialized	Stopped
FTHR	Bits 7 to 0	Initialized	Stopped	Initialized	Stopped	Stopped	Initialized	Stopped
FDLL	Bits 7 to 0	Initialized	Stopped	Initialized	Stopped	Stopped	Initialized	Stopped
FDLH	Bits 7 to 0	Initialized	Stopped	Initialized	Stopped	Stopped	Initialized	Stopped
FIIR	FIFOE1, FIFOE0, INTID2 to INTID0, INTPEND	Initialized	Stopped	Initialized	Stopped	Stopped	Initialized	Stopped
FFCR	RCVRTRIG1, RCVRTRIG0, XMITFRST, RCVRFRST, FIFOE	Initialized	Stopped	Initialized	Stopped	Stopped	Initialized	Stopped
FLCR	DLAB, BREAK, EPS, PEN, STOP, CLS1, CLS0	Initialized	Stopped	Initialized	Stopped	Stopped	Initialized	Stopped

Re	egister	System Reset	SCIFRST	REGRST	XMITFRST	RCVRFRST	LPC Reset	LPC Shutdown, LPC Abort
FMCR	LOOP BACK, OUT2, OUT1, RTS, DTR	Initialized	Stopped	Initialized	Stopped	Stopped	Initialized	Stopped
FLSR	RXFIFOERR, BI, FE, PE, OE	Initialized	Stopped	Initialized	Stopped	Stopped	Initialized	Stopped
	TEMT, THRE	Initialized	Stopped	Initialized	Initialized*	Stopped	Initialized	Stopped
	DR	Initialized	Stopped	Initialized	Stopped	Initialized*	Initialized	Stopped
FMSR	DDCD, TERI, DDSR, DCTS	Initialized	Stopped	Initialized	Stopped	Stopped	Initialized	Stopped
FSCR	Bits 7 to 0	Initialized	Stopped	Initialized	Stopped	Stopped	Initialized	Stopped
SCIF transmission sequencer (inner state)	_	Initialized	Initialized	Stopped	Stopped	Stopped	Initialized	Stopped

Note: When the FIFOE bit in FFCR is 1.

16.5 Interrupt Sources

Table 16.9 lists the interrupt sources. A common interrupt vector is assigned to each interrupt source.

When the LPC uses the SCIF, the LPC does not request any interrupts to be sent to the H8S CPU. The SERIRQ signal of the LPC interface transmits an interrupt request to the host.

Table 16.9 Interrupt Sources

Interrupt Name	Interrupt Source	Priority
Receive line status	Overrun error, parity error, framing error, break interrupt	High
Receive data ready	Acceptance of receive data, FIFO trigger level	↑
Character timeout (when FIFO is enabled)	No data is input to or output from the receive FIFO for the 4-character time period while one or more characters remain in the receive FIFO.	
FTHR empty	FTHR empty	_
Modem status	CTS, DSR, RI, DCD	Low

Table 16.10 shows the interrupt source, vector address, and interrupt priority.

Table 16.10 Interrupt Source, Vector Address, and Interrupt Priority

Interrupt		Vector	Vector	
Origin of Interrupt Source	Interrupt Name	Number	Address	ICR
SCIF	SCIF (SCIF interrupt)	82	H'000148	ICRC7

16.6 Usage Note

16.6.1 Power-Down Mode When LCLK Is Selected for SCLK

To switch to watch mode or software standby mode when LCLK divided by 18 has been selected for SCLK, use the shutdown function of the LPC interface to stop LCLK.

16.6.2 Conflict between Character Timeout and Clearing the DR Bit in FLSR

When a character timeout and clearing of the DR bit in FLSR by reading FRBR occur at the same time, the values of the FIIR and of the DR bit in FLSR become H'CC and 0, respectively. When reading the FRBR value due to a character timeout, avoid the absence of data by reading the FRBR value after the DR bit in FLSR has been set to 1.

Section 17 I²C Bus Interface (IIC)

This LSI has a three-channel I²C bus interface. The I²C bus interface conforms to and provides a subset of the Philips I²C bus (inter-IC bus) interface functions. The register configuration that controls the I²C bus differs partly from the Philips configuration, however.

17.1 Features

- Selection of addressing format or non-addressing format
 - I²C bus format: addressing format with an acknowledge bit, for master/slave operation
 - Clocked synchronous serial format: non-addressing format without an acknowledge bit, for master operation only
- Conforms to Philips I²C bus interface (I²C bus format)
- Two ways of setting slave address (I²C bus format)
- Start and stop conditions generated automatically in master mode (I²C bus format)
- Selection of the acknowledge output level in reception (I²C bus format)
- Automatic loading of an acknowledge bit in transmission (I²C bus format)
- Wait function in master mode (I²C bus format)
 - A wait can be inserted by driving the SCL pin low after data transfer, excluding acknowledgement.
 - The wait can be cleared by clearing the interrupt flag.
- Wait function (I²C bus format)
 - A wait request can be generated by driving the SCL pin low after data transfer.
 - The wait request is cleared when the next transfer becomes possible.
- Interrupt sources
 - Data transfer end (including when a transition to transmit mode with I²C bus format occurs, when ICDR data is transferred from ICDRT to ICDRS or from ICDRS to ICDRR, or during a wait state)
 - Address match: When any slave address matches or the general call address is received in slave receive mode with I²C bus format (including address reception after loss of master arbitration)
 - Arbitration lost
 - Start condition detection (in master mode)
 - Stop condition detection (in slave mode)

- Selection of 15 internal clocks (in master mode)
- Direct bus drive (SCL/SDA pin)
 - 12 pins—P52/SCL0, P97/SDA0, PA1/SCL1, PA0/SDA1, PG1/SCL2A, PG0/SDA2A, PG3/SCL2B, PG2/SDA2B, PG5/SCL2C, PG4/SDA2C, PG7/SCL2D, and PG6/SDA2D (normally CMOS outputs) function as NMOS open-drain outputs when the bus drive function is selected.

Note: When using this IIC module, make sure to set bits HNDS, FNC1, and FNC0 in ICXR to 1 in the initial settings. If other settings are made, restrictions on operation that are not covered in this manual will apply.

Figure 17.1 shows a block diagram of the I²C bus interface. Figure 17.2 shows an example of I/O pin connections to external circuits. Since I²C bus interface I/O pins are different in structure from normal port pins, they have different specifications for permissible applied voltages. For details, see section 30, Electrical Characteristics.

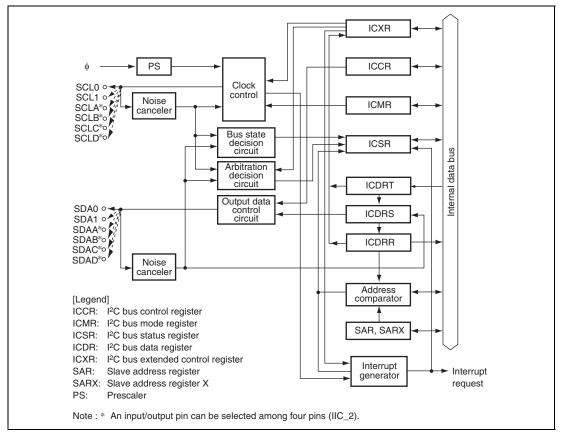


Figure 17.1 Block Diagram of I²C Bus Interface

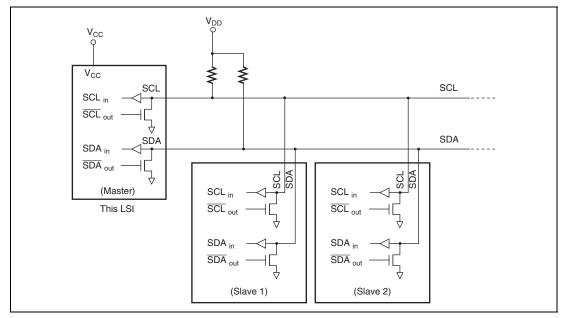


Figure 17.2 I²C Bus Interface Connections (Example: This LSI as Master)

17.2 Input/Output Pins

Table 17.1 summarizes the input/output pins used by the I²C bus interface.

One of four pins can be specified as SCL and SDA input/output pin for IIC_2. Two or more input/output pins should not be specified for one channel.

For the method of setting pins, see section 9.3.2, Port Control Register 1 (PTCNT1).

Table 17.1 Pin Configuration

Channel	Symbol*	Input/Output	Function
0	SCL0	Input/Output	Serial clock input/output pin of IIC_0
	SDA0	Input/Output	Serial data input/output pin of IIC_0
1	SCL1A	Input/Output	Serial clock input/output pin of IIC_1
	SDA1A	Input/Output	Serial data input/output pin of IIC_1
2	SCLA	Input/Output	Serial clock input/output pin of IIC_2
	SDAA	Input/Output	Serial data input/output pin of IIC_2
	SCLB	Input/Output	Serial clock input/output pin of IIC_2
	SDAB	Input/Output	Serial data input/output pin of IIC_2
	SCLC	Input/Output	Serial clock input/output pin of IIC_2
	SDAC	Input/Output	Serial data input/output pin of IIC_2
	SCLD	Input/Output	Serial clock input/output pin of IIC_2
	SDAD	Input/Output	Serial data input/output pin of IIC_2

Note: * In the text, the channel subscript is omitted, and only SCL and SDA are used.

17.3 Register Descriptions

The I²C bus interface has the following registers. Registers ICDR and SARX and registers ICMR and SAR are allocated to the same addresses. Accessible registers differ depending on the ICE bit in ICCR. When the ICE bit is cleared to 0, SAR and SARX can be accessed, and when the ICE bit is set to 1, ICMR and ICDR can be accessed.

Table 17.2 Register Configuration

Channel	Register Name	Abbreviation	R/W	Initial Value	Address	Data Bus Width
Channel 0	I ² C bus control register_0	ICCR_0	R/W	H'01	H'FFD8	8
	I ² C bus status register_0	ICSR_0	R/W	H'00	H'FFD9	8
	I ² C bus control initialization register_0	ICRES_0	R/W	H'0F	H'FFDA	8
	I ² C bus clock selector register_0	ICCKR_0	R/W	H'00	H'FFDB	8
	I ² C bus extended control register_0	ICXR_0	R/W	H'00	H'FFDC	8
	l ² C bus data register_0	ICDR_0	R/W	H'FF	H'FFDE	8
	Second slave address register_0	SARX_0	R/W	H'01	H'FFDE	8
	I ² C bus mode register_0	ICMR_0	R/W	H'00	H'FFDF	8
	Slave address register_0	SAR_0	R/W	H'00	H'FFDF	8
Channel 1	I ² C bus control register_1	ICCR_1	R/W	H'01	H'FED0	8
	l ² C bus status register_1	ICSR_1	R/W	H'00	H'FED1	8
	I ² C bus control initialization register_1	ICRES_1	R/W	H'0F	H'FED2	8
	l ² C bus clock selector register_1	ICCKR_1	R/W	H'00	H'FED3	8
	I ² C bus extended control register_1	ICXR_1	R/W	H'00	H'FED4	8
	I ² C bus data register_1	ICDR_1	R/W	H'FF	H'FED6	8
	Second slave address register_1	SARX_1	R/W	H'01	H'FED6	8
	I ² C bus mode register_1	ICMR_1	R/W	H'00	H'FED7	8
	Slave address register_1	SAR_1	R/W	H'00	H'FED7	8

Channel	Register Name	Abbreviation	R/W	Initial Value	Address	Data Bus Width
Channel 2	I ² C bus control register_2	ICCR_2	R/W	H'01	H'FE88	8
	I ² C bus status register_2	ICSR_2	R/W	H'00	H'FE89	8
	I ² C bus control initialization register_2	ICRES_2	R/W	H'0F	H'FE8A	8
	I ² C bus clock selector register_2	ICCKR_2	R/W	H'00	H'FE8B	8
	I ² C bus extended control register_2	ICXR_2	R/W	H'00	H'FE8C	8
	I ² C bus data register_2	ICDR_2	R/W	H'FF	H'FE8E	8
	Second slave address register_2	SARX_2	R/W	H'01	H'FE8E	8
	I ² C bus mode register_2	ICMR_2	R/W	H'00	H'FE8F	8
	Slave address register_2	SAR_2	R/W	H'00	H'FE8F	8

17.3.1 I²C Bus Data Register (ICDR)

ICDR is an 8-bit readable/writable register that is used as a transmit data register when transmitting and a receive data register when receiving. ICDR is internally divided into a shift register (ICDRS), receive buffer (ICDRR), and transmit buffer (ICDRT). Data transfers among these three registers are performed automatically in accordance with changes in the bus state, and they affect the status of internal flags such as ICDRE and ICDRF.

In master transmit mode with the I²C bus format, writing transmit data to ICDR should be performed after start condition detection. When the start condition is detected, previous write data is ignored. In slave transmit mode, writing should be performed after the slave addresses match and the TRS bit is automatically changed to 1.

In transmit mode (TRS = 1), transmit data can be written to ICDRT when the ICDRE flag is 1. After the transmit data has been written to ICDRT, the ICDRE flag is cleared to 0. Then, when ICDRS becomes empty on completion of the previous transmission, the data are automatically transferred from ICDRT to ICDRS and the ICDRE flag is set to 1. As long as ICDRS contains data to be transmitted or data being transmitted, data written to ICDRT are retained there.

In receive mode (TRS = 0), data is not transferred from ICDRT to ICDRS. Thus, do not write to ICDRT when in this mode.

In receive mode (TRS = 0), data received in ICDRR can be read when the ICDRF flag is 1. After the data has been read from ICDRR, the ICDRF flag is cleared to 0. Each time ICDRS contains data on completion of one round of reception, the data is automatically transferred from ICDRS to ICDRR and the ICDRF flag is set to 1. If ICDRR contains receive data that hasn't been read out, any further receive data is retained in ICDRS.

Since data are not transferred from ICDRS to ICDRR in transmit mode (TRS = 1), do not read ICDRR in transmit mode (excluding the case where final receive data is read out in the recommended operation flow of master receive mode).

If the number of bits in a frame, excluding the acknowledge bit, is less than eight, transmit data and receive data are stored differently. Transmit data should be written justified toward the MSB side when MLS = 0 in ICMR, and toward the LSB side when MLS = 1. Receive data bits should be read from the LSB side when MLS = 0, and from the MSB side when MLS = 1.

ICDR can be written to and read from only when the ICE bit is set to 1 in ICCR. The initial value of ICDR is H'FF.

17.3.2 Slave Address Register (SAR)

SAR sets the slave address and selects the communication format. If the LSI is in slave mode with the I²C bus format selected, when the FS bit is set to 0 and the upper 7 bits of SAR match the upper 7 bits of the first frame received after a start condition, the LSI operates as the slave device specified by the master device. SAR can be accessed only when the ICE bit in ICCR is cleared to 0.

Bit	Bit Name	Initial Value	R/W	Description
7	SVA6	0	R/W	Slave Address 6 to 0
6	SVA5	0	R/W	Set a slave address.
5	SVA4	0	R/W	
4	SVA3	0	R/W	
3	SVA2	0	R/W	
2	SVA1	0	R/W	
1	SVA0	0	R/W	
0	FS	0	R/W	Format Select
				Selects the communication format together with the FSX bit in SARX. See table 17.3.
				This bit should be set to 0 when general call address recognition is performed.

17.3.3 Second Slave Address Register (SARX)

SARX sets the second slave address and selects the communication format. If the LSI is in slave mode with the I²C bus format selected, when the FSX bit is set to 0 and the upper 7 bits of SARX match the upper 7 bits of the first frame received after a start condition, the LSI operates as the slave device specified by the master device. SARX can be accessed only when the ICE bit in ICCR is cleared to 0.

Bit	Bit Name	Initial Value	R/W	Description
7	SVAX6	0	R/W	Second Slave Address 6 to 0
6	SVAX5	0	R/W	Set the second slave address.
5	SVAX4	0	R/W	
4	SVAX3	0	R/W	
3	SVAX2	0	R/W	
2	SVAX1	0	R/W	
1	SVAX0	0	R/W	
0	FSX	1	R/W	Format Select X
				Selects the communication format together with the FS bit in SAR. See table 17.3.

Table 17.3 Communication Format

SAR	SARX	
FS	FSX	Operating Mode
0	0	I ² C bus format
		 SAR and SARX slave addresses recognized
		General call address recognized
	1	I ² C bus format
		SAR slave address recognized
		SARX slave address ignored
		General call address recognized
1	0	I ² C bus format
		SAR slave address ignored
		SARX slave address recognized
		General call address ignored
	1	Clocked synchronous serial format
		 SAR and SARX slave addresses ignored
		General call address ignored

- I²C bus format: addressing format with an acknowledge bit
- Clocked synchronous serial format: non-addressing format without an acknowledge bit, for master mode only

Page 496 of 1054

17.3.4 I²C Bus Clock Selector Register (ICCKR)

ICCKR sets the SCL-level sampling timing and the transfer clock.

Bit	Bit Name	Initial Value	R/W	Description	n					
7	CHKSEL	0	R/W	SCL-Level	SCL-Level Sampling Timing Selection					
				Selects the	SCL-	level sam	pling timing.			
					ck cyc	les specif	evel after the number of ïed by this bit has elapsed, ge of SCL.			
							e low level, the period of SCL yed by one bit period.			
							o early causes the extension It in an unexpected transfer			
				Select the the timing			ue for this bit, according to ge of SCL.			
				IICXn/CKS3	CKS2	CHKSEL	Number of system clock cycles (φ)			
				0	0	0	: 10 clock cycles			
				0	0	1	: 10 clock cycles			
				0	1	0	: 10 clock cycles			
				0	1	1	: 20 clock cycles			
				1	0	0	: 10 clock cycles			
				1	0	1	: 20 clock cycles			
				1	1	0	: 20 clock cycles			
				1	1	1	: 40 clock cycles			
				(n = 0, 1, or	2)					
6 to 4	_	All 0	R/W	Reserved						
3	CKS3	0	R/W	Transfer C	lock S	elect 3				
				Selects the frequency of the transfer clock, together with the CKS2 to CKS0 bits in ICMR. This bit is used only in master mode. See table 17.4.						
2 to 0	_	All 0	R/W	Reserved						

I²C Bus Mode Register (ICMR) 17.3.5

ICMR sets the communication format and transfer rate. It can only be accessed when the ICE bit in ICCR is set to 1.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	MLS	0	R/W	MSB-First/LSB-First Select
				0: MSB-first
				1: LSB-first
				Set this bit to 0 when the I^2C bus format is used.
6	WAIT	0	R/W	Wait Insertion Bit
				This bit is valid only in master mode with the $\ensuremath{\text{I}}^2\ensuremath{\text{C}}$ bus format.
				 Data and the acknowledge bit are transferred consecutively with no wait inserted.
				1: After the fall of the clock for the final data bit (8 th clock), the IRIC flag is set to 1 in ICCR, and a wait state begins (with SCL at the low level). When the IRIC flag is cleared to 0 in ICCR, the wait ends and the acknowledge bit is transferred.
				Set WAIT to 1 in master-transmit mode.
				For details, see sections 17.4.3, Master Transmit Operation and 17.4.7, IRIC Setting Timing and SCL Control.
5	CKS2	0	R/W	Transfer Clock Select 2 to 0
4	CKS1	0	R/W	These bits select the frequency of the transfer clock,
3	CKS0	0	R/W	together with the CKS3 bit in ICCKR. These bits are used only in master mode. See table 17.4.

Bit	Bit Name	Initial Value	R/W	Description				
2	BC2	0	R/W	Bit Counter 2 to 0				
1	BC1	0	R/W	•	y the number of bits to be transferred			
0	BC0	0	R/W	next. Bit BC2 to BC0 settings should be made during an interval between transfer frames. If bits BC2 to BC are set to a value other than 000, the setting should b made while the SCL line is low.				
			The bit counter is initialized to B'000 when a start condition is detected. The value returns to B'000 at the end of a data transfer.					
				I ² C Bus Format	Clocked Synchronous Serial Mode			
				000: 9 bits	000: 8 bits			
				001: 2 bits	001: 1 bits			
				010: 3 bits	010: 2 bits			
				011: 4 bits	011: 3 bits			
				100: 5 bits	100: 4 bits			
				101: 6 bits	101: 5 bits			
				110: 7 bits	110: 6 bits			
				111: 8 bits	111: 7 bits			

Table 17.4 Transfer Rate

or 7 in Bit 3 in

STCR*1	ICCKR*1	Bit 2	Bit 1	Bit 0		Transfer Rate				
IICXn	CKS3	CKS2	CKS1	CKS0	Clock	φ = 8 MHz	φ = 8 MHz		φ = 20 MHz	
0	0	0	0	0	φ/28	286 kHz	357 kHz	571 kHz* ²	714 kHz* ²	
				1	φ/40	200 kHz	250 kHz	400 kHz	500 kHz*2	
			1	0	ф/48	167 kHz	208 kHz	333 kHz	417 kHz* ²	
				1	φ/64	125 kHz	156 kHz	250 kHz	313 kHz	
		1	0	0	φ/80	100 kHz	125 kHz	200 kHz	250 kHz	
				1	φ/100	80.0 kHz	100 kHz	160 kHz	200 kHz	
			1	0	φ/112	71.4 kHz	89.3 kHz	143 kHz	179 kHz	
				1	ф/128	62.5 kHz	78.1 kHz	125 kHz	156 kHz	
1	1	0	0	0	φ/56	143 kHz	179 kHz	286 kHz	357 kHz	
				1	φ/80	100 kHz	125 kHz	200 kHz	250 kHz	
			1	0	φ/96	83.3 kHz	104 kHz	167 kHz	208 kHz	
				1	ф/128	62.5 kHz	78.1 kHz	125 kHz	156 kHz	
		1	0	0	φ/160	50.0 kHz	62.5 kHz	100 kHz	125 kHz	
				1	φ/200	40.0 kHz	50.0 kHz	80.0 kHz	100 kHz	
			1	0	φ/224	35.7 kHz	44.6 kHz	71.4 kHz	89.3 kHz	
				1	φ/256	31.3 kHz	39.1 kHz	62.5 kHz	78.1 kHz	
	,			,	,		1		/ 0 4	

(n = 0, 1, or 2)

Notes: 1. Set either the IICXn bit in STCR or the CKS3 bit in ICCKR.

Setting the IICXn bit in STCR also sets the CKS3 bit in ICCKR, and vice versa.

2. Correct operation cannot be guaranteed since the transfer rate is beyond the I²C bus interface specification (normal mode: maximum 100 kHz, high-speed mode: maximum 400 kHz).

17.3.6 I²C Bus Control Register (ICCR)

ICCR controls the I²C bus interface and performs interrupt flag confirmation.

Bit	Bit Name	Initial Value	R/W	Description					
7	ICE	0	R/W	I ² C Bu	s Interf	ace Enable			
				0: l ² C bus interface modules are stopped and l ² C bus interface module internal state is initialized. SAR and SARX can be accessed.					
				1: I ² C bus interface modules can perform transfer operation, and the ports function as the SCL and SDA input/output pins. ICMR and ICDR can be accessed.					
6	IEIC	0	R/W	I ² C Bus Interface Interrupt Enable					
				0: Disa		terrupts from the I ² C bus interface to the			
				 Enables interrupts from the I²C bus interface to the CPU. 					
5	MST	0	R/W	Maste	r/Slave	Select			
4	TRS	0	R/W	Transi	mit/Rec	eive Select			
				MST	TRS				
				0	0:	Slave receive mode			
				0	1:	Slave transmit mode			
				1	0:	Master receive mode			
				1	1:	Master transmit mode			
				lose in bus fo the R/ condit	n a bus rmat. Ir W bit in ion sets	ts will be cleared by hardware when they contention in master mode with the I ² C in slave receive mode with I ² C bus format, if the first frame immediately after the start is these bits in receive mode or transmit atically by hardware.			
				until tr after c	ansfer i	of the TRS bit during transfer is deferred is completed, and the changeover is made ion of the transfer (at the rising edge of .			

Bit	Bit Name	Initial Value	R/W	Description
5	MST	0	R/W	[MST clearing conditions]
4	TRS	0	R/W	1. When 0 is written by software
				 When lost in bus contention in I²C bus format master mode
				[MST setting conditions]
				 When 1 is written by software (for MST clearing condition 1)
				 When 1 is written in MST after reading MST = 0 (for MST clearing condition 2)
				[TRS clearing conditions]
				 When 0 is written by software (except for TRS setting condition 3)
				 When 0 is written in TRS after reading TRS = 1 (for TRS setting condition 3)
				When lost in bus contention in I ² C bus format master mode
				[TRS setting conditions]
				When 1 is written by software (except for TRS clearing condition 3)
				 When 1 is written in TRS after reading TRS = 0 (for TRS clearing condition 3)
				 When 1 is received as the R/W bit after the first frame address matching in I²C bus format slave mode
3	ACKE	0	R/W	Acknowledge Bit Decision and Selection
				0: The value of the acknowledge bit is ignored, and continuous transfer is performed. The value of the received acknowledge bit is not indicated by the ACKB bit in ICSR, which is always 0.
				 If the received acknowledge bit is 1, continuous transfer is halted.
				Depending on the receiving device, the acknowledge bit may be significant, in indicating completion of processing of the received data, for instance, or may be fixed at 1 and have no significance.

Bit	Bit Name	Initial Value	R/W	Description
2	BBSY	0	R/W*	Bus Busy
0	SCP	1	W	Start Condition/Stop Condition Prohibit
				In master mode:
				 Writing 0 in BBSY and 0 in SCP: A stop condition is issued
				 Writing 1 in BBSY and 0 in SCP: A start condition and a restart condition are issued
				In slave mode:
				Writing to the BBSY flag is disabled.
				[BBSY setting condition]
				 When the SDA level changes from high to low under the condition of SCL = high, assuming that the start condition has been issued.
				[BBSY clearing condition]
				 When the SDA level changes from low to high under the condition of SCL = high, assuming that the stop condition has been issued.
				To issue a start/stop condition, use the MOV instruction.
				The I ² C bus interface must be set in master transmit mode before the issue of a start condition. Set MST to 1 and TRS to 1 before writing 1 in BBSY and 0 in SCP.
				The BBSY flag can be read to check whether the I^2C bus (SCL, SDA) is busy or free.
				The SCP bit is always read as 1. If 0 is written, the data is not stored.

Note: * The value in BBSY flag does not change even if written.

Bit	Bit Name	Initial Value	R/W	Description					
1	IRIC	0	R/(W)*	I ² C Bus Interface Interrupt Request Flag					
				Indicates that the I ² C bus interface has issued an interrupt request to the CPU.					
				IRIC is set at different times depending on the FS bit in SAR, the FSX bit in SARX, and the WAIT bit in ICMR. See section 17.4.7, IRIC Setting Timing and SCL Control. The conditions under which IRIC is set also differ depending on the setting of the ACKE bit in ICCR.					
				[Setting conditions]					
				All operating modes:					
				 When a start condition is detected in transmit mode and the ICDRE flag is set to 1 					
				2. When data is transferred from ICDRT to ICDRS in transmit mode and the ICDRE flag is set to 1					
				3. When data is transferred from ICDRS to ICDRR in receive mode and the ICDRF flag is set to 1					
				4. If 1 is received as the acknowledge bit (when the ACKE bit is 1 in transmit mode) at the completion of data transmission					
				• I ² C bus format master mode:					
				 When a wait is inserted between the data and acknowledge bit when the WAIT bit is 1 					
				2. When the AL flag is set to 1 after bus arbitration is lost while the ALIE bit is 1					
				I2C bus format slave mode:					
				 When the slave address (SVA or SVAX) matches after the reception of the first frame following the start condition and the AAS flag or AASX flag is set to 1 					
				When the general call address is detected after the reception of the first frame following the start condition and the ADZ flag is set to 1 (the FS bit in SAR is 0)					
				3. When a stop condition is detected (when the STOP or ESTP flag is set to 1) while the STOPIM bit is 0					

		Initial		
Bit	Bit Name	Value	R/W	Description
1	IRIC	0	R/(W)*	Note: When the slave address does not match and the general call address is not detected (with all flags of AAS, AASX, and ADZ cleared to 0), transmission and reception do not proceed. Thus, the ICDRE and ICDRF flags will not be set. Nor will the IRIC flag. However, even in this case, if STOPIM is 0, the IRIC flag is set by condition 3 above. If detection of a stop condition is not necessary, set STOPIM to 1 to disable setting of the IRIC flag. [Clearing condition] • When 0 is written in IRIC after reading IRIC = 1

Note: * Only 0 can be written to clear the flag.

When, with the I²C bus format selected, IRIC is set to 1 and an interrupt is generated, other flags must be checked in order to identify the source that set IRIC to 1. Although each source has a corresponding flag, caution is needed at the end of a transfer.

When the ICDRE or ICDRF flag is set, the IRTR flag may or may not be set. The IRTR flag is not set at the end of a data transfer up to detection of a retransmission start condition or stop condition after a slave address (SVA) or general call address match in I²C bus format slave mode.

Tables 17.5 and 17.6 show the relationship between the flags and the transfer states.

Table 17.5 Flags and Transfer States (Master Mode)

MST	TRS	BBSY	ESTP	STOP	IRTR	AASX	AL	AAS	ADZ	ACKB	ICDRF	ICDRE	State
1	1	0	0	0	0	0↓	0	0↓	0↓	0	_	0	Idle state (flag clearing required)
1	1	1↑	0	0	1↑	0	0	0	0	0	_	1↑	Start condition detected
1	_	1	0	0	_	0	0	0	0	_	_	_	Wait state
1	1	1	0	0	_	0	0	0	0	1↑	_	_	Transmission end (ACKE=1 and ACKB=1)
1	1	1	0	0	1↑	0	0	0	0	0	_	1↑	Transmission end with ICDRE=0
1	1	1	0	0	_	0	0	0	0	0	_	0↓	ICDR write with the above state
1	1	1	0	0		0	0	0	0	0	_	1	Transmission end with ICDRE=1
1	1	1	0	0	_	0	0	0	0	0	_	0↓	ICDR write with the above state or after start condition detected
1	1	1	0	0	1↑	0	0	0	0	0	_	1↑	Automatic data transfer from ICDRT to ICDRS with the above state
1	0	1	0	0	1↑	0	0	0	0	_	1↑	_	Reception end with ICDRF=0
1	0	1	0	0	_	0	0	0	0	_	0↓	_	ICDR read with the above state
1	0	1	0	0	_	0	0	0	0	_	1	_	Reception end with ICDRF=1
1	0	1	0	0		0	0	0	0	_	0↓	_	ICDR read with the above state
1	0	1	0	0	1↑	0	0	0	0	_	1↑		Automatic data transfer from ICDRS to ICDRR with the above state
0↓	0↓	1	0	0	_	0	1↑	0	0	_	_	_	Arbitration lost
1	_	0↓	0	0	_	0	0	0	0	_	_	0↓	Stop condition detected

[Legend]

0: 0-state retained1: 1-state retained

-: Previous state retained

0↓: Cleared to 0

1↑: Set to 1

Table 17.6 Flags and Transfer States (Slave Mode)

MST	TRS	BBSY	ESTP	STOP	IRTR	AASX	AL	AAS	ADZ	ACKB	ICDRF	ICDRE	State
0	0	0	0	0	0	0	0	0	0	0	_	0	Idle state (flag clearing required)
0	0	1↑	0	0	0	0↓	0	0	0	0	_	1↑	Start condition detected
0	1^/0 *1	1	0	0	0	0	_	1↑	0	0	1↑	1	SAR match in first frame (SARX≠SAR)
0	0	1	0	0	0	0	_	1↑	1↑	0	1↑	1	General call address match in first frame (SARX≠H'00)
0	1^/0 *1	1	0	0	1↑	1↑	_	0	0	0	1↑	1	SAR match in first frame (SAR≠SARX)
0	1	1	0	0	_	_	_	_	0	1↑	_	_	Transmission end (ACKE=1 and ACKB=1)
0	1	1	0	0	1 ¹ /0	_	_	_	0	0	_	1↑	Transmission end with ICDRE=0
0	1	1	0	0	_	_	0↓	0↓	0	0	_	0↓	ICDR write with the above state
0	1	1	0	0	_	_	_	_	1	0		1	Transmission end with ICDRE=1
0	1	1	0	0	_	_	0↓	0↓	0	0		0↓	ICDR write with the above state
0	1	1	0	0	1↑/0 *²	_	0	0	0	0		1↑	Automatic data transfer from ICDRT to ICDRS with the above state
0	0	1	0	0	1 ¹ /0	_	_	_	_	_	1↑	_	Reception end with ICDRF=0
0	0	1	0	0	_	_	0↓	0↓	0↓	_	0↓	_	ICDR read with the above state
0	0	1	0	0	_	_	_	_	_	_	1	_	Reception end with ICDRF=1
0	0	1	0	0	_	_	0↓	0↓	0↓	_	0↓	_	ICDR read with the above state
0	0	1	0	0	1↑/0 *²		0	0	0	_	1↑	_	Automatic data transfer from ICDRS to ICDRR with the above state
0	_	0↓	1 1 / 0 *3	0/1↑ *³	_	_	_	_	_	_	_	0↓	Stop condition detected

[Legend]

0: 0-state retained

1: 1-state retained

—: Previous state retained

0↓: Cleared to 0

1↑: Set to 1

Notes: 1. Set to 1 when 1 is received as a R/W bit following an address.

- 2. Set to 1 when the AASX bit is set to 1.
- 3. When ESTP=1, STOP is 0, or when STOP=1, ESTP is 0.

17.3.7 I²C Bus Status Register (ICSR)

ICSR consists of status flags. Also see tables 17.5 and 17.6.

Bit	Bit Name	Initial Value	R/W	Description
7	ESTP	0	R/(W)*	Error Stop Condition Detection Flag
				This bit is valid in I ² C bus format slave mode.
				[Setting condition]
				When a stop condition is detected during frame transfer.
				[Clearing conditions]
				 When 0 is written in ESTP after reading ESTP = 1
				When the IRIC flag in ICCR is cleared to 0
6	STOP	0	R/(W)*	Normal Stop Condition Detection Flag
				This bit is valid in I ² C bus format slave mode.
				[Setting condition]
				 When a stop condition is detected after frame transfer completion.
				[Clearing conditions]
				 When 0 is written in STOP after reading STOP = 1
				 When the IRIC flag is cleared to 0
5	IRTR	0	R/(W)*	I ² C Bus Interface Continuous Transfer Interrupt Request Flag
				Indicates that the I ² C bus interface has issued an interrupt request to the CPU, and the source is completion of reception/transmission of one frame. When the IRTR flag is set to 1, the IRIC flag is also set to 1 at the same time.
				[Setting conditions]
				I ² C bus format slave mode:
				 When the ICDRE or ICDRF flag in ICDR is set to 1 when AASX = 1
				Master mode or clocked synchronous serial format mode with I ² C bus format:
				 When the ICDRE or ICDRF flag is set to 1
				[Clearing conditions]
				 When 0 is written after reading IRTR = 1
				 When the IRIC flag is cleared to 0 while ICE is 1

Bit	Bit Name	Initial Value	R/W	Description
4	AASX	0	R/(W)*	Second Slave Address Recognition Flag
				In I ² C bus format slave receive mode, this flag is set to 1 if the first frame following a start condition matches bits SVAX6 to SVAX0 in SARX.
				[Setting condition]
				 When the second slave address is detected in slave receive mode and FSX = 0 in SARX
				[Clearing conditions]
				 When 0 is written in AASX after reading AASX = 1
				When a start condition is detected
				In master mode
3	AL	0	R/(W)*	Arbitration Lost Flag
				Indicates that arbitration was lost in master mode.
				[Setting conditions]
				When ALSL=0
				 If the internal SDA and SDA pin disagree at the rise of SCL in master transmit mode
				 If the internal SCL line is high at the fall of SCL in master mode
				When ALSL=1
				 If the internal SDA and SDA pin disagree at the rise of SCL in master transmit mode
				 If the SDA pin is driven low by another device before the I²C bus interface drives the SDA pin low, after the start condition instruction was executed in master transmit mode
				[Clearing conditions]
				When ICDR is written to (transmit mode) or read from
				(receive mode)
				When 0 is written in AL after reading AL = 1

Bit	Bit Name	Initial Value	R/W	Description
2	AAS	0	R/(W)*	Slave Address Recognition Flag
				In I ² C bus format slave receive mode, this flag is set to 1 if the first frame following a start condition matches bits SVA6 to SVA0 in SAR, or if the general call address (H'00) is detected.
				[Setting condition]
				 When the slave address or general call address (one frame including a R/W bit is H'00) is detected in slave receive mode and FS = 0 in SAR
				[Clearing conditions]
				 When ICDR is written to (transmit mode) or read from (receive mode)
				 When 0 is written in AAS after reading AAS = 1
				In master mode
1	ADZ	0	R/(W)*	General Call Address Recognition Flag
				In I ² C bus format slave receive mode, this flag is set to 1 if the first frame following a start condition is the general call address (H'00).
				[Setting condition]
				 When the general call address (one frame including a R/W bit is H'00) is detected in slave receive mode and FS = 0 or FSX = 0
				[Clearing conditions]
				 When ICDR is written to (transmit mode) or read from (receive mode)
				 When 0 is written in ADZ after reading ADZ = 1
				In master mode
				If a general call address is detected while FS=1 and FSX=0, the ADZ flag is set to 1; however, the general call address is not recognized (AAS flag is not set to 1).

Bit	Bit Name	Initial Value	R/W	Description
0	ACKB	0	R/W	Acknowledge Bit
		Ü		Stores acknowledge data.
				The bit function varies depending on transmit mode and receive mode.
				Transmit mode:
				Holds the acknowledge data returned by the receiving device.
				[Setting condition]
				 When 1 is received as the acknowledge bit when ACKE = 1 in transmit mode
				[Clearing conditions]
				 When 0 is received as the acknowledge bit when ACKE 1 in transmit mode
				 When 0 is written to the ACKE bit
				Receive mode:
				Sets the acknowledge data to be returned to the transmitting device.
				0: Returns 0 as acknowledge data after data reception
				1: Returns 1 as acknowledge data after data reception
				When this bit is read, the value loaded from the bus line (returned by the receiving device) is read in transmission (when TRS = 1). In reception (when TRS = 0), the value se by internal software is read.
				When this bit is written, acknowledge data that is returned after receiving is rewritten regardless of the TRS value.
				Note: When, in transmit mode, this bit has been overwritter by a bit manipulation instruction with a value other than that of the ACKB flag in ICSR, the value of the ACKB bit as the acknowledge data setting for receive mode is overwritten by this value. Thus, always reset the acknowledge data when switching to receive mode. Write 0 to the ACKE bit to clear the ACKB flag to 0 in the following cases:
				in master mode—before transmission is ended and a stop condition is generated; and in slave mode—before transmission is ended and SDA is released to allow a master device to issue a

Note: * Only 0 can be written to clear the flag.

stop condition.

17.3.8 I²C Bus Control Initialization Register (ICRES)

ICRES controls IIC internal latch clearance.

		Initial		
Bit	Bit Name	Value	R/W	Description
7 to 5	_	All 0	R/W	Reserved
				The initial value should not be changed.
4	_	0	R	Reserved
3	CLR3	1	W*	IIC Clear 3 to 0
2	CLR2	1	W*	These bits control initialization of the internal state of
1	CLR1	1	W*	the IIC.
0	CLR0	1	W*	00: Setting prohibited
				0100: Setting prohibited
				0101: IIC internal latch cleared
				0110: Setting prohibited
				0111: IIC internal latch cleared
				1: Invalid setting
				When a write operation is performed on these bits, a clear signal is generated for the internal latch circuit of the corresponding module, and the internal state of the IIC module is initialized.
				These bits can only be written to; they are always read as 1. Write data to this bit is not retained.
				To perform IIC clearance, bits CLR3 to CLR0 must be written to simultaneously using an MOV instruction. Do not use a bit manipulation instruction such as BCLR.
				When clearing is required again, all the bits must be written to in accordance with the setting.

Note: * This bit is always read as 1.

17.3.9 I²C Bus Extended Control Register (ICXR)

ICXR enables or disables the I²C bus interface interrupt generation and handshake control, and indicates the status of receive/transmit operations.

Bit	Bit Name	Initial Value	R/W	Description
7	STOPIM	0	R/W	Stop Condition Interrupt Source Mask
				Enables or disables the interrupt generation when the stop condition is detected in slave mode.
				 Enables IRIC flag setting and interrupt generation when the stop condition is detected (STOP = 1 or ESTP = 1) in slave mode.
				 Disables IRIC flag setting and interrupt generation when the stop condition is detected.
6	HNDS	0	R/W	Enables or disables handshake control in receive mode for the selection of reception with handshaking.
				0: Disables handshake control
				1: Enables handshake control
				Note: When the IIC module is in use, be sure to set this bit to 1.
				When the HNDS bit is cleared to 0 and a round of reception is completed with ICDRR empty (the ICDRF flag is 0), successive reception will proceed with the next round of reception. At the same time, a clock is continuously supplied over the SCL line.
				In this case, the sequence of operations should be such that unnecessary clock cycles are not output to the bus after reception of the last of the data.
				When the HNDS bit is set to 1, SCL is fixed low and clock output stops on completion of reception. SCL is released and reception of the next frame is enabled by reading the receive data from ICDR.

		Initial				
Bit	Bit Name	Value	R/W	Description		
5	ICDRF	0	R	Receive Data Read Request Flag		
				Indicates the ICDR (ICDRR) status in receive mode.		
				0: Indicates that the data has been already read from ICDR (ICDRR) or ICDR is initialized.		
				 Indicates that data has been received successfully and transferred from ICDRS to ICDRR, and the data is ready to be read out. 		
				[Setting conditions]		
				 When data is received successfully and transferred from ICDRS to ICDRR. 		
				 When data is received successfully while ICDRF = 0 (at the rise of the 9th clock pulse). 		
				(2) When ICDR is read successfully in receive mode after data was received while ICDRF = 1.		
				[Clearing conditions]		
				When ICDR (ICDRR) is read.		
				When 0 is written to the ICE bit.		
				 When the IIC is internally initialized using the CLR3 to CLR0 bits in DDCSWR. 		
				When ICDRF is set due to the condition (2) above, ICDRF is temporarily cleared to 0 when ICDR (ICDRR) is read; however, since data is transferred from ICDRS to ICDRR immediately, ICDRF is set to 1 again.		
				Note that ICDR cannot be read successfully in transmit mode (TRS = 1) because data is not transferred from ICDRS to ICDRR. Be sure to read data from ICDR in receive mode (TRS = 0).		

Bit	Bit Name	Initial Value	R/W	Description
4	ICDRE	0	R	Transmit Data Write Request Flag
				Indicates the ICDR (ICDRT) status in transmit mode.
				 Indicates that the data has been already written to ICDR (ICDRT) or ICDR is initialized.
				1: Indicates that data has been transferred from ICDRT to ICDRS and is being transmitted, or the start condition has been detected or transmission has been complete, thus allowing the next data to be written to.
				[Setting conditions]
				 When the start condition is detected from the bus line state with I²C bus format or serial format.
				When data is transferred from ICDRT to ICDRS.
				 When data transmission completed while ICDRE = 0 (at the rise of the 9th clock pulse).
				 When data is written to ICDR in transmit mode after data transmission was completed while ICDRE = 1.
				[Clearing conditions]
				 When data is written to ICDR (ICDRT).
				 When the stop condition is detected with I²C bus format or serial format.
				When 0 is written to the ICE bit.
				 When the IIC is internally initialized using the CLR3 to CLR0 bits in DDCSWR.
				Note that if the ACKE bit is set to 1 with I ² C bus format thus enabling acknowledge bit decision, ICDRE is not set when data transmission is completed while the acknowledge bit is 1.
				When ICDRE is set due to the condition (2) above, ICDRE is temporarily cleared to 0 when data is written to ICDR (ICDRT); however, since data is transferred from ICDRT to ICDRS immediately, ICDRE is set to 1 again. Do not write data to ICDR when TRS = 0 because the ICDRE flag value is invalid during the time.

Bit	Bit Name	Initial Value	R/W	Description
3	ALIE	0	R/W	Arbitration Lost Interrupt Enable
				Enables or disables IRIC flag setting and interrupt generation when arbitration is lost.
				0: Disables interrupt request when arbitration is lost.
				1: Enables interrupt request when arbitration is lost.
2	ALSL	0	R/W	Arbitration Lost Condition Select
				Selects the condition under which arbitration is lost.
				0: When the SDA pin state disagrees with the data that IIC bus interface outputs at the rise of SCL, or when the SCL pin is driven low by another device.
				1: When the SDA pin state disagrees with the data that IIC bus interface outputs at the rise of SCL, or when the SDA line is driven low by another device in idle state or after the start condition instruction was executed.
1	_	0	R/W	Reserved
0	_	0	R/W	The initial value should not be changed.

17.4 Operation

The I²C bus interface has an I²C bus format and a serial format.

17.4.1 I²C Bus Data Format

The I²C bus format is an addressing format with an acknowledge bit. This is shown in figure 17.3. The first frame following a start condition always consists of 9 bits.

The serial format is a non-addressing format with no acknowledge bit. This is shown in figure 17.4.

Figure 17.5 shows the I^2C bus timing.

The symbols used in figures 17.3 to 17.5 are explained in table 17.7.

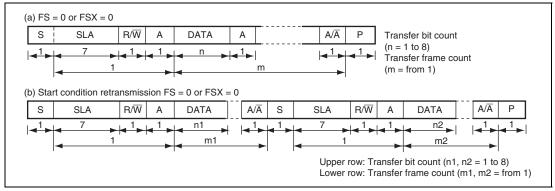


Figure 17.3 I²C Bus Data Format (I²C Bus Format)

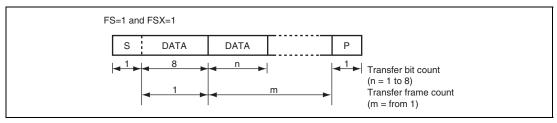


Figure 17.4 I²C Bus Data Format (Serial Format)

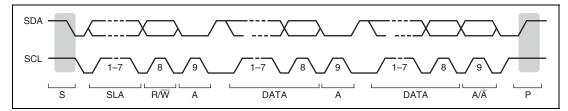


Figure 17.5 I²C Bus Timing

Table 17.7 I²C Bus Data Format Symbols

lρ			_
Lе	ue	2111	u

S	Start condition. The master device drives SDA from high to low while SCL is high.
SLA	Slave address. The master device selects the slave device.
R/W	Indicates the direction of data transfer: from the slave device to the master device when R/\overline{W} is 1, or from the master device to the slave device when R/\overline{W} is 0.
A	Acknowledge. The receiving device drives SDA low to acknowledge a transfer. (The slave device returns acknowledge in master transmit mode, and the master device returns acknowledge in master receive mode.)
DATA	Transferred data. The bit length of transferred data is set with the BC2 to BC0 bits in ICMR. The MSB first or LSB first is switched with the MLS bit in ICMR.
Р	Stop condition. The master device drives SDA from low to high while SCL is high.

Initialization 17.4.2

Initialize the IIC by the procedure shown in figure 17.6 before starting transmission/reception of data.

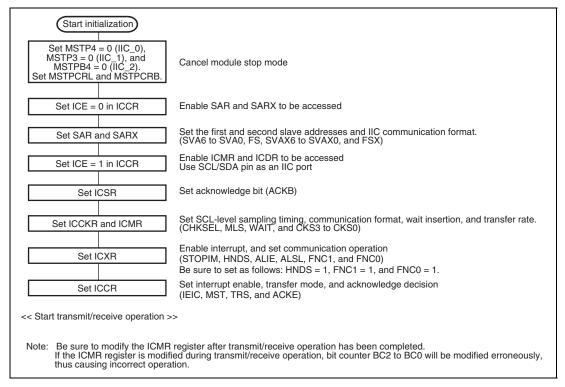


Figure 17.6 Sample Flowchart for IIC Initialization

17.4.3 **Master Transmit Operation**

In I²C bus format master transmit mode, the master device outputs the transmit clock and transmit data, and the slave device returns an acknowledge signal.

Figure 17.7 shows the sample flowchart for the operations in master transmit mode.

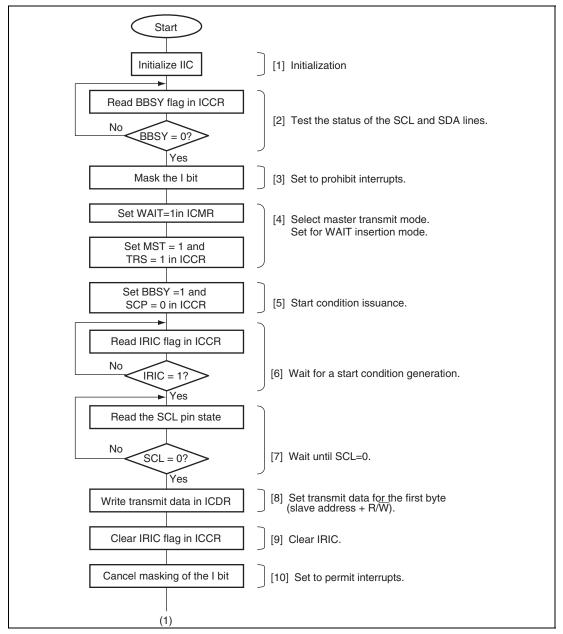


Figure 17.7 Sample Flowchart for Operations in Master Transmit Mode (1)



Figure 17.7 Sample Flowchart for Operations in Master Transmit Mode (2)

The master mode transmission procedure and operations are described below.

- 1. Initialize the IIC as described in section 17.4.2, Initialization.
- 2. Read the BBSY flag in ICCR to confirm that the bus is free.
- 3. Set I and UI in the CCR to 1 (to ensure that no interrupt handling is generated, including by the NMI or an address break).
- 4. Set the WAIT bit to 1 in ICMR to select WAIT insertion and set both the MST and TRS bits in ICCR to 1 for master-transmit mode.
- 5. Write 1 to BBSY and 0 to SCP in ICCR. This changes SDA from high to low when SCL is high, and generates the start condition.
- 6. Then the IRIC and IRTR flags are set to 1. If the IEIC bit in ICCR has been set to 1, an interrupt request is sent to the CPU.
- 7. After a start condition is detected, monitor the SCL pin and wait until the level goes from high to low. Monitoring can be done by reading the input data register corresponding to the SCL pin for the given channel (bit 2 of P5PIN for channel 0, bit 1 of PAPIN for channel 1, and bit 1, 3, 5, or 7 of PGPIN for channel 2).
- 8. Write the data (slave address + R/W) to ICDR.
 With the I²C bus format (when the FS bit in SAR or the FSX bit in SARX is 0), the first frame data following the start condition indicates the 7-bit slave address and transmit/receive direction (R/W).
- 9. Clear the IRIC flag to 0 so that the falling edge of the 8th cycle of the transmission clock is detectable.
- 10. Clear I and UI in the CCR to 0.
- 11. When one frame of data has been transmitted, the IRIC flag is set to 1 at the rise of the 9th transmit clock pulse. After one frame has been transmitted, SCL is automatically fixed low in synchronization with the internal clock until the next transmit data is written.
- 12. Monitor the SCL pin to confirm that the pin is at the high level.
- 13. Read the ACKB bit in ICSR to confirm clearing of ACKB to 0. When the slave device has not acknowledged reception (the ACKB bit is 1), return to step [12] to end the transmission and retry the transmission operation.
- 14. Monitor the SCL pin and wait until the level goes from high to low. If further operation is to be in master receiver mode, clear the WAIT bit to 0 before the transition to master receive mode transition.
- 15. When second and subsequent bytes are to be transmitted, do so by writing them to ICDR.
- 16. Clear the IRIC flag to 0 so that the falling edge of the 8th cycle of the transmission clock is detectable. Clear I and UI in the CCR to 0.

Page 523 of 1054

- 17. The IRIC flag is set to 1 on the falling edge of the 8th cycle of the transmission clock. The selected slave device (device with the matching slave address) sets SDA to the low level thus returning an acknowledgement on the 9th cycle of the transmission clock. Set I and UI in the CCR to 1 (to ensure that no interrupt handling is generated, including by the NMI or an address break). Next, clear the IRIC flag to 0; the rising edge of the 9th transmit clock pause is then generated.
- 18. Monitor the SCL pin to confirm that the pin is at the high level.
- 19. Read the ACKB bit in ICSR to confirm clearing of ACKB to 0. When the slave device has not acknowledged reception (the ACKB bit is 1), return to step [12] to end the transmission and retry the transmission operation.
- 20. Clear the IRIC flag to 0.

Write 0 to ACKE in ICCR, to clear received ACKB contents to 0.

Write 0 to BBSY and SCP in ICCR. This changes SDA from low to high when SCL is high, and generates the stop condition.

Figure 17.8 Example of Timing of Operations for Issuing a Start Condition in Master Transmit Mode (MLS=0, WAIT=1)

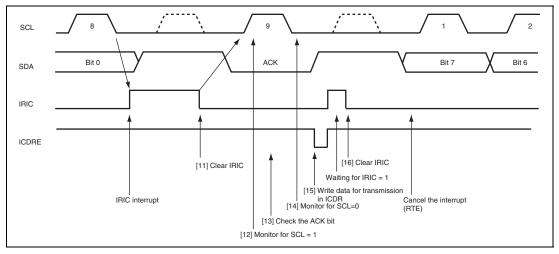


Figure 17.9 Example of Timing of Operations in Master Transmit Mode (MLS=0, WAIT=1)

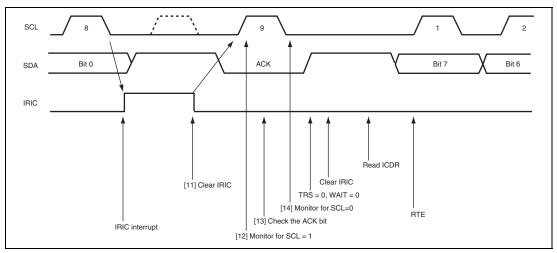


Figure 17.10 Example of Timing of Operations to Switch over from Master Transmit to Master Receiver Mode (MLS=0, WAIT=1)

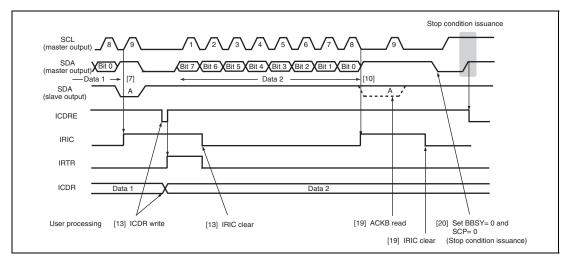


Figure 17.11 Example of Stop Condition Issuance Operation Timing in Master Transmit Mode (MLS = 0, WAIT = 1)

17.4.4 Master Receive Operation

In I²C bus format master receive mode, the master device outputs the receive clock, receives data, and returns an acknowledge signal. The slave device transmits data.

The master device transmits data containing the slave address and R/\overline{W} (1: read) in the first frame following the start condition issuance in master transmit mode, selects the slave device, and then switches the mode for receive operation.

Figure 17.12 shows the sample flowchart for the operations in master receive mode.

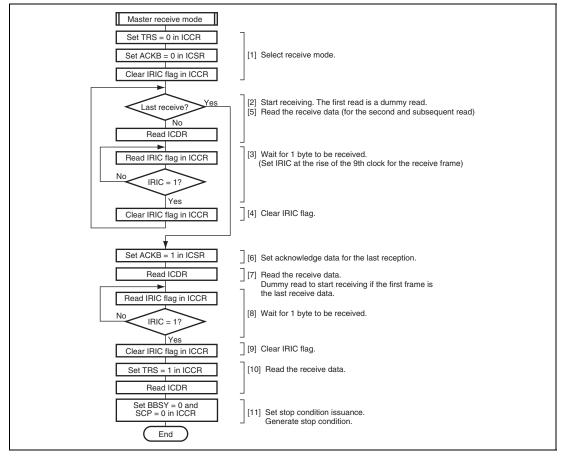


Figure 17.12 Sample Flowchart for Operations in Master Receive Mode

The master mode reception procedure and operations are described below.

- 1. Clear the TRS bit in ICCR to 0 to switch from transmit mode to receive mode.
 - Clear the ACKB bit in ICSR to 0 (acknowledge data setting).
 - Clear the IRIC flag to 0 to determine the end of reception.
 - Go to step [6] to halt reception operation if the first frame is the last receive data.
- 2. When ICDR is read (dummy data read), reception is started, the receive clock is output in synchronization with the internal clock, and data is received. (Data from the SDA pin is sequentially transferred to ICDRS in synchronization with the rise of the receive clock pulses.)
- 3. The master device drives SDA low to return the acknowledge data at the 9th receive clock pulse. The receive data is transferred from ICDRS to ICDRR at the rise of the 9th clock pulse, setting the ICDRF, IRIC, and IRTR flags to 1. If the IEIC bit has been set to 1, an interrupt request is sent to the CPU.
 - The master device drives SCL low from the fall of the 9th receive clock pulse to the ICDR data reading.
- 4. Clear the IRIC flag to determine the next interrupt.
 - Go to step [6] to halt reception operation if the next frame is the last receive data.
- 5. Read ICDR receive data. This clears the ICDRF flag to 0. The master device outputs the receive clock continuously to receive the next data.

Data can be received continuously by repeating steps [3] to [5].

- 6. Set the ACKB bit to 1 so as to return the acknowledge data for the last reception.
- 7. Read ICDR receive data. This clears the ICDRF flag to 0. The master device outputs the receive clock to receive data.
- 8. When one frame of data has been received, the ICDRF, IRIC, and IRTR flags are set to 1 at the rise of the 9th receive clock pulse.
- 9. Clear the IRIC flag to 0.
- 10. Read ICDR receive data after setting the TRS bit. This clears the ICDRF flag to 0.
- 11. Clear the BBSY bit and SCP bit to 0 in ICCR. This changes SDA from low to high when SCL is high, and generates the stop condition.

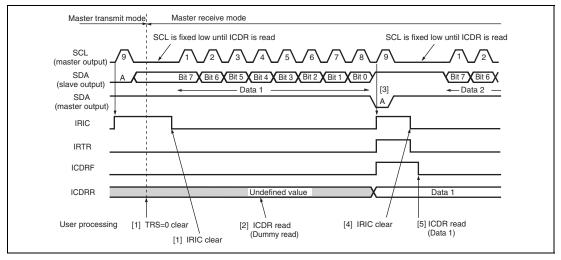


Figure 17.13 Example of Operation Timing in Master Receive Mode (MLS = WAIT = 0)

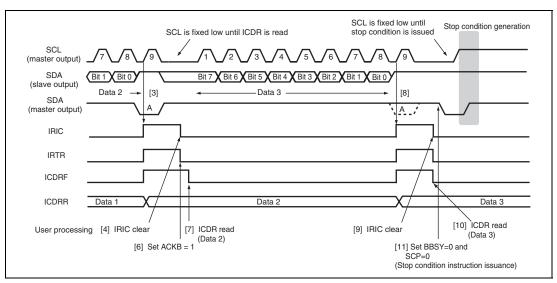


Figure 17.14 Example of Stop Condition Issuance Operation Timing in Master Receive Mode (MLS = WAIT = 0)

17.4.5 Slave Receive Operation

In I²C bus format slave receive mode, the master device outputs the transmit clock and transmit data, and the slave device returns an acknowledge signal.

The slave device operates as the device specified by the master device when the slave address in the first frame following the start condition that is issued by the master device matches its own address.

Figure 17.15 shows the sample flowchart for the operations in slave receive mode.

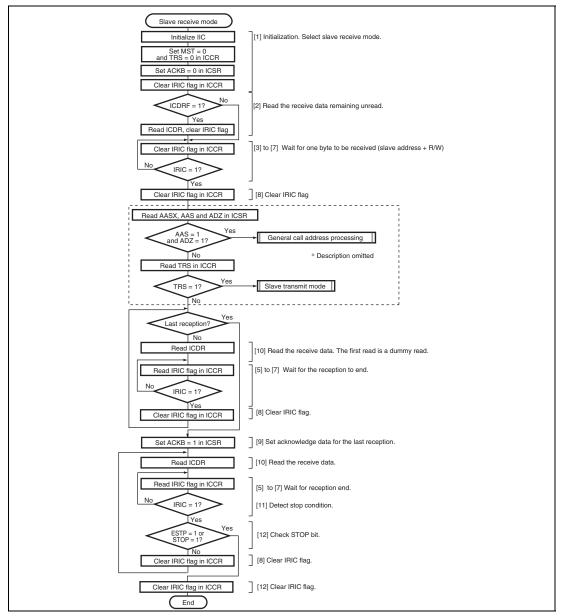


Figure 17.15 Sample Flowchart for Operations in Slave Receive Mode

The slave mode reception procedure and operations are described below.

- Initialize the IIC as described in section 17.4.2, Initialization.
 Clear the MST and TRS bits to 0 to set slave receive mode, and set the ACKB bit to 0. Clear the IRIC flag in ICCR to 0 to see the end of reception.
- 2. Confirm that the ICDRF flag is 0. If the ICDRF flag is set to 1, read the ICDR and then clear the IRIC flag to 0.
- 3. When the start condition output by the master device is detected, the BBSY flag in ICCR is set to 1. The master device then outputs the 7-bit slave address and transmit/receive direction (R/W), in synchronization with the transmit clock pulses.
- 4. When the slave address matches in the first frame following the start condition, the device operates as the slave device specified by the master device. If the 8th data bit (R/W) is 0, the TRS bit remains cleared to 0, and slave receive operation is performed. If the 8th data bit (R/W) is 1, the TRS bit is set to 1, and slave transmit operation is performed. When the slave address does not match, receive operation is halted until the next start condition is detected.
- 5. At the 9th clock pulse of the receive frame, the slave device returns the data in the ACKB bit as an acknowledge signal.
- 6. At the rise of the 9th clock pulse, the IRIC flag is set to 1. If the IEIC bit has been set to 1, an interrupt request is sent to the CPU.
 - If the AASX bit has been set to 1, IRTR flag is also set to 1.
- 7. At the rise of the 9th clock pulse, the receive data is transferred from ICDRS to ICDRR, setting the ICDRF flag to 1. The slave device drives SCL low from the fall of the 9th receive clock pulse until data is read from ICDR.
- 8. Confirm that the STOP bit is cleared to 0, and clear the IRIC flag to 0.
- 9. If the next frame is the last receive frame, set the ACKB bit to 1.
- 10. If ICDR is read, the ICDRF flag is cleared to 0, releasing the SCL bus line. This enables the master device to transfer the next data.

Receive operations can be performed continuously by repeating steps [5] to [10].

- 11. When the stop condition is detected (SDA is changed from low to high when SCL is high), the BBSY flag is cleared to 0 and the STOP bit is set to 1. If the STOPIM bit has been cleared to 0, the IRIC flag is set to 1.
- 12. Confirm that the STOP bit is set to 1, and clear the IRIC flag to 0.

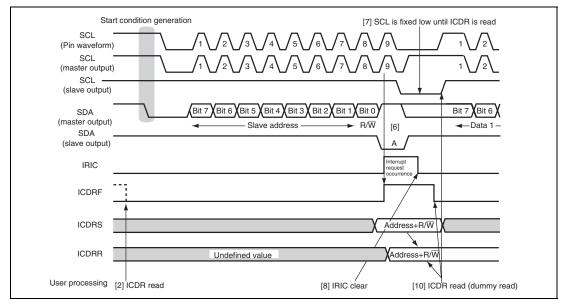


Figure 17.16 Example of Slave Receive Mode Operation Timing (1) (MLS = 0)

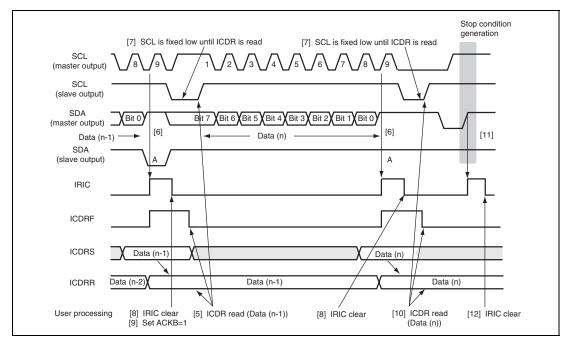


Figure 17.17 Example of Slave Receive Mode Operation Timing (2) (MLS = 0)

17.4.6 Slave Transmit Operation

If the slave address matches to the address in the first frame (address reception frame) following the start condition detection when the 8th bit data (R/\overline{W}) is 1 (read), the TRS bit in ICCR is automatically set to 1 and the mode changes to slave transmit mode.

Figure 17.18 shows the sample flowchart for the operations in slave transmit mode.

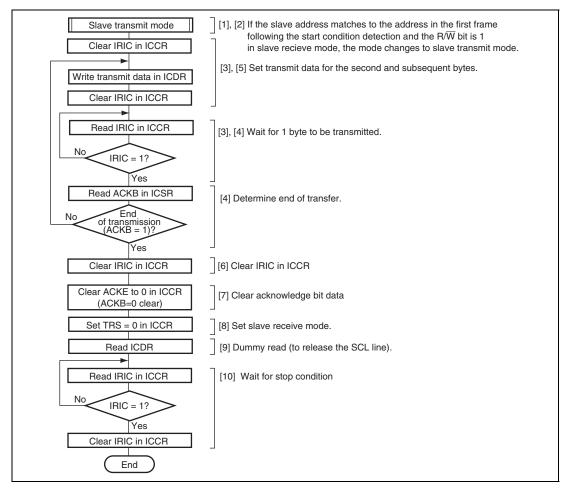


Figure 17.18 Sample Flowchart for Slave Transmit Mode

Page 534 of 1054

In slave transmit mode, the slave device outputs the transmit data, while the master device outputs the receive clock and returns an acknowledge signal. The transmission procedure and operations in slave transmit mode are described below.

- 1. Initialize slave receive mode and wait for slave address reception.
- 2. When the slave address matches in the first frame following detection of the start condition, the slave device drives SDA low at the 9th clock pulse and returns an acknowledge signal. If the 8th data bit (R/W) is 1, the TRS bit in ICCR is set to 1, and the mode changes to slave transmit mode automatically. The IRIC flag is set to 1 at the rise of the 9th clock. If the IEIC bit in ICCR has been set to 1, an interrupt request is sent to the CPU. At the same time, the ICDRE flag is set to 1. The slave device drives SCL low from the fall of the transmit 9th clock until ICDR data is written, to disable the master device to output the next transfer clock.
- 3. After clearing the IRIC flag to 0, write data to ICDR. At this time, the ICDRE flag is cleared to 0. The written data is transferred to ICDRS, and the ICDRE and IRIC flags are set to 1 again. The slave device sequentially sends the data written into ICDRS in accordance with the clock output by the master device.
 - The IRIC flag is cleared to 0 to detect the end of transmission. Processing from the ICDR register writing to the IRIC flag clearing should be performed continuously. Prevent any other interrupt processing from being inserted.
- 4. The master device drives SDA low at the 9th clock pulse, and returns an acknowledge signal. As this acknowledge signal is stored in the ACKB bit in ICSR, this bit can be used to determine whether the transfer operation was performed successfully. When one frame of data has been transmitted, the IRIC flag in ICCR is set to 1 at the rise of the 9th transmit clock pulse. When the ICDRE flag is 0, the data written into ICDR is transferred to ICDRS, transmission starts, and the ICDRE and IRIC flags are set to 1 again. If the ICDRE flag has been set to 1, this slave device drives SCL low from the fall of the 9th transmit clock until data is written to ICDR.
- 5. To continue transmission, write the next data to be transmitted into ICDR. The ICDRE flag is cleared to 0. The IRIC flag is cleared to 0 to detect the end of transmission. Processing from the ICDR writing to the IRIC flag clearing should be performed continuously. Prevent any other interrupt processing from being inserted.

Transmit operations can be performed continuously by repeating steps [4] and [5].

- 6. Clear the IRIC flag to 0.
- 7. To end transmission, clear the ACKE bit in ICCR to 0, to clear the acknowledge bit stored in the ACKB bit to 0.
- 8. Clear the TRS bit to 0 for the next address reception, to set slave receive mode.
- 9. Dummy-read ICDR to release SCL on the slave side.
- 10. When the stop condition is detected, that is, when SDA is changed from low to high when SCL is high, the BBSY flag in ICCR is cleared to 0 and the STOP flag in ICSR is set to 1. When the STOPIM bit in ICXR is 0, the IRIC flag is set to 1. If the IRIC flag has been set, it is cleared to 0.

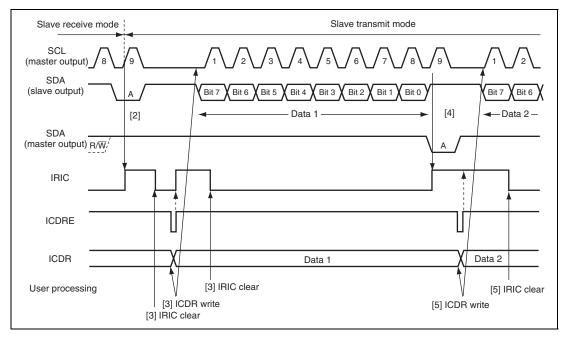


Figure 17.19 Example of Slave Transmit Mode Operation Timing (MLS = 0)

17.4.7 IRIC Setting Timing and SCL Control

The interrupt request flag (IRIC) is set at different times depending on the WAIT bit in ICMR, the FS bit in SAR, and the FSX bit in SARX. If the ICDRE or ICDRF flag is set to 1, SCL is automatically held low after one frame has been transferred in synchronization with the internal clock. Figures 17.20 to 17.22 show the IRIC set timing and SCL control.

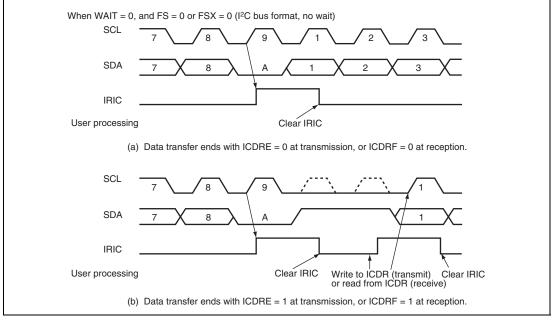


Figure 17.20 IRIC Setting Timing and SCL Control (1)

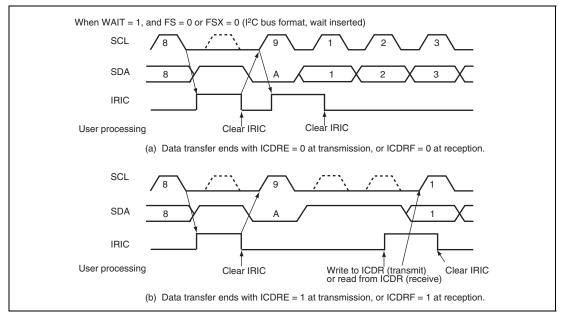


Figure 17.21 IRIC Setting Timing and SCL Control (2)

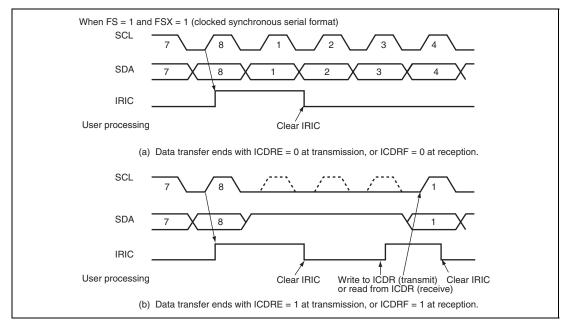


Figure 17.22 IRIC Setting Timing and SCL Control (3)

17.4.8 Noise Canceler

The logic levels at the SCL and SDA pins are routed through noise cancelers before being latched internally. Figure 17.23 shows a block diagram of the noise canceler.

The noise canceler consists of two cascaded latches and a match detector. The SCL (or SDA) pin input signal is sampled on the system clock, but is not passed forward to the next circuit unless the outputs of both latches agree. If they do not agree, the previous value is held.

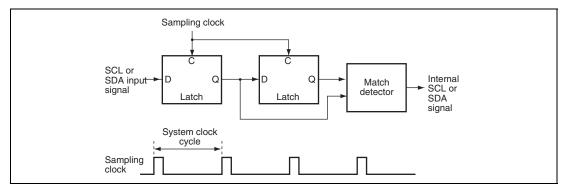


Figure 17.23 Block Diagram of Noise Canceler

17.4.9 Initialization of Internal State

The IIC has a function for forcible initialization of its internal state if a deadlock occurs during communication.

Initialization is executed in accordance with the setting of bits CLR3 to CLR0 in ICRES or clearing ICE bit. For details on the setting of bits CLR3 to CLR0, see section 17.3.8, I²C Bus Control Initialization Register (ICRES).

(1) Scope of Initialization

The initialization executed by this function covers the following items:

- ICDRE and ICDRF internal flags
- Transmit/receive sequencer and internal operating clock counter
- Internal latches for retaining the output state of the SCL and SDA pins (wait, clock, data output, etc.)

The following items are not initialized:

- Actual register values (ICDR, SAR, SARX, ICMR, ICCR, ICSR, ICXR (except for the ICDRE and ICDRF flags))
- Internal latches used to retain register read information for setting/clearing flags in ICMR, ICCR, and ICSR
- The value of the ICMR bit counter (BC2 to BC0)
- Generated interrupt sources (interrupt sources transferred to the interrupt controller)

(2) Notes on Initialization

- Interrupt flags and interrupt sources are not cleared, and so flag clearing measures must be taken as necessary.
- Basically, other register flags are not cleared either, and so flag clearing measures must be taken as necessary.
- When initialization is executed by ICRES, the write data for bits CLR3 to CLR0 is not retained. To perform IIC clearance, bits CLR3 to CLR0 must be written to simultaneously using an MOV instruction. Do not use a bit manipulation instruction such as BCLR.
- Similarly, when clearing is required again, all the bits must be written to simultaneously in accordance with the setting.
- If a flag clearing setting is made during transmission/reception, the IIC module will stop transmitting/receiving at that point and the SCL and SDA pins will be released. When transmission/reception is started again, register initialization, etc., must be carried out as necessary to enable correct communication as a system.

The value of the BBSY bit cannot be modified directly by this module clear function, but since the stop condition pin waveform is generated according to the state and release timing of the SCL and SDA pins, the BBSY bit may be cleared as a result. Similarly, state switching of other bits and flags may also have an effect.

To prevent problems caused by these factors, the following procedure should be used when initializing the IIC state.

- 1. Execute initialization of the internal state according to the setting of bits CLR3 to CLR0 or ICE bit clearing.
- 2. Execute a stop condition issuance instruction (write 0 to BBSY and SCP) to clear the BBSY bit to 0, and wait for two transfer rate clock cycles.
- 3. Re-execute initialization of the internal state according to the setting of bits CLR3 to CLR0 or ICE bit clearing.
- 4. Initialize (re-set) the IIC registers.

17.5 Interrupt Sources

The IIC has interrupt source IICI. Table 17.8 shows the interrupt sources and priority. Individual interrupt sources can be enabled or disabled using the enable bits in ICCR, and are sent to the interrupt controller independently.

Table 17.8 IIC Interrupt Sources

Channel	Name	Enable Bit	Interrupt Source	Interrupt I	Flag Priority
0	IICI0	IEIC	I ² C bus interface interrupt request	IRIC	High ∳
1	IICI1	IEIC	I ² C bus interface interrupt request	IRIC	
2	IICI2	IEIC	I ² C bus interface interrupt request	IRIC	Low

Usage Notes 17.6

- 1. In master mode, if an instruction to generate a start condition is issued and then an instruction to generate a stop condition is issued before the start condition is output to the I²C bus, neither condition will be output correctly.
- 2. Either of the following two conditions will start the next transfer. Pay attention to these conditions when accessing ICDR.
 - Write to ICDR when ICE = 1 and TRS = 1 (including automatic transfer from ICDRT to ICDRS)
 - Read from ICDR when ICE = 1 and TRS = 0 (including automatic transfer from ICDRS to ICDRR)
- 3. Table 17.9 shows the timing of SCL and SDA outputs in synchronization with the internal clock. Timings on the bus are determined by the rise and fall times of signals affected by the bus load capacitance, series resistance, and parallel resistance.

Table 17.9 I²C Bus Timing (SCL and SDA Outputs)

Item	Symbol	Output Timing	Unit	Notes
SCL output cycle time	t _{sclo}	28 $t_{\rm cyc}$ to 256 $t_{\rm cyc}$	ns	See figure
SCL output high pulse width	t _{sclho}	0.5 t _{sclo}	ns	- 28.22 (for _ reference)
SCL output low pulse width	t _{scllo}	0.5 t _{sclo}	ns	= 1010101100)
SDA output bus free time	t _{BUFO}	$0.5 t_{\scriptscriptstyle SCLO} - 1 t_{\scriptscriptstyle cyc}$	ns	_
Start condition output hold time	t _{STAHO}	$0.5 t_{\scriptscriptstyle SCLO} - 1 t_{\scriptscriptstyle cyc}$	ns	_
Retransmission start condition output setup time	t _{staso}	1 t _{sclo}	ns	_
Stop condition output setup time	t _{stoso}	$0.5 t_{\text{SCLO}} + 2 t_{\text{cyc}}$	ns	_
Data output setup time (master)	t _{sdaso}	$1 t_{\text{scllo}} - 3 t_{\text{cyc}}$	ns	_
Data output setup time (slave)	_	1 t _{scll} – (6 t _{cyc} or 12 t _{cyc} *)		
Data output hold time	t _{sdaho}	3 t _{cyc}	ns	_

6 t when the IICX/CKS3 bit is 0, and 12 t when the IICX/CKS3 bit is 1. Note:

4. The I²C bus interface specification for the SCL rise time t_{sr} is 1000 ns or less (300 ns for high-speed mode). In master mode, the I²C bus interface monitors the SCL line and synchronizes one bit at a time during communication. If t_{sr} (the time for SCL to go from low to V_{IH}) exceeds the time determined by the input clock of the I²C bus interface, the high period of SCL is extended. The SCL rise time is determined by the pull-up resistance and load capacitance of the SCL line. To insure proper operation at the set transfer rate, adjust the pull-up resistance and load capacitance so that the SCL rise time does not exceed the values given in table 17.10.

Table 17.10 Permissible SCL Rise Time (t_s.) Values

			Time Indication [ns]						
IICX/ CKS3	t _{cyc} Indica- tion		I ² C Bus Specification (Max.)	φ = 8 MHz	φ = 10 MHz	φ = 16 MHz	φ = 20 MHz		
0	7.5 t _{cyc}	Standard mode	1000	937	750	468	375		
		High-speed mode	300	300	300	300	300		
1	17.5 t _{cyc}	Standard mode	1000	1000	1000	1000	875		
		High-speed mode	300	300	300	300	300		

5. The I²C bus interface specifications for the SCL and SDA rise and fall times are under 1000 ns and 300 ns. The I²C bus interface SCL and SDA output timing is prescribed by t_{cyc}, as shown in table 17.11. However, because of the rise and fall times, the I²C bus interface specifications may not be satisfied at the maximum transfer rate. Table 17.11 shows output timing calculations for different operating frequencies, including the worst-case influence of rise and fall times.

 $t_{\mbox{\tiny BUFO}}$ fails to meet the I²C bus interface specifications at any frequency. The solution is either (a) to provide coding to secure the necessary interval (approximately 1 µs) between issuance of a stop condition and issuance of a start condition, or (b) to select devices whose input timing permits this output timing for use as slave devices connected to the I²C bus.

 $t_{_{SCLLO}}$ in high-speed mode and $t_{_{STASO}}$ in standard mode fail to satisfy the I^2C bus interface specifications for worst-case calculations of $t_{_{Sf}}/t_{_{Sf}}$. Possible solutions that should be investigated include (a) adjusting the rise and fall times by means of a pull-up resistor and capacitive load, (b) reducing the transfer rate to meet the specifications, or (c) selecting devices whose input timing permits this output timing for use as slave devices connected to the I^2C bus.

Time Indication (at Maximum Transfer Rate) [ns]

Table 17.11 I²C Bus Timing (with Maximum Influence of t_s/t_{sr})

			Time indication (at Maximum Transfer Hate) [ns]						
ltem	t _{cyc} Indication		t _s /t _s , Influence (Max.)	I ² C Bus Specification (Min.)	φ = 8 MHz	φ = 10 MHz	φ = 16 MHz	φ = 20 MHz	
t _{sclho}	0.5 t _{sclo} (-t _{sr})	Standard mode	-1000	4000	4000	4000	4000	4000	
		High-speed mode	-300	600	950	950	950	950	
SCLLO	0.5 t _{sclo} (-t _{sf})	Standard mode	-250	4700	4750	4750	4750	4750	
		High-speed mode	-250	1300	1000*1	1000*1	1000*1	1000*1	
BUFO	0.5 t _{sclo} -1 t _{cyc}	Standard mode	-1000	4700	3875*1	3900*1	3939*1	3950*1	
	(-t _{sr})	High-speed mode	-300	1300	825* ¹	850*1	888*1	900*1	
STAHO	$0.5 t_{SCLO} - 1 t_{cyc} $ $(-t_{sf})$	Standard mode	-250	4000	4625	4650	4688	4700	
		High-speed mode	-250	600	875	900	938	900	
STASO	1 t _{sclo} (-t _{sr})	Standard mode	-1000	4700	9000	9000	9000	9000	
		High-speed mode	-300	600	2200	2200	2200	2200	
STOSO	0.5 t _{sclo} + 2 t _{cyc}	Standard mode	-1000	4000	4250	4200	4125	4100	
	(-t _{sr})	High-speed mode	-300	600	1200	1150	1075	1050	
SDASO	1 t _{scllo} *3 –3 t _{cyc}	Standard mode	-1000	250	3325	3400	3513	3550	
master)	(-t _{sr})	High-speed mode	-300	100	625	700	813	850	
SDASO	1 t _{scll} *3	Standard mode	-1000	250	2200	2500	2950	3100	
slave)	$-12 t_{cyc}^{*2}$ $(-t_{sr})$	High-speed mode	-300	100	-500* ¹	-200* ¹	250	400	
SDAHO	3 t _{cyc}	Standard mode	0	0	375	300	188	150	
		High-speed mode	0	0	375	300	188	150	

Notes: 1. Does not meet the I²C bus interface specification. Remedial action such as the following is necessary: (a) secure a start/stop condition issuance interval; (b) adjust the rise and fall times by means of a pull-up resistor and capacitive load; (c) reduce the transfer rate; (d) select slave devices whose input timing permits this output timing.

> The values in the above table will vary depending on the settings of the IICX/CKS3 and CKS2 to CKS0 bits. Depending on the frequency it may not be possible to achieve the maximum transfer rate; therefore, whether or not the I2C bus interface specifications are met must be determined in accordance with the actual setting conditions.

- 2. Value when the IICX/CKS3 bit is set to 1. When the IICX/CKS3 bit is cleared to 0, the value is $(t_{SCLL} - 6 t_{cvc})$.
- 3. Calculated using the I²C bus specification values (standard mode: 4700 ns min.; highspeed mode: 1300 ns min.).

- 6. Note on ICDR read in transmit mode and ICDR write in receive mode
 If ICDR is read in transmit mode (TRS = 1) or ICDR is written to in receive mode (TRS = 0), the SCL pin may not be held low in some cases after transmit/receive operation has been completed, thus inconveniently allowing clock pulses to be output on the SCL bus line before ICDR is accessed correctly. To access ICDR correctly, read ICDR after setting receive mode or write to ICDR after setting transmit mode.
- 7. Note on ACKE and TRS bits in slave mode

In the I^2C bus interface, if 1 is received as the acknowledge bit value (ACKB = 1) in transmit mode (TRS = 1) and then the address is received in slave mode without performing appropriate processing, interrupt handling may start at the rising edge of the 9th clock pulse even when the address does not match. Similarly, if the start condition or address is transmitted from the master device in slave transmit mode (TRS = 1), the IRIC flag may be set after the ICDRE flag is set and 1 received as the acknowledge bit value (ACKB = 1), thus causing an interrupt source even when the address does not match.

To use the I²C bus interface module in slave mode, be sure to follow the procedures below.

- A. When having received 1 as the acknowledge bit value for the last transmit data at the end of a series of transmit operation, clear the ACKE bit in ICCR once to initialize the ACKB bit to 0.
- B. Set receive mode (TRS = 0) before the next start condition is input in slave mode. Complete transmit operation by the procedure shown in figure 17.16, in order to switch from slave transmit mode to slave receive mode.

17.6.1 Module Stop Mode Setting

The IIC operation can be enabled or disabled using the module stop control register. The initial setting is for the IIC operation to be halted. Register access is enabled by canceling module stop mode. For details, see section 29, Power-Down Modes.

Section 18 SMBus 2.0 Interface (SMBUS)

This LSI has a one-channel SMBus 2.0 interface (SMBUS). The SMBUS requires channel 0 of the I²C bus interface (IIC) as the communication module.

The SMBUS includes a hardware module that performs the packet error checking (PEC) calculation.

This section explains the PEC calculation module. For details on the communication functions, see the description of channel 0 in section 17, I²C Bus Interface (IIC).

18.1 Features

- Conformance with the SMBus 2.0 interface. Supports transmission/reception formats that include the PEC.
- Multiplexed usage of channel 0 of the I²C bus module as the communication module
- Includes a PEC calculation module, enabling high-speed CRC-8 calculation by hardware CRC-8 (8bit Cyclic Redundancy Check): C(x) = x^8 + x^2 + x +1

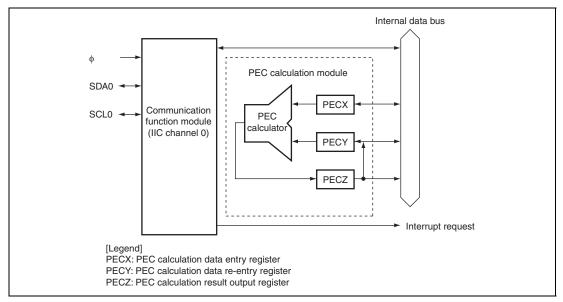


Figure 18.1 Block Diagram of SMBus Interface

18.2 Input/Output Pins

Table 18.1 lists the pins used by the SMBUS.

Table 18.1 Pin Configuration

Channel	Symbol*	Input/Output	Function
0	SCL0	Input/Output	Serial clock input/output pin of SMBUS
	SDA0	Input/Output	Serial data input/output pin of SMBUS

Note: * The suffix 0 indicating the channel is omitted from later descriptions, i.e. the signals are simply denoted by SCL and SDA.

18.3 Register Descriptions

The PEC calculation module of the SMBUS has the following registers. The register configuration of the SMBUS is shown below. For details on the registers of the communication function module, see the description of channel 0 in section 17, I²C Bus Interface (IIC).

Table 18.2 Register Configuration

Register Name	Abbreviation	R/W	Initial Value	Address	Data Bus Width
PEC calculation data entry register	PECX	R/W	H'00	H'FD60	8
PEC calculation data re-entry register	PECY	R/W	H'00	H'FD61	8
PEC calculation result output register	PECZ	R	H'00	H'FD63	8

18.3.1 PEC Calculation Data Entry Register (PECX)

PECX holds the data on which the PEC calculation will be performed.

Bit	Bit Name	Initial Value	R/W	Description
7 to 0	PECX7 to PECX0	All 0	R/W	PEC Calculation Entry Data 7 to 0
				These bits hold the data on which PEC calculation will be performed.

18.3.2 PEC Calculation Data Re-entry Register (PECY)

PECY is a register in which the previous PECZ content is reentered as the PEC calculation is performed on multiple bytes of data.

When data is written to PECX, the PECZ content is transferred to PECY at the same time.

Bit	Bit Name	Initial Value	R/W	Description
7 to 0	PECY7 to PECY0	All 0	R/W	PEC Calculation Re-entry Data 7 to 0
				These bits store data that has been transferred from PECZ for the PEC calculation.

18.3.3 PEC Calculation Result Output Register (PECZ)

PECZ holds the result of CRC-8 calculation from the contents of PECX and PECY.

Bit	Bit Name	Initial Value	R/W	Description
7 to 0	PECZ7 to PECZ0	All 0	R	PEC Calculation Output Data 7 to 0
				These bits hold the result of PEC calculation.

18.4 Operation

Transfer over the SMBUS is in the same format as transfer over the I²C bus interface. The PEC is transferred after the last byte of data, enabling the detection of errors in received data.

18.4.1 SMBus 2.0 Data Format

Figure 18.2 is a schematic diagram of the SMBus 2.0 format.

The symbols used in figure 18.2 are explained in table 18.3.

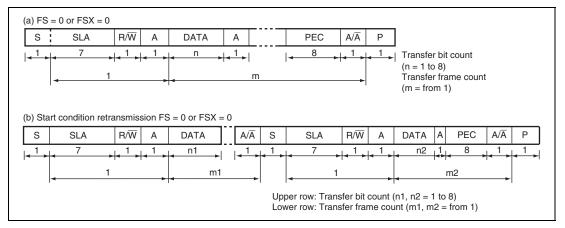


Figure 18.2 SMBus 2.0 Data Format

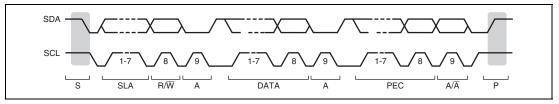


Figure 18.3 SMBus 2.0 Timing

Table 18.3 SMBus 2.0 Data Format Symbols

Legend	
S	Start condition
	The master device drives SDA from high to low while SCL is high.
SLA	Slave address
	The master device selects the slave device.
R/W	Indicates the direction of data transfer: from the slave device to the master device when R/\overline{W} is 1, or from the master device to the slave device when R/\overline{W} is 0.
Α	Acknowledge
	The receiving device drives SDA low to acknowledge a transfer. (The slave device returns acknowledge in master transmit mode, and the master device returns acknowledge in master receive mode.)
DATA	Transferred data
PEC	PEC data
Р	Stop condition
	The master device drives SDA from low to high while SCL is high.

18.4.2 Usage of PEC Calculation Module

PEC calculation is performed by simply writing to PECX and PECY. The result of calculation is read from PECZ.

Use the following procedure to perform PEC calculation in SMBUS data transfer.

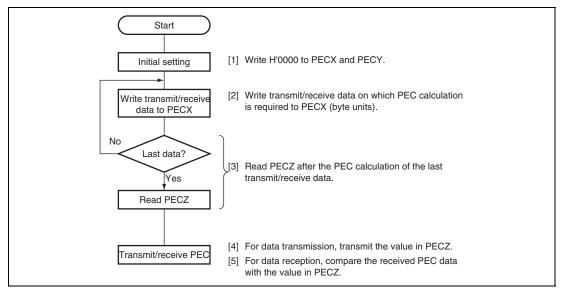


Figure 18.4 Sample Flowchart of PEC Calculation

- 1. Initialize the PEC calculation module before starting transmission or reception. Use a word-transfer instruction to write H'0000 to both PECX and PECY, or use byte-transfer instructions to write H'00 to PECX and then PECY.
- 2. Write transmit data or receive data to PECX in byte units each time a byte of an address or data is received or transmitted. However, do not write data to PECY during PEC calculation.
- 3. After writing the last transmit/receive data to PECX, read PECZ to obtain the result of PEC calculation.
- 4. For data transmission, transmit the result of PEC calculation.
- 5. For data reception, compare the received PEC data with the result of PEC calculation. If the data match, successful reception has been confirmed.

18.5 Usage Notes

18.5.1 Module Stop Mode Setting

The SMBUS operation can be enabled or disabled using the module stop control register. The initial setting is for the SMBUS operation to be halted. Register access is enabled by canceling module stop mode. For details, see section 29, Power-Down Modes.

Section 19 Keyboard Buffer Control Unit (PS2)

This LSI has three on-chip keyboard buffer control unit (PS2) channels. The PS2 is provided with functions conforming to the PS/2 interface specifications.

Data transfer using the PS2 employs a data line (KD) and a clock line (KCLK), providing economical use of connectors, board surface area, etc. Figure 19.1 shows a block diagram of the PS2.

19.1 **Features**

- Conforms to PS/2 interface specifications
- Direct bus drive (via the KCLK and KD pins)
- Interrupt sources: on completion of data reception/transmission, on detection of clock falling edge, and on detection of the first falling edge of a clock
- Error detection: parity error, stop bit monitoring, and receive notify monitoring

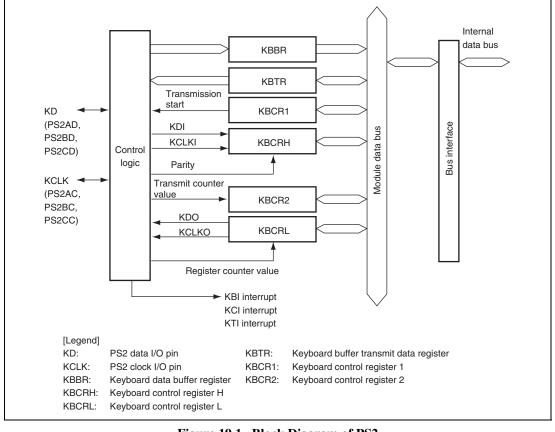


Figure 19.1 Block Diagram of PS2

Figure 19.2 shows how the PS2 is connected.

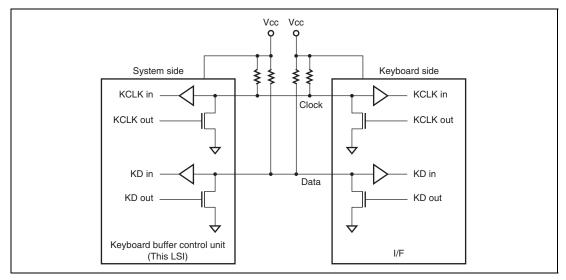


Figure 19.2 PS2 Connection

19.2 Input/Output Pins

Table 19.1 lists the input/output pins used by the keyboard buffer control unit.

Table 19.1 Pin Configuration

Channel	Name	Abbreviation*	I/O	Function
0	PS2 clock I/O pin (KCLK0)	PS2AC	I/O	PS2 clock input/output
	PS2 data I/O pin (KD0)	PS2AD	I/O	PS2 data input/output
1	PS2 clock I/O pin (KCLK1)	PS2BC	I/O	PS2 clock input/output
	PS2 data I/O pin (KD1)	PS2BD	I/O	PS2 data input/output
2	PS2 clock I/O pin (KCLK2)	PS2CC	I/O	PS2 clock input/output
	PS2 data I/O pin (KD2)	PS2CD	I/O	PS2 data input/output

Note: * These are the external I/O pin names. In the text, clock I/O pins are referred to as KCLK and data I/O pins as KD, omitting the channel designations.

19.3 Register Descriptions

The PS2 has the following registers for each channel.

Table 19.2 Register Configuration

Channel	Register Name	Abbreviation	R/W	Initial Value	Address	Data Bus Width
Channel 0	Keyboard control register H_0	KBCRH_0	R/W	H'70	H'FED8	8
	Keyboard control register L_0	KBCRL_0	R/W	H'70	H'FED9	8
	Keyboard data buffer register_0	KBBR_0	R	H'00	H'FEDA	8
	Keyboard control register 2_0	KBCR2_0	R/W	H'00	H'FEDB	8
	Keyboard control register 1_0	KBCR1_0	R/W	H'00	H'FEC0	8
	Keyboard buffer transmit data register_0	KBTR_0	R/W	H'FF	H'FEC1	8
Channel 1	Keyboard control register H_1	KBCRH_1	R/W	H'70	H'FEDC	8
	Keyboard control register L_1	KBCRL_1	R/W	H'70	H'FEDD	8
	Keyboard data buffer register_1	KBBR_1	R	H'00	H'FEDE	8
	Keyboard control register 2_1	KBCR2_1	R/W	H'00	H'FEDF	8
	Keyboard control register 1_1	KBCR1_1	R/W	H'00	H'FEC2	8
	Keyboard buffer transmit data register_1	KBTR_1	R/W	H'FF	H'FEC3	8
Channel 2	Keyboard control register H_2	KBCRH_2	R/W	H'70	H'FEE0	8
	Keyboard control register L_2	KBCRL_2	R/W	H'70	H'FEE1	8
	Keyboard data buffer register_2	KBBR_2	R	H'00	H'FEE2	8
	Keyboard control register 2_2	KBCR2_2	R/W	H'00	H'FEE3	8
	Keyboard control register 1_2	KBCR1_2	R/W	H'00	H'FEC4	8
	Keyboard buffer transmit data register_2	KBTR_2	R/W	H'FF	H'FEC5	8

19.3.1 Keyboard Control Register 1 (KBCR1)

KBCR1 controls data transmission and interrupt, selects parity, and detects transmit error.

7 KBTS 0 R/W Transmit Start Selects start of data transmission or disables transmission. 0: Data transmission is disabled [Clearing conditions] • When 0 is written • When the KBTE is set to 1 • When the KBIOE is cleared to 0 1: Starts data transmission [Setting condition] When 1 is written after reading the KBTS = 0 6 PS 0 R/W Transmit Parity Selection Selects even or odd parity. 0: Selects odd parity 1: Selects even parity 5 KCIE 0 R/W First KCLK Falling Interrupt Enable Selects whether an interrupt at the first falling edge of KCLK is enabled or disabled. 0: Disables first KCLK falling interrupt 1: Enables first KCLK falling interrupt 4 KTIE 0 R/W Transmit Completion Interrupt Enable Selects whether a transmit completion interrupt is enabled or disabled. 0: Disables transmit completion interrupt is enabled or disabled.	Bit	Bit Name	Initial Value	R/W	Description
transmission. 0: Data transmission is disabled [Clearing conditions] • When 0 is written • When the KBTE is set to 1 • When the KBIOE is cleared to 0 1: Starts data transmission [Setting condition] When 1 is written after reading the KBTS = 0 6 PS 0 R/W Transmit Parity Selection Selects even or odd parity. 0: Selects even parity 1: Selects even parity 5 KCIE 0 R/W First KCLK Falling Interrupt Enable Selects whether an interrupt at the first falling edge of KCLK is enabled or disabled. 0: Disables first KCLK falling interrupt 4 KTIE 0 R/W Transmit Completion Interrupt Enable Selects whether a transmit completion interrupt is enabled or disabled. 0: Disables transmit completion interrupt	7	KBTS	0	R/W	Transmit Start
[Clearing conditions] When 0 is written When the KBTE is set to 1 When the KBIOE is cleared to 0 Setting condition] When 1 is written after reading the KBTS = 0 PS R/W Transmit Parity Selection Selects even or odd parity Selects odd parity Selects even parity KCIE R/W First KCLK Falling Interrupt Enable Selects whether an interrupt at the first falling edge of KCLK is enabled or disabled. D: Disables first KCLK falling interrupt KTIE R/W Transmit Completion Interrupt Enable Selects whether a transmit completion interrupt is enabled or disabled. D: Disables transmit completion interrupt is enabled or disabled. D: Disables transmit completion interrupt is enabled or disabled.					
When 0 is written When the KBTE is set to 1 When the KBIOE is cleared to 0 Starts data transmission [Setting condition] When 1 is written after reading the KBTS = 0 PS R/W Transmit Parity Selection Selects even or odd parity.					0: Data transmission is disabled
When the KBTE is set to 1 When the KBIOE is cleared to 0 1: Starts data transmission [Setting condition] When 1 is written after reading the KBTS = 0 6 PS 0 R/W Transmit Parity Selection Selects even or odd parity. 0: Selects odd parity 1: Selects even parity 5 KCIE 0 R/W First KCLK Falling Interrupt Enable Selects whether an interrupt at the first falling edge of KCLK is enabled or disabled. 0: Disables first KCLK falling interrupt 1: Enables first KCLK falling interrupt 4 KTIE 0 R/W Transmit Completion Interrupt Enable Selects whether a transmit completion interrupt is enabled or disabled. 0: Disables transmit completion interrupt					[Clearing conditions]
When the KBIOE is cleared to 0 1: Starts data transmission [Setting condition] When 1 is written after reading the KBTS = 0 6 PS 0 R/W Transmit Parity Selection Selects even or odd parity. 0: Selects odd parity 1: Selects even parity 5 KCIE 0 R/W First KCLK Falling Interrupt Enable Selects whether an interrupt at the first falling edge of KCLK is enabled or disabled. 0: Disables first KCLK falling interrupt 1: Enables first KCLK falling interrupt 4 KTIE 0 R/W Transmit Completion Interrupt Enable Selects whether a transmit completion interrupt is enabled or disabled. 0: Disables transmit completion interrupt					When 0 is written
1: Starts data transmission [Setting condition] When 1 is written after reading the KBTS = 0 6 PS 0 R/W Transmit Parity Selection Selects even or odd parity. 0: Selects odd parity 1: Selects even parity 5 KCIE 0 R/W First KCLK Falling Interrupt Enable Selects whether an interrupt at the first falling edge of KCLK is enabled or disabled. 0: Disables first KCLK falling interrupt 1: Enables first KCLK falling interrupt 4 KTIE 0 R/W Transmit Completion Interrupt Enable Selects whether a transmit completion interrupt is enabled or disabled. 0: Disables transmit completion interrupt					When the KBTE is set to 1
[Setting condition] When 1 is written after reading the KBTS = 0 6 PS 0 R/W Transmit Parity Selection Selects even or odd parity. 0: Selects odd parity 1: Selects even parity 5 KCIE 0 R/W First KCLK Falling Interrupt Enable Selects whether an interrupt at the first falling edge of KCLK is enabled or disabled. 0: Disables first KCLK falling interrupt 1: Enables first KCLK falling interrupt 4 KTIE 0 R/W Transmit Completion Interrupt Enable Selects whether a transmit completion interrupt is enabled or disabled. 0: Disables transmit completion interrupt					 When the KBIOE is cleared to 0
When 1 is written after reading the KBTS = 0 6 PS 0 R/W Transmit Parity Selection Selects even or odd parity. 0: Selects odd parity 1: Selects even parity 5 KCIE 0 R/W First KCLK Falling Interrupt Enable Selects whether an interrupt at the first falling edge of KCLK is enabled or disabled. 0: Disables first KCLK falling interrupt 1: Enables first KCLK falling interrupt 4 KTIE 0 R/W Transmit Completion Interrupt Enable Selects whether a transmit completion interrupt is enabled or disabled. 0: Disables transmit completion interrupt					1: Starts data transmission
6 PS 0 R/W Transmit Parity Selection Selects even or odd parity. 0: Selects odd parity 1: Selects even parity 5 KCIE 0 R/W First KCLK Falling Interrupt Enable Selects whether an interrupt at the first falling edge of KCLK is enabled or disabled. 0: Disables first KCLK falling interrupt 1: Enables first KCLK falling interrupt 4 KTIE 0 R/W Transmit Completion Interrupt Enable Selects whether a transmit completion interrupt is enabled or disabled. 0: Disables transmit completion interrupt					[Setting condition]
Selects even or odd parity. 0: Selects odd parity 1: Selects even parity 5 KCIE 0 R/W First KCLK Falling Interrupt Enable Selects whether an interrupt at the first falling edge of KCLK is enabled or disabled. 0: Disables first KCLK falling interrupt 1: Enables first KCLK falling interrupt 4 KTIE 0 R/W Transmit Completion Interrupt Enable Selects whether a transmit completion interrupt is enabled or disabled. 0: Disables transmit completion interrupt					When 1 is written after reading the KBTS = 0
0: Selects odd parity 1: Selects even parity 5 KCIE 0 R/W First KCLK Falling Interrupt Enable Selects whether an interrupt at the first falling edge of KCLK is enabled or disabled. 0: Disables first KCLK falling interrupt 1: Enables first KCLK falling interrupt 4 KTIE 0 R/W Transmit Completion Interrupt Enable Selects whether a transmit completion interrupt is enabled or disabled. 0: Disables transmit completion interrupt	6	PS	0	R/W	Transmit Parity Selection
1: Selects even parity 5 KCIE 0 R/W First KCLK Falling Interrupt Enable Selects whether an interrupt at the first falling edge of KCLK is enabled or disabled. 0: Disables first KCLK falling interrupt 1: Enables first KCLK falling interrupt 4 KTIE 0 R/W Transmit Completion Interrupt Enable Selects whether a transmit completion interrupt is enabled or disabled. 0: Disables transmit completion interrupt					Selects even or odd parity.
5 KCIE 0 R/W First KCLK Falling Interrupt Enable Selects whether an interrupt at the first falling edge of KCLK is enabled or disabled. 0: Disables first KCLK falling interrupt 1: Enables first KCLK falling interrupt 4 KTIE 0 R/W Transmit Completion Interrupt Enable Selects whether a transmit completion interrupt is enabled or disabled. 0: Disables transmit completion interrupt					0: Selects odd parity
Selects whether an interrupt at the first falling edge of KCLK is enabled or disabled. 0: Disables first KCLK falling interrupt 1: Enables first KCLK falling interrupt 4 KTIE 0 R/W Transmit Completion Interrupt Enable Selects whether a transmit completion interrupt is enabled or disabled. 0: Disables transmit completion interrupt					1: Selects even parity
KCLK is enabled or disabled. 0: Disables first KCLK falling interrupt 1: Enables first KCLK falling interrupt 4 KTIE 0 R/W Transmit Completion Interrupt Enable Selects whether a transmit completion interrupt is enabled or disabled. 0: Disables transmit completion interrupt	5	KCIE	0	R/W	First KCLK Falling Interrupt Enable
1: Enables first KCLK falling interrupt 4 KTIE 0 R/W Transmit Completion Interrupt Enable Selects whether a transmit completion interrupt is enabled or disabled. 0: Disables transmit completion interrupt					
4 KTIE 0 R/W Transmit Completion Interrupt Enable Selects whether a transmit completion interrupt is enabled or disabled. 0: Disables transmit completion interrupt					0: Disables first KCLK falling interrupt
Selects whether a transmit completion interrupt is enabled or disabled. 0: Disables transmit completion interrupt					1: Enables first KCLK falling interrupt
enabled or disabled. 0: Disables transmit completion interrupt	4	KTIE	0	R/W	Transmit Completion Interrupt Enable
					·
1. Enables transmit completion interrupt					0: Disables transmit completion interrupt
i. Enables transmit completion interrupt					1: Enables transmit completion interrupt

Bit	Bit Name	Initial Value	R/W	Description
3	KNCE	0	R/W	Select enabling or disabling of the noise canceling circuit for input on the KCLK pin.
				Noise canceling circuit for KCLK pin input is enabled.
				 Noise canceling circuit for KCLK pin input is disabled.
				See section 19.4.8, Noise Canceling Circuit, for details.
2	KCIF	0	R/(W)*	First KCLK Falling Interrupt Flag
				Indicates that the first falling edge of KCLK is detected. When KCIE and KCIF are set to 1, requests the CPU an interrupt.
				0: [Clearing condition]
				After reading KCIF = 1, 0 is written
				1: [Setting condition]
				When the first falling edge of KCLK is detected
				Note that this flag cannot be set when software standby mode or watch mode is cancelled. (However, internal flag is set.)
1	KBTE	0	R/(W)*	Transmit Completion Flag
				Indicates that data transmission is completed. When KTIE and KBTE are set to 1, requests the CPU an interrupt.
				0: [Clearing condition]
				After reading KBTE = 1, 0 is written
				1: [Setting Condition]
				When all KBTR data has been transmitted (Set at the eleventh rising edge of the KCLK signal)
0	KTER	0	R	Transmit Error
				Stores a notification of receive completion. Valid only when KBTE = 1.
				0: 0 received as a notification of receive completion.
				1: 1 received as a notification of receive completion.

Note: * Only 0 can be written for clearing the flag.

19.3.2 Keyboard Buffer Control Register 2 (KBCR2)

KBCR2 is a 4-bit counter that performs counting synchronized with the falling edge of KCLK. Transmit data is synchronized with the transmit counter, and data in the KBTR is sent to the KD (LSB-first).

		Initial		
Bit	Bit Name	Value	R/W	Description
7 to 4	_	All 1	R	Reserved
				These bits are always read as 1 and cannot be modified.
3	TXCR3	0	R	Transmit Counter
2	TXCR2	0	R	Indicates bit of transmit data. Counter is incremented
1	TXCR1	0	R	at the falling edge of KCLK. The transmit counter is
0	TXCR0	0	R	initialized by a reset, when the KBTS is cleared to 0, the KBIOE is cleared to 0, or the KBTE is set to 1.
				0000: Clear
				0001: KBT0
				0010: KBT1
				0011: KBT2
				0100: KBT3
				0101: KBT4
				0110: KBT5
				0111: KBT6
				1000: KBT7
				1001: Parity bit
				1010: Stop bit
				1011: Transmit completion notification

19.3.3 Keyboard Control Register H (KBCRH)

KBCRH indicates the operating status of the keyboard buffer control unit.

Bit	Bit Name	Initial Value	R/W	Description
7	KBIOE	0	R/W	Keyboard In/Out Enable
				Selects whether or not the keyboard buffer control unit is used.
				The keyboard buffer control unit is non-operational (KCLK and KD signal pins have port functions)
				The keyboard buffer control unit is enabled for transmission and reception (KCLK and KD signal pins are in the bus drive state)
6	KCLKI	1	R	Keyboard Clock In
				Monitors the KCLK I/O pin. This bit cannot be modified.
				0: KCLK I/O pin is low
				1: KCLK I/O pin is high
5	KDI	1	R	Keyboard Data In
				Monitors the KDI I/O pin. This bit cannot be modified.
				0: KD I/O pin is low
				1: KD I/O pin is high
4	KBFSEL	1	R/W	Keyboard Buffer Register Full Select
				Selects whether the KBF bit is used as the keyboard buffer register full flag or as the KCLK fall interrupt flag. When KBF bit is used as the KCLK fall interrupt flag, the KBE bit in KBCRL should be cleared to 0 to disable reception.
				0: KBF bit is used as KCLK fall interrupt flag
				1: KBF bit is used as keyboard buffer register full flag
3	KBIE	0	R/W	Keyboard Interrupt Enable
				Enables or disables interrupts from the keyboard buffer control unit to the CPU.
				0: Interrupt requests are disabled
				1: Interrupt requests are enabled

Bit	Bit Name	Initial Value	R/W	Description
2	KBF	0	R/(W)*	Keyboard Buffer Register Full
				Indicates that data reception has been completed and the received data is in KBBR. When both KBIE and KBF are set to 1, an interrupt request is sent to the CPU.
				0: [Clearing condition]
				Read KBF when KBF =1, then write 0 in KBF
				1: [Setting conditions]
				 When data has been received normally and has been transferred to KBBR while KBFSEL = 1 (keyboard buffer register full flag)
				 When a KCLK falling edge is detected while KBFSEL = 0 (KCLK interrupt flag)
1	PER	0	R/(W)*	Parity Error
				Indicates that an odd parity error has occurred.
				0: [Clearing condition]
				Read PER when PER =1, then write 0 in PER
				1: [Setting condition]
				When an odd parity error occurs
0	KBS	0	R	Keyboard Stop
				Indicates the receive data stop bit. Valid only when $KBF = 1$.
				0: 0 stop bit received
				1: 1 stop bit received

Note: * Only 0 can be written for clearing the flag.

Keyboard Control Register L (KBCRL) 19.3.4

KBCRL enables the receive counter count and controls the keyboard buffer control unit pin output.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	KBE	0	R/W	Keyboard Enable
				Enables or disables loading of receive data into KBBR.
				0: Loading of receive data into KBBR is disabled
				1: Loading of receive data into KBBR is enabled
6	KCLKO	1	R/W	Keyboard Clock Out
				Controls PS2 clock I/O pin output.
				0: PS2 clock I/O pin is low
				1: PS2 clock I/O pin is high
5	KDO	1	R/W	Keyboard Data Out
				Controls PS2 data I/O pin output.
				0: PS2 data I/O pin is low
				1: PS2 data I/O pin is high
				When the start bit (KDO) is automatically cleared (KDO = 1) by means of automatic transmission, 0 is written after reading 1.
4	_	1	_	Reserved
				This bit is always read as 1 and cannot be modified.

Feb 14, 2013

		Initial		
Bit	Bit Name	Value	R/W	Description
3	RXCR3	0	R	Receive Counter
2	RXCR2	0	R	These bits indicate the received data bit. Their value is
1	RXCR1	0	R	incremented on the fall of KCLK. These bits cannot be modified.
0	RXCR0	0	=	The receive counter is initialized by a reset and when 0 is written in KBE. Its value returns to B'0000 after a stop bit is received.
				0000: —
				0001: Start bit
				0010: KB0
				0011: KB1
				0100: KB2
				0101: KB3
				0110: KB4
				0111: KB5
				1000: KB6
				1001: KB7
				1010: Parity bit
				1011:—
-				11:-

19.3.5 Keyboard Data Buffer Register (KBBR)

KBBR stores receive data. Its value is valid only when KBF = 1.

Bit	Bit Name	Initial Value	R/W	Description
			-	·
7	KB7	0	R	Keyboard Data 7 to 0
6	KB6	0	R	8-bit read only data.
5	KB5	0	R	Initialized to H'00 by a reset or when KBIOE is cleared
4	KB4	0	R	to 0.
3	KB3	0	R	
2	KB2	0	R	
1	KB1	0	R	
0	KB0	0	R	

19.3.6 Keyboard Buffer Transmit Data Register (KBTR)

KBTR stores transmit data.

Bit	Bit Name	Initial Value	R/W	Description
DIL	DIL INAIIIE	value	ITI/ VV	Description
7	KBT7	1	R/W	Keyboard Buffer Transmit Data Register 7 to 0
6	KBT6	1	R/W	Initialized to H'FF at reset.
5	KBT5	1	R/W	
4	KBT4	1	R/W	
3	KBT3	1	R/W	
2	KBT2	1	R/W	
1	KBT1	1	R/W	
0	KBT0	1	R/W	

Operation 19.4

19.4.1 **Receive Operation**

In a receive operation, both KCLK (clock) and KD (data) are outputs on the keyboard side and inputs on this LSI chip (system) side. KD receives a start bit, 8 data bits (LSB-first), an odd parity bit, and a stop bit, in that order. The KD value is valid when KCLK is low. Value of KD is valid when the KCLK is low. A sample receive processing flowchart is shown in figure 19.3, and the receive timing in figure 19.4.

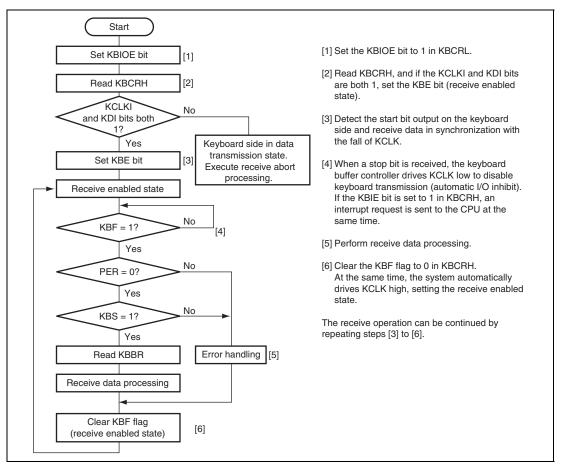


Figure 19.3 Sample Receive Processing Flowchart

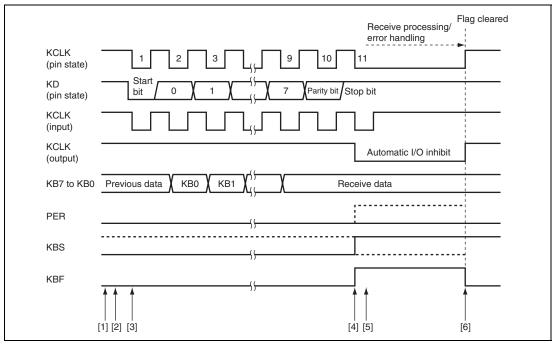


Figure 19.4 Receive Timing

19.4.2 Transmit Operation

In a transmit operation, KCLK (clock) is an output on the keyboard side, and KD (data) is an output on the chip (system) side. KD outputs a start bit, 8 data bits (LSB-first), an odd parity bit, and a stop bit, in that order. The KD value is valid when KCLK is high. A sample transmit processing flowchart is shown in figure 19.5, and the transmit timing in figure 19.6.

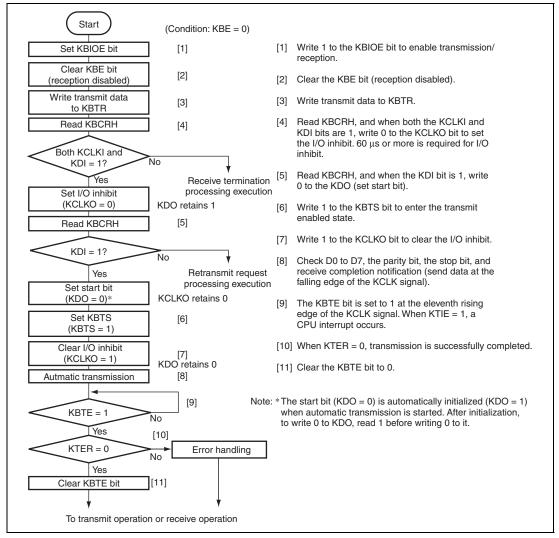


Figure 19.5 Sample Transmit Processing Flowchart

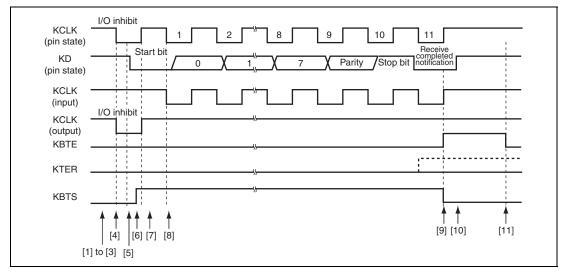


Figure 19.6 Transmit Timing

19.4.3 Receive Abort

This LSI (system side) can forcibly abort transmission from the device connected to it (keyboard side) in the event of a protocol error, etc. In this case, the system holds the clock low. During reception, the keyboard also outputs a clock for synchronization, and the clock is monitored when the keyboard output clock is high. If the clock is low at this time, the keyboard judges that there is an abort request from the system, and data transmission from the keyboard is aborted. Thus the system can abort reception by holding the clock low for a certain period. A sample receive abort processing flowchart is shown in figure 19.7, and the receive abort timing in figure 19.8.

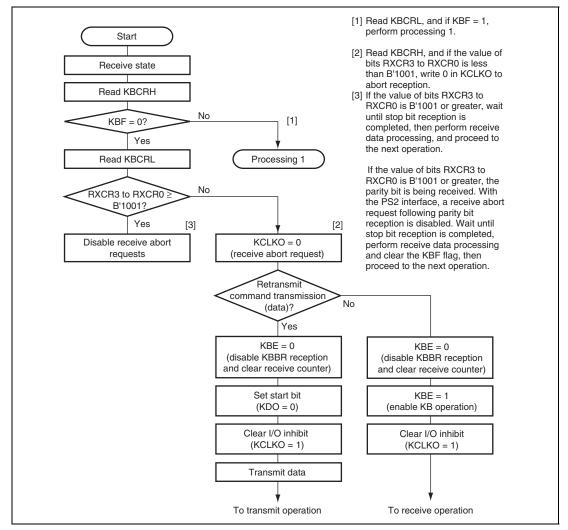


Figure 19.7 Sample Receive Abort Processing Flowchart (1)

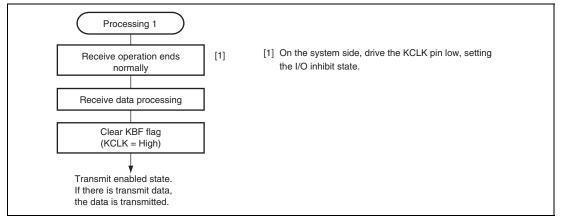


Figure 19.7 Sample Receive Abort Processing Flowchart (2)

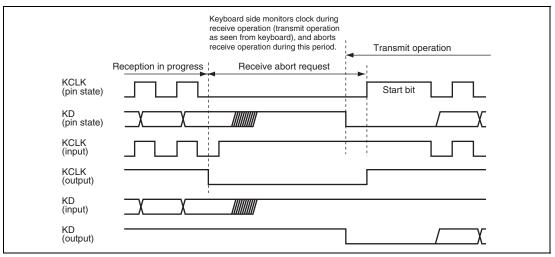


Figure 19.8 Receive Abort and Transmit Start (Transmission/Reception Switchover) Timing

KBF Setting Timing and KCLK Control 19.4.4

Figure 19.9 shows the KBF setting timing and the KCLK pin states.

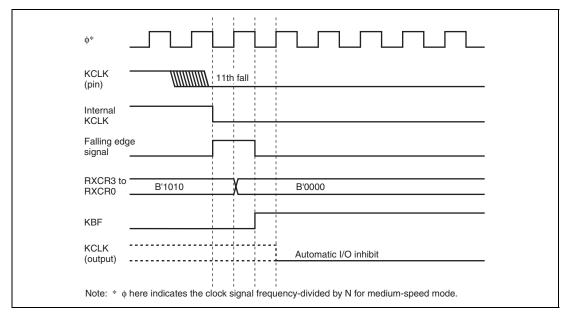


Figure 19.9 KBF Setting and KCLK Automatic I/O Inhibit Generation Timing

19.4.5 **Operation during Data Reception**

If the KBS bit in KBCRH is set to 1 with other keyboard buffer control units in reception*, the KCLK is automatically pulled down. Figure 19.10 shows receive timing and the KCLK.

Note: * Period from the first falling edge of KCLK to completion of reception (KBF = 1).

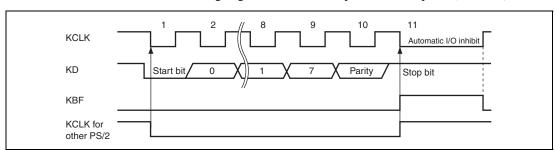


Figure 19.10 Receive Timing and KCLK

19.4.6 KCLK Fall Interrupt Operation

In this device, clearing the KBFSEL bit to 0 in KBCRH enables the KBF bit in KBCRH to be used as a flag for the interrupt generated by the fall of KCLK input.

Figure 19.11 shows the setting method and an example of operation.

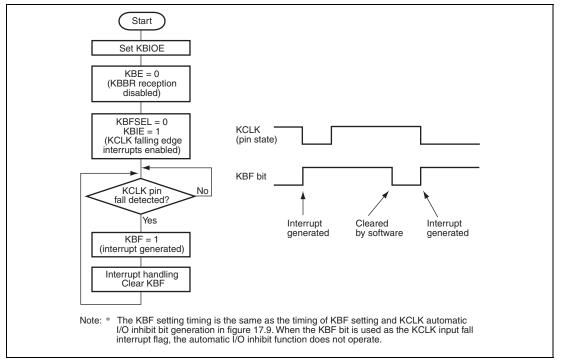


Figure 19.11 Example of KCLK Input Fall Interrupt Operation

19.4.7 First KCLK Falling Interrupt

An interrupt can be generated by detecting the first falling edge of KCLK on reception and transmission. Software standby mode and watch mode can be cancelled by a first KCLK falling interrupt.

Reception

When both KBIOE and KBE are set to 1, KCIF is set after the first falling edge of KCLK has been detected.

At this time, if KCIE is set to 1, the CPU is requested an interrupt.

KCIF is set at the same time when the RXCR3 to RXCR0 bits in KBCRL are incremented from B'0000 to B'0001.

Transmission

When both KBIOE and KBTS are set to 1, the KCIF is set after the first falling edge of KCLK has been detected.

At this time, if KCIE is set to 1, the CPU is requested an interrupt.

KCIF is set at the same time when the TXCR3 to TXCR0 bits in KBCR2 are incremented from B'0000 to B'0001.

Determining interrupt generation

By checking the KBE, KBTS, and KBTE bits, it can be determined whether the first KCLK falling interrupt is occurred during reception or transmission.

During reception: KBE = 1

During transmission: KBTS = 1 or KBTE = 1 (Check KBTE = 1 because the KBTS is automatically cleared after transfer has been completed.)

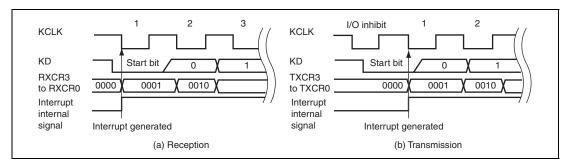


Figure 19.12 Timing of First KCLK Interrupt

Canceling software standby mode and watch mode
 Software standby mode and watch mode are cancelled by a first KCLK falling interrupt. In this case, an interrupt is generated at the first KCLK since software standby mode or watch mode has been shifted (figure 19.14).

Notes on canceling operation are explained below.

- When a transition to software standby mode or watch mode is performed while both KBIOE and KCIE are set to 1, canceling the current mode is enabled by a first KCLK falling interrupt (the KBE and KBTS are not affected).
- When software standby mode and watch mode are cancelled by a first KCLK falling interrupt, the KCIF flag is not set (only the internal flag is set).
 In the first KCLK interrupt handling routine, the KCIF bit is checked. If the KCIF is 0, it indicates that the interrupt is generated after software standby mode and watch mode have been cancelled.
- When software standby mode or watch mode is cancelled by receiving a receive clock, the reception is ignored. Execute reception terminating processing by an interrupt handing routine, and then request retransfer.
- When transition to software standby mode or watch mode is made and the mode is canceled by a first KCLK falling interrupt during data transmission, state before performing mode transition is held immediately after canceling the mode. Therefore, initialization by an interrupt handling routine is required. Precautions as (b) and (c) which are shown in figure 19.14 should be applied on interrupt generation.
- Priority of canceling software standby mode and watch mode is decided by the setting of ICR.
- The interrupt signal path and flag setting of the first KCLK interrupt in normal operation differ from those in software standby mode and watch mode. Figure 19.13 shows the interrupt signal paths of the first KCLK interrupt.
 - Signal A: Interrupt signal in normal operation
 - Signal B: Interrupt signal in software standby mode and watch mode
- KCLK is input directly to the interrupt control block, not through the PS2, in software standby mode and watch mode, and then an interrupt is generated by detection of a falling edge. Therefore, the KCIF flag is not set. In this case, a flag that is in the interrupt control block is set. The internal flag is automatically cleared after an interrupt request is sent to the CPU. Figure 19.15 shows setting and clearing timing.

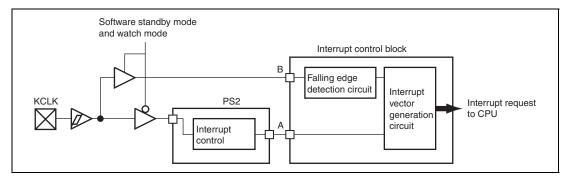


Figure 19.13 First KCLK Interrupt Path

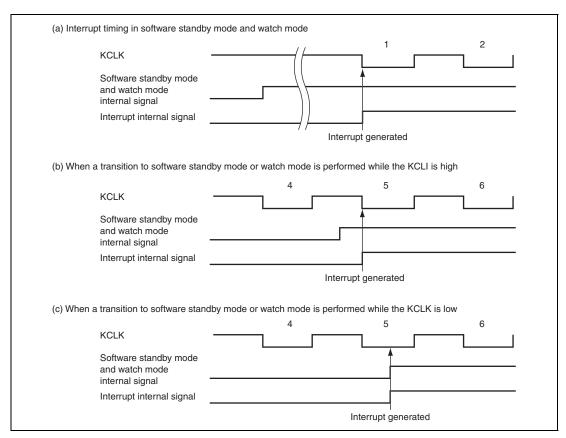


Figure 19.14 Interrupt Timing in Software Standby Mode and Watch Mode

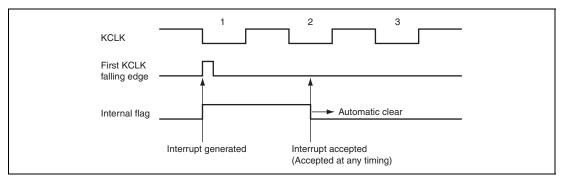


Figure 19.15 Internal Flag of First KCLK Falling Interrupt in Software Standby Mode and Watch Mode

19.4.8 Noise canceling circuit

When the KNCE bit in KBCR1 is set to 1, the state of the KCLK pin is passed through the noise canceling circuit of the PS2 to produce the signal taken up internally. Figure 19.16 is a block diagram of the noise canceling circuit.

The noise canceling circuit consists of two latch circuits connect in series and a match-detection circuit. KCLK is sampled at the system-clock frequency and a new level isn't conveyed to subsequent stages until the outputs from the two series latches match. The previous value is retained if the two do not match.

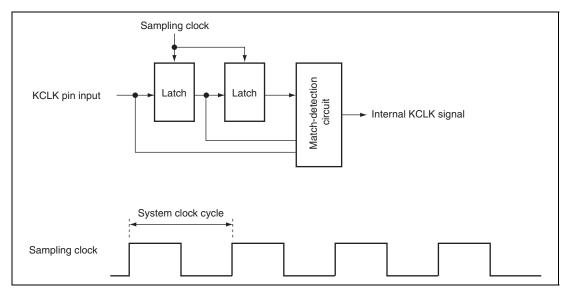


Figure 19.16 Block diagram of the noise canceling circuit (operational when the KNCE bit is 1)

19.5 Usage Notes

19.5.1 KBIOE Setting and KCLK Falling Edge Detection

When KBIOE is 0, the internal KCLK and internal KD settings are fixed at 1. Therefore, if the KCLK pin is low when the KBIOE bit is set to 1, the edge detection circuit operates and the KCLK falling edge is detected.

If the KBFSEL bit and KBE bit are both 0 at this time, the KBF bit is set. Figure 19.17 shows the timing of KBIOE setting and KCLK falling edge detection.

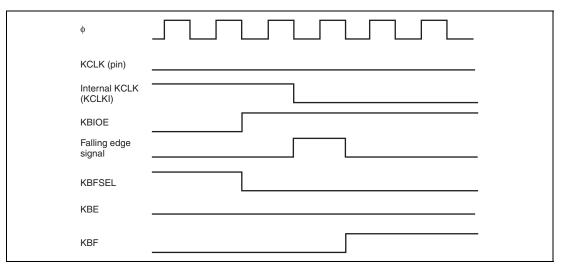


Figure 19.17 KBIOE Setting and KCLK Falling Edge Detection Timing

19.5.2 KD Output by KDO bit (KBCRL) and by Automatic Transmission

Figure 19.18 shows the relationship between the KD output by the KDO bit (KBCRL) and by the automatic transmission. Switch to the KD output by the automatic transmission is performed when KBTS is set to 1 and TXCR is not cleared to 0. In this case, the KD output by the KDO bit (KBCRL) is masked.

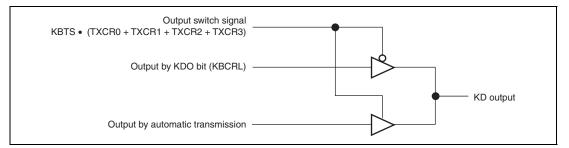


Figure 19.18 KDO Output

19.5.3 Module Stop Mode Setting

Keyboard buffer control unit operation can be enabled or disabled using the module stop control register. The initial setting is for keyboard buffer control unit operation to be halted. Register access is enabled by canceling module stop mode. For details, see section 29, Power-Down Modes.

19.5.4 Medium-Speed Mode

In medium-speed mode, the PS2 operates with the medium-speed clock. For normal operation of the PS2, set the medium-speed clock to a frequency of 300 kHz or higher.

19.5.5 Transmit Completion Flag (KBTE)

When TXCR3 to TXCR0 are 1011 (transmit completion notification) and then the TXCR3 to TXCR0 are initialized by clearing KBIOE or KBTS to 0, the transmit completion flag (KBTE) is set. In this case, KTER is invalid.

Section 20 LPC Interface (LPC)

This LSI has an on-chip LPC interface.

The LPC includes four register sets, each of which comprises data and status registers, control register, the fast Gate A20 logic circuit, and the host interrupt request circuit.

The LPC performs serial transfer of cycle type, address, and data, synchronized with the 33 MHz PCI clock. It uses four signal lines for address/data and one for host interrupt requests. This LPC module supports I/O read and I/O write cycle transfers. It is also provided with power-down functions that can control the PCI clock and shut down the LPC interface.

20.1 **Features**

- Supports LPC interface I/O read and I/O write cycles
 - Uses four signal lines (LAD3 to LAD0) to transfer the cycle type, address, and data.
 - Uses three control signals: clock (LCLK), reset (LRESET), and frame (LFRAME).
- Four register sets comprising data and status registers
 - The basic register set comprises three bytes: an input register (IDR), output register (ODR), and status register (STR).
 - I/O addresses from H'0000 to H'FFFF are selected for channels 1 to 4.
 - A fast Gate A20 function is provided for channel 1.
 - For channel 3, sixteen bidirectional data register bytes can be manipulated in addition to the basic register set.
 - For channel 4, thirty-two bidirectional data register bytes can be manipulated in addition to the basic register set.
- POST code output channel
 - Channel A (I/O address H'0080) can be manipulated as the POST code output channel.
- Supports SCIF
 - The LPC interface is connected to the SCIF, allowing direct control of the SCIF by the LPC host.
- Supports SERIRQ
 - Host interrupt requests are transferred serially on a single signal line (SERIRQ).
 - On channel 1, HIRQ1 and HIRQ12 can be generated.
 - On channels 2 and 3, SMI, HIRQ6, and HIRQ9 to HIRQ11 can be generated.
 - On channel 4 and in the SCIF, HIRQ1, SMI, and HIRQ3 to HIRQ15 can be generated.
 - Operation can be switched between quiet mode and continuous mode.
 - The CLKRUN signal can be manipulated to restart the PCI clock (LCLK).

- · Power-down modes and interrupts
 - The LPC module can be shut down by inputting the LPCPD signal.
 - Three pins, PME, LSMI, and LSCI, are provided for general input/output.

Figure 20.1 shows a block diagram of the LPC.

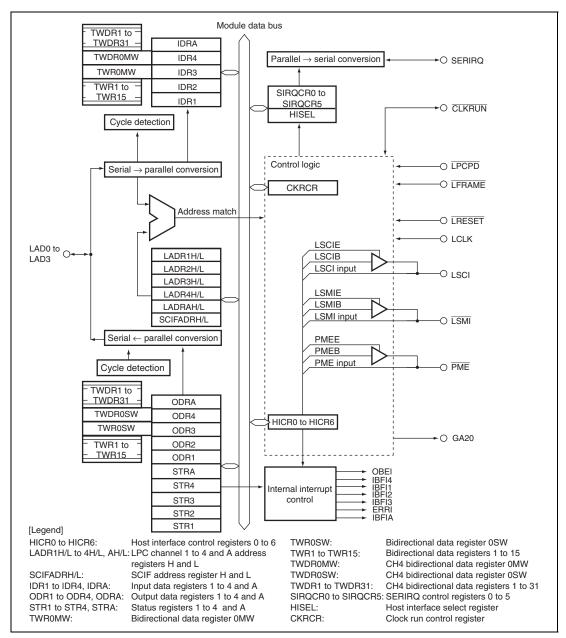


Figure 20.1 Block Diagram of LPC

20.2 Input/Output Pins

Table 20.1 lists the LPC pin configuration.

Table 20.1 Pin Configuration

Name	Abbreviation	I/O	Function
LPC address/ data 3 to 0	LAD3	I/O	Cycle type/address/data signals serially (4-signal-line) transferred in synchronization with LCLK
	LAD2		
	LAD1		
	LAD0		
LPC frame	LFRAME	Input* ¹	Transfer cycle start and forced termination signal
LPC reset	LRESET	Input*1	LPC interface reset signal
LPC clock	LCLK	Input	33-MHz PCI clock signal
Serialized interrupt request	SERIRQ	I/O* ¹	Serialized host interrupt request signal in synchronization with LCLK
LSCI general output	LSCI	Output*1, *2	General output
LSMI general output	LSMI	Output*1, *2	General output
PME general output	PME	Output*1, *2	General output
GATE A20	GA20	Output*1, *2	Gate A20 control signal output
LPC clock run	CLKRUN	I/O* ^{1,} * ²	LCLK restart request signal when serial host interrupt is requested
LPC power-down	LPCPD	Input*1	LPC module shutdown signal

Notes: 1. Pin state monitoring input is possible in addition to the LPC interface control input/output function.

2. Only 0 can be output. If 1 is output, the pin is in the Hi-Z state, so an external resistor is necessary to pull the signal up to VCC.

20.3 Register Descriptions

The LPC has the following registers.

Table 20.2 Register Configuration

		R/W		Initial		Data Bus
Register Name	Abbreviation	Slave	Host	Value	Address	Width
Host interface control register 0	HICR0	R/W	_	H'00	H'FE40	8
Host interface control register 1	HICR1	R/W	_	H'00	H'FE41	8
Host interface control register 2	HICR2	R/W	_	_	H'FE42	8
Host interface control register 3	HICR3	R			H'FE43	8
Host interface control register 4	HICR4	R/W	_	H'00	H'FDD9	8
Host interface control register 5	HICR5	R/W	_	H'00	H'FE33	8
Host interface control register 6	HICR6	R/W	_	H'00	H'FE4C	8
LPC channel 1 address register H	LADR1H	R/W	_	H'00	H'FDC0	8
LPC channel 1 address register L	LADR1L	R/W	_	H'60	H'FDC1	8
LPC channel 2 address register H	LADR2H	R/W	_	H'00	H'FDC2	8
LPC channel 2 address register L	LADR2L	R/W	_	H'62	H'FDC3	8
LPC channel 3 address register H	LADR3H	R/W	_	H'00	H'FE34	8
LPC channel 3 address register L	LADR3L	R/W	_	H'00	H'FE35	8
LPC channel 4 address register H	LADR4H	R/W	_	H'00	H'FDD4	8
LPC channel 4 address register L	LADR4L	R/W	_	H'00	H'FDD5	8
LPC channel A address register H	LADRAH	R/W		H'00	H'FDD0	8
LPC channel A address register L	LADRAL	R/W	_	H'80	H'FDD1	8
Input data register 1	IDR1	R	W	H'00	H'FE38	8
Input data register 2	IDR2	R	W	H'00	H'FE3C	8
Input data register 3	IDR3	R	W	H'00	H'FE30	8
Input data register 4	IDR4	R	W	H'00	H'FDD6	8
Input data register A	IDRA	R	W	H'00	H'FDD2	8
Output data register 1	ODR1	R/W	R	H'00	H'FE39	8
Output data register 2	ODR2	R/W	R	H'00	H'FE3D	8
Output data register 3	ODR3	R/W	R	H'00	H'FE31	8
Output data register 4	ODR4	R/W	R	H'00	H'FDD7	8
Output data register A	ODRA	R/W	R	H'00	H'FDD3	8

		R	/W	Initial		Data Bus
Register Name	Abbreviation	Slave	Host	Value	Address	Width
Status register 1	STR1	R/W	R	H'00	H'FE3A	8
Status register 2	STR2	R/W	R	H'00	H'FE3E	8
Status register 3	STR3	R/W	R	H'00	H'FE32	8
Status register 4	STR4	R/W	R	H'00	H'FDD8	8
Status register A	STRA	R/W	R	H'00	H'FE4D	8
CH4 bidirectional data register 0MW	TWDR0MW	R	W	H'00	H'FDE0	8
CH4 bidirectional data register 0SW	TWDR0SW	W	R	H'00	H'FDE0	8
CH4 bidirectional data register 1	TWDR1	R/W	R/W	H'00	H'FDE1	8
CH4 bidirectional data register 2	TWDR2	R/W	R/W	H'00	H'FDE2	8
CH4 bidirectional data register 3	TWDR3	R/W	R/W	H'00	H'FDE3	8
CH4 bidirectional data register 4	TWDR4	R/W	R/W	H'00	H'FDE4	8
CH4 bidirectional data register 5	TWDR5	R/W	R/W	H'00	H'FDE5	8
CH4 bidirectional data register 6	TWDR6	R/W	R/W	H'00	H'FDE6	8
CH4 bidirectional data register 7	TWDR7	R/W	R/W	H'00	H'FDE7	8
CH4 bidirectional data register 8	TWDR8	R/W	R/W	H'00	H'FDE8	8
CH4 bidirectional data register 9	TWDR9	R/W	R/W	H'00	H'FDE9	8
CH4 bidirectional data register 10	TWDR10	R/W	R/W	H'00	H'FDEA	8
CH4 bidirectional data register 11	TWDR11	R/W	R/W	H'00	H'FDEB	8
CH4 bidirectional data register 12	TWDR12	R/W	R/W	H'00	H'FDEC	8
CH4 bidirectional data register 13	TWDR13	R/W	R/W	H'00	H'FDED	8
CH4 bidirectional data register 14	TWDR14	R/W	R/W	H'00	H'FDEE	8
CH4 bidirectional data register 15	TWDR15	R/W	R/W	H'00	H'FDEF	8
CH4 bidirectional data register 16	TWDR16	R/W	R/W	H'00	H'FDF0	8
CH4 bidirectional data register 17	TWDR17	R/W	R/W	H'00	H'FDF1	8
CH4 bidirectional data register 18	TWDR18	R/W	R/W	H'00	H'FDF2	8
CH4 bidirectional data register 19	TWDR19	R/W	R/W	H'00	H'FDF3	8
CH4 bidirectional data register 20	TWDR20	R/W	R/W	H'00	H'FDF4	8
CH4 bidirectional data register 21	TWDR21	R/W	R/W	H'00	H'FDF5	8
CH4 bidirectional data register 22	TWDR22	R/W	R/W	H'00	H'FDF6	8
CH4 bidirectional data register 23	TWDR23	R/W	R/W	H'00	H'FDF7	8
CH4 bidirectional data register 24	TWDR24	R/W	R/W	H'00	H'FDF8	8

		R/W		Initial		Data Bus
Register Name	Abbreviation	Slave	Host	-	Address	
CH4 bidirectional data register 25	TWDR25	R/W	R/W	H'00	H'FDF9	8
CH4 bidirectional data register 26	TWDR26	R/W	R/W	H'00	H'FDFA	8
CH4 bidirectional data register 27	TWDR27	R/W	R/W	H'00	H'FDFB	8
CH4 bidirectional data register 28	TWDR28	R/W	R/W	H'00	H'FDFC	8
CH4 bidirectional data register 29	TWDR29	R/W	R/W	H'00	H'FDFD	8
CH4 bidirectional data register 30	TWDR30	R/W	R/W	H'00	H'FDFE	8
CH4 bidirectional data register 31	TWDR31	R/W	R/W	H'00	H'FDFF	8
Bidirectional data register 0MW	TWR0MW	R	W	H'00	H'FE20	8
Bidirectional data register 0SW	TWR0SW	W	R	H'00	H'FE20	8
Bidirectional data register 1	TWR1	R/W	R/W	H'00	H'FE21	8
Bidirectional data register 2	TWR2	R/W	R/W	H'00	H'FE22	8
Bidirectional data register 3	TWR3	R/W	R/W	H'00	H'FE23	8
Bidirectional data register 4	TWR4	R/W	R/W	H'00	H'FE24	8
Bidirectional data register 5	TWR5	R/W	R/W	H'00	H'FE25	8
Bidirectional data register 6	TWR6	R/W	R/W	H'00	H'FE26	8
Bidirectional data register 7	TWR7	R/W	R/W	H'00	H'FE27	8
Bidirectional data register 8	TWR8	R/W	R/W	H'00	H'FE28	8
Bidirectional data register 9	TWR9	R/W	R/W	H'00	H'FE29	8
Bidirectional data register 10	TWR10	R/W	R/W	H'00	H'FE2A	8
Bidirectional data register 11	TWR11	R/W	R/W	H'00	H'FE2B	8
Bidirectional data register 12	TWR12	R/W	R/W	H'00	H'FE2C	8
Bidirectional data register 13	TWR13	R/W	R/W	H'00	H'FE2D	8
Bidirectional data register 14	TWR14	R/W	R/W	H'00	H'FE2E	8
Bidirectional data register 15	TWR15	R/W	R/W	H'00	H'FE2F	8
SERIRQ control register 0	SIRQCR0	R/W	_	H'00	H'FE36	8
SERIRQ control register 1	SIRQCR1	R/W	_	H'00	H'FE37	8
SERIRQ control register 2	SIRQCR2	R/W	_	H'00	H'FDDA	8
SERIRQ control register 3	SIRQCR3	R/W	_	H'00	H'FDDB	8
SERIRQ control register 4	SIRQCR4	R/W	_	H'00	H'FE3B	8
SERIRQ control register 5	SIRQCR5	R/W	_	H'00	H'FE4E	8
Host interface select register	HISEL	R/W	_	H'03	H'FE3F	8

		R/W	Initial		Data Bus
Register Name	Abbreviation	Slave Host	Value	Address	Width
SCIF address register H	SCIFADRH	R/W —	H'03	H'FDC4	8
SCIF address register L	SCIFADRL	R/W —	H'F8	H'FDC5	8
Clock run control register	CKRCR	R/W —	H'00	H'FDDF	8

Notes: R/W in the register description means as follows:

- 1. R/W slave indicates access from the slave (this LSI).
- 2. R/W host indicates access from the host.

20.3.1 Host Interface Control Registers 0 and 1 (HICR0 and HICR1)

HICR0 and HICR1 contain control bits that enable or disable LPC interface functions, control bits that determine pin output and the internal state of the LPC interface, and status flags that monitor the internal state of the LPC interface.

		Initial	R	/W	
Bit	Bit Name	Value	Slave	Host	Description
7	LPC3E	0	R/W	_	LPC Enables 3 to 1
6	LPC2E	0	R/W	_	Enable or disable the LPC interface function. When the
5	LPC1E	0	R/W	_	LPC interface is enabled (one of the three bits is set to 1), processing for data transfer between the slave (this LSI) and the host is performed using pins LAD3 to LAD0, LFRAME, LRESET, LCLK, SERIRQ, CLKRUN, and LPCPD.
					• LPC3E
					 0: LPC channel 3 operation is disabled No address (LADR3) matches for IDR3, ODR3, STR3, or TWR0 to TWR15 1: LPC channel 3 operation is enabled LPC2E
					0: LPC channel 2 operation is disabled No address (LADR2) matches for IDR2, ODR2, or STR2
					1: LPC channel 2 operation is enabled
					• LPC1E
					0: LPC channel 1 operation is disabled No address (LADR1) matches for IDR1, ODR1, or STR1
					1: LPC channel 1 operation is enabled

		Initial	R	/W	
Bit	Bit Name	Value	Slave	Host	Description
4	FGA20E	0	R/W	_	Fast Gate A20 Function Enable
					Enables or disables the fast Gate A20 function. When the fast Gate A20 is disabled, the normal Gate A20 can be implemented by firmware controlling P81 output.
					0: Fast Gate A20 function disabled Other function (input/output) of pin P81 is enabled The internal state of GA20 output is initialized to 1
					1: Fast Gate A20 function enabled GA20 pin output is open-drain (external pull-up resistor (Vcc) required)
3	SDWNE	0	R/W	_	LPC Software Shutdown Enable
					Controls LPC interface shutdown. For details of the LPC shutdown function, and the scope of initialization by an LPC reset and an LPC shutdown, see section 20.4.4, LPC Interface Shutdown Function (LPCPD).
					0: Normal state, LPC software shutdown setting enabled
					[Clearing conditions]
					Writing 0
					LPC hardware reset or LPC software reset
					 LPC hardware shutdown release (rising edge of \overline{LPCPD} signal)
					LPC hardware shutdown state setting enabled Hardware shutdown state when LPCPD signal is at the low level
					[Setting condition]
					• Writing 1 after reading SDWNE = 0

		Initial	R/W	
Bit	Bit Name	Value	Slave Host	t Description
2	PMEE	0	R/W —	PME Output Enable
				Controls PME output in combination with the PMEB bit in HICR1. PME pin output is open-drain, and an external pull-up resistor (Vcc) is needed.
				PMEE PMEB
				0 X : PME output disabled, other function of pin is enabled
				9 : PME output enabled, PME pin output goes to 0 level
				 1 : PME output enabled, PME pin output is Hi-Z
1	LSMIE	0	R/W —	LSMI output Enable
				Controls LSMI output in combination with the LSMIB bit in HICR1. LSMI pin output is open-drain, and an external pull-up resistor (Vcc) is needed.
				LSMIE LSMIB
				0 X : LSMI output disabled, other function of pin is enabled
				1 0 : LSMI output enabled, LSMI pin output goes to 0 level
				1 1 : LSMI output enabled, LSMI pin output is Hi-Z
0	LSCIE	0	R/W —	LSCI output Enable
				Controls LSCI output in combination with the LSCIB bit in HICR1. LSCI pin output is open-drain, and an external pull-up resistor (Vcc) is needed.
				LSCIE LSCIB
				0 X : LSCI output disabled, other function of pin is enabled
				1 0 : LSCI output enabled, LSCI pin output goes to 0 level
				1 1 : LSCI output enabled, LSCI pin output is Hi-Z

[Legend]

X: Don't care

		Initial	R	/W	
Bit	Bit Name	Value	Slave	Host	Description
7	LPCBSY	0	R	_	LPC Busy
					Indicates that the LPC interface is processing a transfer cycle.
					0: LPC interface is in transfer cycle wait state
					Bus idle, or transfer cycle not subject to processing is in progress
					Cycle type or address indeterminate during transfer cycle
					[Clearing conditions]
					LPC hardware reset or LPC software reset
					 LPC hardware shutdown or LPC software shutdown
					 Forced termination (abort) of transfer cycle subject to processing
					 Normal termination of transfer cycle subject to processing
					LPC interface is performing transfer cycle processing
					[Setting condition]
-					Match of cycle type and address

		Initial	R	/W	
Bit	Bit Name	Value	Slave	Host	Description
6	CLKREQ	0	R	_	LCLK Request
					Indicates that the LPC interface's SERIRQ output is requesting a restart of LCLK.
					0: No LCLK restart request
					[Clearing conditions]
					LPC hardware reset or LPC software reset
					 LPC hardware shutdown or LPC software shutdown
					 There are no further interrupts for transfer to the host in quiet mode in which SERIRQ is set to continuous mode
					1: LCLK restart request issued
					[Setting condition]
					 In quiet mode, SERIRQ interrupt output becomes necessary while LCLK is stopped
5	IRQBSY	0	R	_	SERIRQ Busy
					Indicates that the LPC interface's SERIRQ is engaged in transfer processing.
					0: SERIRQ transfer frame wait state
					[Clearing conditions]
					LPC hardware reset or LPC software reset
					 LPC hardware shutdown or LPC software shutdown
					End of SERIRQ transfer frame
					1: SERIRQ transfer processing in progress
					[Setting condition]
					Start of SERIRQ transfer frame

		Initial	R/W	
Bit	Bit Name	Value	Slave Host	Description
4	LRSTB	0	R/W —	LPC Software Reset Bit
				Resets the LPC interface. For the scope of initialization by an LPC reset, see section 20.4.4, LPC Interface Shutdown Function (LPCPD).
				0: Normal state
				[Clearing conditions]
				Writing 0
				LPC hardware reset
				1: LPC software reset state
				[Setting condition]
				 Writing 1 after reading LRSTB = 0
3	SDWNB	0	R/W —	LPC Software Shutdown Bit
				Controls LPC interface shutdown. For details of the LPC shutdown function, and the scope of initialization by an LPC reset and an LPC shutdown, see section 20.4.4, LPC Interface Shutdown Function (LPCPD).
				0: Normal state
				[Clearing conditions]
				Writing 0
				 LPC hardware reset or LPC software reset
				LPC hardware shutdown
				(falling edge of \overline{LPCPD} signal when SDWNE = 1)
				1: LPC software shutdown state
				[Setting condition]
				Writing 1 after reading SDWNB = 0
2	PMEB	0	R/W —	PME Output Bit
				Controls PME output in combination with the PMEE bit. For details, refer to description on the PMEE bit in HICRO.
1	LSMIB	0	R/W —	LSMI Output Bit
				Controls LSMI output in combination with the LSMIE bit. For details, refer to description on the LSMIE bit in HICR0.

		Initial	R/W	
Bit	Bit Name	Value	Slave Host	Description
0	LSCIB	0	R/W —	LSCI output Bit
				Controls LSCI output in combination with the LSCIE bit IN HICR0. For details, refer to description on the LSCIE bit in HICR0.

20.3.2 Host Interface Control Registers 2 and 3 (HICR2 and HICR3)

HICR2 controls interrupts to an LPC interface slave (this LSI). The bit 7 in HICR3 and HICR2 monitor the states of the LPC interface pins. Bits 6 to 0 in HICR2 are initialized to H'00 by a reset. The states of other bits are decided by the pin states. The pin states can be monitored by the pin monitoring bits regardless of the LPC interface operating state or the operating state of the functions that use pin multiplexing.

		Initial	R/	w	
Bit	Bit Name	Value	Slave	Host	Description
7	GA20	Undefined	R	_	GA20 Pin Monitor
6	LRST	0	R/(W)*	_	LPC Reset Interrupt Flag
					This bit is a flag that generates an ERRI interrupt when an LPC hardware reset occurs.
					0: [Clearing condition]
					 Writing 0 after reading LRST = 1
					1: [Setting condition]
					TRESET pin falling edge detection
5	SDWN	0	R/(W)*	_	LPC Shutdown Interrupt Flag
					This bit is a flag that generates an ERRI interrupt when an LPC hardware shutdown request is generated.
					0: [Clearing conditions]
					 Writing 0 after reading SDWN = 1
					LPC hardware reset
					(TRESET pin falling edge detection)
					• LPC software reset (LRSTB = 1)
					1: [Setting condition]
					LPCPD pin falling edge detection

	st Description
4 ADDT 0 D//40.5	
4 ABRT 0 R/(W)* —	LPC Abort Interrupt Flag
	This bit is a flag that generates an ERRI interrupt when a forced termination (abort) of an LPC transfer cycle occurs.
	0: [Clearing conditions]
	 Writing 0 after reading ABRT = 1
	LPC hardware reset
	(TRESET pin falling edge detection)
	 LPC software reset (LRSTB = 1)
	LPC hardware shutdown
	(SDWNE = 1 and $\overline{\text{LPCPD}}$ pin falling edge detection)
	 LPC software shutdown (SDWNB = 1)
	1: [Setting condition]
	LFRAME pin falling edge detection during LPC transfer cycle
3 IBFIE3 0 R/W —	IDR3 and TWR Receive Complete interrupt Enable
	Enables or disables IBFI3 interrupt to the slave (this LSI).
	0: Input data register IDR3 and TWR receive
	complete interrupt requests disabled
	1: [When TWRE = 0 in LADR3]
	Input data register (IDR3) receive complete interrupt requests enabled
	[When TWRE = 1 in LADR3]
	Input data register (IDR3) and TWR receive complete interrupt requests enabled
2 IBFIE2 0 R/W —	IDR2 Receive Complete interrupt Enable
	Enables or disables IBFI2 interrupt to the slave (this LSI).
	 Input data register (IDR2) receive complete interrupt requests disabled
	Input data register (IDR2) receive complete interrupt requests enabled

		Initial	R/W		
Bit	Bit Name	Value	Slave	Host	Description
1	IBFIE1	0	R/W	_	IDR1 Receive Complete interrupt Enable
					Enables or disables IBFI1 interrupt to the slave (this LSI).
					Input data register (IDR1) receive complete interrupt requests disabled
					Input data register (IDR1) receive complete interrupt requests enabled
0	ERRIE	0	R/W	_	Error Interrupt Enable
					Enables or disables ERRI interrupt to the slave (this LSI).
					0: Error interrupt requests disabled
					1: Error interrupt requests enabled

Note: * Only 0 can be written to bits 6 to 4, to clear the flag.

			R	/W	_
Bit	Bit Name	Initial Value	Slave	Host	Description
7	LFRAME	Undefined	R	_	LFRAME Pin Monitor
6	CLKRUN	Undefined	R	_	CLKRUN Pin Monitor
5	SERIRQ	Undefined	R	_	SERIRQ Pin Monitor
4	LRESET	Undefined	R	_	LRESET Pin Monitor
3	LPCPD	Undefined	R	_	LPCPD Pin Monitor
2	PME	Undefined	R	_	PME Pin Monitor
1	LSMI	Undefined	R	_	LSMI Pin Monitor
0	LSCI	Undefined	R	_	LSCI Pin Monitor

Page 598 of 1054

20.3.3 Host Interface Control Register 4 (HICR4)

HICR4 enables/disables channel 4 operation, controls interrupts to channel 4 of an LPC interface slave (this LSI), enables/disables operation of CH4 bidirectional data registers, and selects the function of bits 7 to 4 in STR4.

		Initial	R/W	
Bit	Bit Name	Value	Slave Hos	t Description
7	_	0	R/W —	Reserved
				The initial value should not be changed.
6	LPC4E	0	R/W —	LPC Enable 4
				0: LPC channel 4 is disabled
				For IDR4, ODR4, STR4, and TWDR0 to TWDR31, address (LADR4) match will not occur.
				1: LPC channel 4 is enabled
5	IBFIE4	0	R/W —	IDR4 and TWDR Reception Complete Interrupt Enable
				Enables or disables IBFI4 interrupts to the slave (this LSI).
				Input data register (IDR4) and TWDR reception complete interrupt requests are disabled
				1: [When TWDRE = 0]
				Input data register (IDR4) reception complete
				interrupt requests are enabled
				[When TWDRE = 1]
				Input data register (IDR4) and TWDR reception
				complete interrupt requests are enabled

		Initial	R/W		
Bit	Bit Name	Value	Slave	Host	Description
4	TWDRE	0	R/W	_	CH4 Bidirectional Data Registers Enable
					Enables or disables CH4 bidirectional data register operations and selects the function of bits 7 to 4 in STR4.
					0: TWDR operations are disabled
					TWDR-related I/O address match will not occur.
					Bits 7 to 4 in STR4 function as readable/writable bits which user can use as necessary.
					1: TWDR operations are enabled
					Bits 7 to 4 in STR4 indicate the status during host interface processing.
3 to 0	_	All 0	R/W	_	Reserved
					The initial value should not be changed.

20.3.4 Host Interface Control Register 5 (HICR5)

HICR5 enables or disables the operation of the SCIF interface, and controls OBEI interrupts.

		Initial	R/W		
Bit	Bit Name	Value	Slave	Host	Description
7	OBEIE	0	R/W	_	Output Buffer Empty Interrupt Enable
					Enables or disables OBEI interrupts (for this LSI).
					0: Output buffer empty interrupt request is disabled
					1: Output buffer empty interrupt request is enabled
6	OBEI	0	R/W	_	Output Buffer Empty Interrupt Flag
					0: [Clearing conditions]
					 Writing 0 after reading OBEI = 1
					LPC hardware reset or LPC software reset
					1: [Setting condition]
					• When one of OBF1, OBF2, OBF3A, OBF3B,
					OBF4A, OBF4B, and OBFA is cleared
5 to 4	_	All 0	R/W	_	Reserved
					The initial value should not be changed.
3	SCIFE	0	R/W	_	SCIF Enable
					Enables or disables access from the LPC host of the SCIF.
					0: Disables access from the LPC host of the SCIF
					1: Enables access from the LPC host of the SCIF
2 to 0	_	All 0	R/W	_	Reserved
					The initial value should not be changed.

20.3.5 Host Interface Control Register 6 (HICR6)

HICR6 enables/disables operation of channel A and controls interrupts and extended function of channel A in an LPC interface slave (this LSI).

		Initial	R/W		
Bit	Bit Name	Value	Slave	Host	Description
7	LPCAE	0	R/W	_	LPC Enable A
					0: LPC channel A is disabled
					For IDRA, ODRA, and STRA, address (LADRA) match will not occur.
					1: LPC channel A is enabled
					[When ELPCAE = 0]
					For IDRA (data write) and ODRA, address
					(LADRA) match will occur.
					[When ELPCAE = 1]
					For IDRA (data write and command write), ODRA, and STRA, address (LADRA) match will occur.
6	ELPCAE	0	R/W	_	Extended LPC Channel A Enable
					0: Extended function of LPC channel A is disabled
					1: Extended function of LPC channel A is enabled
5	IBFIEA	0	R/W	_	IDRA Receive Completion Interrupt Enable
					Enables or disables IBFIA interrupt to the slave (this LSI).
					Input data register (IDRA) receive complete interrupt requests disabled
					Input data register (IDRA) receive complete interrupt requests enabled
4 to 0	_	All 0	R/W	_	Reserved
					The initial value should not be changed.

20.3.6 LPC Channel 1 Address Registers H and L (LADR1H and LADR1L)

LADR1 sets the LPC channel 1 host address. The LADR1 contents must not be changed while channel 1 is operating (while LPC1E is set to 1).

• LADR1H

		Initial	R/W	_
Bit	Bit Name	Value	Slave Host	Description
7	Bit 15	0	R/W —	Channel 1 Address Bits 15 to 8
6	Bit 14	0	R/W —	Set the LPC channel 1 host address.
5	Bit 13	0	R/W —	
4	Bit 12	0	R/W —	
3	Bit 11	0	R/W —	
2	Bit 10	0	R/W —	
1	Bit 9	0	R/W —	
0	Bit 8	0	R/W —	

LADR1L

		Initial	R/W	
Bit	Bit Name	Value	Slave Host	Description
7	Bit 7	0	R/W —	Channel 1 Address Bits 7 to 3
6	Bit 6	1	R/W —	Set the LPC channel 1 host address.
5	Bit 5	1	R/W —	
4	Bit 4	0	R/W —	
3	Bit 3	0	R/W —	
2	Bit 2	0	R/W —	Reserved
				This bit is ignored when an address match is decided.
1	Bit 1	0	R/W —	Channel 1 Address Bits 1 and 0
0	Bit 0	0	R/W —	Set the LPC channel 1 host address.

Host select register

	I/O Addre	Transfer		
Bits 5 to 3	Bit 2	Bits 1 and 0	Cycle	Host Select Register
Bits 15 to 3 in LADR1	0	Bits 1 and 0 in LADR1	I/O write	IDR1 write (data)
Bits 15 to 3 in LADR1	1	Bits 1 and 0 in LADR1	I/O write	IDR1 write (command)
Bits 15 to 3 in LADR1	0	Bits 1 and 0 in LADR1	I/O read	ODR1 read
Bits 15 to 3 in LADR1	1	Bits 1 and 0 in LADR1	I/O read	STR1 read

Note: If channel 1 is in use, set different addresses from that in LADR1 (for channel 1) in the registers for channels 2, 3, 4, A, and the SCIF.

20.3.7 LPC Channel 2 Address Registers H and L (LADR2H and LADR2L)

LADR2 sets the LPC channel 2 host address. The LADR2 contents must not be changed while channel 2 is operating (while LPC2E is set to 1).

• LADR2H

		Initial	R/W		
Bit	Bit Name	Value	Slave	Host	Description
7	Bit 15	0	R/W	_	Channel 2 Address Bits 15 to 8
6	Bit 14	0	R/W	_	Set the LPC channel 2 host address.
5	Bit 13	0	R/W	_	
4	Bit 12	0	R/W	_	
3	Bit 11	0	R/W	_	
2	Bit 10	0	R/W	_	
1	Bit 9	0	R/W	_	
0	Bit 8	0	R/W	_	

• LADR2L

		Initial	R/	W	_
Bit	Bit Name	Value	Slave	Host	Description
7	Bit 7	0	R/W	_	Channel 2 Address Bits 7 to 3
6	Bit 6	1	R/W	_	Set the LPC channel 2 host address.
5	Bit 5	1	R/W	_	
4	Bit 4	0	R/W	_	
3	Bit 3	0	R/W	_	
2	Bit 2	0	R/W	_	Reserved
					This bit is ignored when an address match is decided.
1	Bit 1	1	R/W		Channel 2 Address Bits 1 and 0
0	Bit 0	0	R/W	_	Set the LPC channel 2 host address.

Host select register

	I/O Addre	Transfer		
Bits 5 to 3	Bit 2	Bits 1 and 0	Cycle	Host Select Register
Bits 15 to 3 in LADR2	0	Bits 1 and 0 in LADR2	I/O write	IDR2 write (data)
Bits 15 to 3 in LADR2	1	Bits 1 and 0 in LADR2	I/O write	IDR2 write (command)
Bits 15 to 3 in LADR2	0	Bits 1 and 0 in LADR2	I/O read	ODR2 read
Bits 15 to 3 in LADR2	1	Bits 1 and 0 in LADR2	I/O read	STR2 read

Note: If channel 2 is in use, set different addresses from that in LADR2 (for channel 2) in the registers for channels 1, 3, 4, A, and the SCIF.

20.3.8 LPC Channel 3 Address Registers H and L (LADR3H and LADR3L)

LADR3 sets the LPC channel 3 host address and controls the operation of the bidirectional data registers. The contents of the address fields in LADR3 must not be changed while channel 3 is operating (while LPC3E is set to 1).

LADR3H

			R/	W	
Bit	Bit Name	Initial Value	Slave	Host	Description
7	Bit 15	0	R/W	_	Channel 3 Address Bits 15 to 8
6	Bit 14	0	R/W	_	Set the LPC channel 3 host address.
5	Bit 13	0	R/W	_	
4	Bit 12	0	R/W	_	
3	Bit 11	0	R/W	_	
2	Bit 10	0	R/W	_	
1	Bit 9	0	R/W	_	
0	Bit 8	0	R/W		

LADR3L

			R/W		
Bit	Bit Name	Initial Value	Slave	Host	Description
7	Bit 7	0	R/W	_	Channel 3 Address Bits 7 to 3
6	Bit 6	0	R/W	_	Set the LPC channel 3 host address.
5	Bit 5	0	R/W	_	
4	Bit 4	0	R/W		
3	Bit 3	0	R/W		
2	_	0	R/W	_	Reserved
					The initial value should not be changed.
1	Bit 1	0	R/W	_	Channel 3 Address Bit 1
					Sets the LPC channel 3 host address.
0	TWRE	0	R/W	_	Bidirectional Data Register Enable
					Enables or disables bidirectional data register operation.
					0: TWR operation is disabled
					TWR-related I/O address match determination is halted
					1: TWR operation is enabled

When LPC3E = 1, an I/O address received in an LPC I/O cycle is compared with the contents of LADR3. When determining an IDR3, ODR3, or STR3 address match, bit 0 in LADR3 is regarded as 0, and the value of bit 2 is ignored. When determining a TWR0 to TWR15 address match, bit 4 in LADR3 is inverted, and the values of bits 3 to 0 are ignored.

Host select register

		I/O Addr	ess		Transfer		
Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Cycle	Host Select Register	
Bit 4	Bit 3	0	Bit 1	0	I/O write	IDR3 write, $C/\overline{D}3 \leftarrow 0$	
Bit 4	Bit 3	1	Bit 1	0	I/O write	IDR3 write, $C/\overline{D}3 \leftarrow 1$	
Bit 4	Bit 3	0	Bit 1	0	I/O read	ODR3 read	
Bit 4	Bit 3	1	Bit 1	0	I/O read	STR3 read	
Bit 4	0	0	0	0	I/O write	TWR0MW write	
Bit 4	0	0	0	1	I/O write	TWR1 to TWR15 write	
	:	:	:	:			
	1	1	1	1			
Bit 4	0	0	0	0	I/O read	TWR0SW read	
Bit 4	0	0	0	1	I/O read	TWR1 to TWR15 read	
	:	:	:	:			
	1	1	1	1			

Note: If channel 3 is in use, set different addresses from that in LADR3 (for channel 3) in the registers for channels 1, 2, 4, A, and the SCIF.

20.3.9 LPC Channel 4 Address Registers H and L (LADR4H and LADR4L)

LADR4 sets the LPC channel 4 host address. The LADR4 contents must not be changed while channel 4 is operating (while LPC4E is set to 1).

• LADR4H

			R/	W	
Bit	Bit Name	Initial Value	Slave	Host	Description
7	Bit 15	0	R/W	_	Channel 4 Address Bits 15 to 8
6	Bit 14	0	R/W	_	Set the LPC channel 4 host address.
5	Bit 13	0	R/W	_	
4	Bit 12	0	R/W	_	
3	Bit 11	0	R/W	_	
2	Bit 10	0	R/W	_	
1	Bit 9	0	R/W	_	
0	Bit 8	0	R/W	_	

LADR4L

			R/	W	
Bit	Bit Name	Initial Value	Slave	Host	Description
7	Bit 7	0	R/W	_	Channel 4 Address Bits 7 to 3
6	Bit 6	0	R/W	_	Set the LPC channel 4 host address.
5	Bit 5	0	R/W	_	
4	Bit 4	0	R/W	_	
3	Bit 3	0	R/W	_	
2	Bit 2	0	R/W	_	Reserved
					This bit is ignored when an address match is decided.
1	Bit 1	0	R/W	_	Channel 4 Address Bits 1 and 0
0	Bit 0	0	R/W	_	Set the LPC channel 4 host address.

When LPC4E = 1, an I/O address received in an LPC I/O cycle is compared with the contents of LADR4. When determining an IDR4, ODR4, or STR4 address match, the value of bit 2 is ignored. When determining a TWDR0 to TWDR31 address match, bit 5 in LADR4 is inverted, and the values of bits 4 to 0 are ignored.

Host select register

I/O Address

Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Transfer Cycle	Host Select Register
Bit 5	Bit 4	Bit 3	0	Bit 1	Bit 0	I/O write	IDR4 write, C/ D 4 ← 0
Bit 5	Bit 4	Bit 3	1	Bit 1	Bit 0	I/O write	IDR4 write, C/ D 4 ← 1
Bit 5	Bit 4	Bit 3	0	Bit 1	Bit 0	I/O read	ODR4 read
Bit 5	Bit 4	Bit 3	1	Bit 1	Bit 0	I/O read	STR4 read
Bit 5	0	0	0	0	0	I/O write	TWDR0MW write
Bit 5	0	0	0	0	1	I/O write	TWDR1 to TWDR31 write
	:	:	:	:	:		
	1	1	1	1	1		
Bit 5	0	0	0	0	0	I/O read	TWDR0SW read
Bit 5	0	0	0	0	1	I/O read	TWDR1 to TWDR31 read
	:	:	:	:	:		
	1	1	1	1	1		

Note: If channel 4 is in use, set different addresses from that in LADR4 (for channel 4) in the registers for channels 1, 2, 3, A, and the SCIF.

20.3.10 LPC Channel A Address Registers H and L (LADRAH and LADRAL)

LADRA sets the LPC channel A host address. The LADRA contents must not be changed while channel A is operating (while LPCAE is set to 1).

LADRAH

			R/	W	
Bit	Bit Name	Initial Value	Slave	Host	Description
7	Bit 15	0	R/W	_	Channel A Address Bits 15 to 8
6	Bit 14	0	R/W	_	Set the LPC channel A host address.
5	Bit 13	0	R/W	_	
4	Bit 12	0	R/W	_	
3	Bit 11	0	R/W	_	
2	Bit 10	0	R/W	_	
1	Bit 9	0	R/W	_	
0	Bit 8	0	R/W	_	

LADRAL

			R/W		
Bit	Bit Name	Initial Value	Slave	Host	Description
7	Bit 7	0	R/W	_	Channel A Address Bits 7 to 0
6	Bit 6	0	R/W	_	Set the LPC channel A host address.
5	Bit 5	0	R/W	_	
4	Bit 4	0	R/W	_	
3	Bit 3	0	R/W	_	
2	Bit 2	0	R/W	_	
1	Bit 1	0	R/W	_	
0	Bit 0	0	R/W	_	

· Host select register

I/O Address		Transfer	
Bits 15 to 1	Bit 0	Cycle	Host Select Register
Bits 15 to 1 in LADRA	0	I/O write	IDRA write (data)
Bits 15 to 1 in LADRA	1	I/O write	IDRA write (command)
Bits 15 to 1 in LADRA	0	I/O read	ODRA read
Bits 15 to 1 in LADRA	1	I/O read	STRA read

Note: If channel A is in use, set different addresses from that in LADRA (for channel A) in the registers for channels 1, 2, 3, 4, and the SCIF.

20.3.11 Input Data Registers 1 to 4 and A (IDR1 to IDR4 and IDRA)

IDR1 to IDR4 and IDRA are 8-bit read-only registers for the slave (this LSI), and 8-bit write-only registers for the host. The registers selected from the host according to the I/O address are shown in the following tables. Data transferred in an LPC I/O write cycle is written to the selected register. The value of bit 2 of the I/O address is latched into the C/\overline{D} bit in STR, to indicate whether the written information is a command or data. The initial values of IDR1 to IDR4 and IDRA are H'00.

		I/O Addres	s	Transfer		
Bits 15 to 4	Bit 3	Bit 2	Bit 1	Bit 0	Cycle	Host Select Register
Bits 15 to 4	Bit 3	0	Bit 1	Bit 0	I/O write	IDRn write, $C/\overline{D}n \leftarrow 0$
Bits 15 to 4	Bit 3	1	Bit 1	Bit 0	I/O write	IDRn write, $C/\overline{D}n \leftarrow 1$

n = 1 to 4

		I/O Addres	Transfer			
Bits 15 to 4	Bit 3	Bit 2	Bit 1	Bit 0	Cycle	Host Select Register
Bits 15 to 4	Bit 3	Bit 2	Bit 1	0	I/O write	IDRA write, $C/\overline{D}A \leftarrow 0$
Bits 15 to 4	Bit 3	Bit 2	Bit 1	1	I/O write	IDRA write, $C/\overline{D}A \leftarrow 1$

20.3.12 Output Data Registers 1 to 4 and A (ODR1 to ODR4 and ODRA)

ODR1 to ODR4 and ODRA are 8-bit readable/writable registers for the slave (this LSI), and 8-bit read-only registers for the host. The registers selected from the host according to the I/O address are shown in the following tables. In an LPC I/O read cycle, the data in the selected register is transferred to the host. The initial values of ODR1 to ODR4 and ODRA are H'00.

		I/O Addres	Transfer			
Bits 15 to 4	Bit 3	Bit 2	Bit 1	Bit 0	Cycle	Host Select Register
Bits 15 to 4	Bit 3	0	Bit 1	Bit 0	I/O read	ODRn read

n = 1 to 4

		I/O Addres	Transfer			
Bits 15 to 4	Bit 3	Bit 2	Bit 1	Bit 0	Cycle	Host Select Register
Bits 15 to 4	Bit 3	Bit 2	Bit 1	0	I/O read	ODRA read

20.3.13 Bidirectional Data Registers 0 to 15 (TWR0 to TWR15)

TWR0 to TWR15 are sixteen 8-bit readable/writable registers to both the slave (this LSI) and host. In TWR0, however, two registers (TWR0MW and TWR0SW) are allocated to the same address for both the host and the slave addresses. TWR0MW is a write-only register for the host, and a read-only register for the slave, while TWR0SW is a write-only register for the slave and a read-only register for the host. When the host and slave begin a write, after the respective registers of TWR0 have been written to, arbitration for simultaneous access is performed by checking the status flags whether or not those writes were valid. When the host has the access write, TWR0MW is selected as TWR0; if the host reads TWR0SW, the TWR0MR state is read. Writing to TWR0SW by the salve is ignored. When the slave has the write access, TWR0SW is selected as TWR0; if the slave reads TWR0MW, the TWR0SW state is read. Writing to TWR0MW by the host is ignored.

For the registers selected from the host according to the I/O address, see section 20.3.8, LPC Channel 3 Address Registers H and L (LADR3H and LADR3L).

Data transferred in an LPC I/O write cycle is written to the selected register; in an LPC I/O read cycle, the data in the selected register is transferred to the host. The initial values of TWR0 to TWR15 are H'00.

20.3.14 CH4 Bidirectional Data Registers 0 to 31 (TWDR0 to TWDR31)

TWDR0 to TWDR31 are thirty-two 8-bit readable/writable registers to both the slave (this LSI) and host. In TWDR0, however, two registers (TWDR0MW and TWDR0SW) are allocated to the same address for both the host and the slave addresses. TWDR0MW is a write-only register for the host, and a read-only register for the slave, while TWDR0SW is a write-only register for the slave and a read-only register for the host. When the host and slave begin a write, after the respective registers of TWDR0 have been written to, arbitration for simultaneous access is performed by checking the status flags whether or not those writes were valid. When the host has the access write, TWDR0MW is selected as TWDR0; if the host reads TWDR0SW, the TWDR0MR state is read. Writing to TWDR0SW by the salve is ignored. When the slave has the write access, TWDR0SW is selected as TWDR0; if the slave reads TWDR0MW, the TWDR0SW state is read. Writing to TWDR0MW by the host is ignored.

Data transferred in an LPC I/O write cycle is written to the selected register; in an LPC I/O read cycle, the data in the selected register is transferred to the host. The initial values of TWDR0 to TWDR31 are H'00.

20.3.15 Status Registers 1 to 4 and A (STR1 to STR4 and STRA)

STR1 to STR4 and STRA are 8-bit registers that indicate status information during LPC interface processing. The registers selected from the host according to the I/O address are shown in the following tables. In an LPC I/O read cycle, the data in the selected register is transferred to the host.

		I/O Addres	s	Transfer		
Bits 15 to 4	Bit 3	Bit 2	Bit 1	Bit 0	Cycle	Host Select Register
Bits 15 to 4	Bit 3	1	Bit 1	Bit 0	I/O read	STRn read

n = 1 to 4

		I/O Addres	Transfer			
Bits 15 to 4	Bit 3	Bit 2	Bit 1	Bit 0	Cycle	Host Select Register
Bits 15 to 4	Bit 3	Bit 2	Bit 1	1	I/O read	STRA read

STR1

			R/\	W	
Bit	Bit Name	Initial Value	Slave	Host	Description
7	DBU17	0	R/W	R	Defined by User
6	DBU16	0	R/W	R	The user can use these bits as necessary.
5	DBU15	0	R/W	R	
4	DBU14	0	R/W	R	
3	C/D1	0	R	R	Command/Data
					When the host writes to IDR1, bit 2 of the I/O address is written into this bit to indicate whether IDR1 contains data or a command.
					0: Contents of input data register (IDR1) is data
					Contents of input data register (IDR1) is a command
2	DBU12	0	R/W	R	Defined by User
					The user can use this bit as necessary.
1	IBF1	0	R	R	Input Buffer Full
					This bit is an internal interrupt source to the slave (this LSI). The IBF1 flag setting and clearing conditions are different when the fast Gate A20 is used. For details, see table 20.5.
					0: [Clearing condition]
					When the slave reads IDR1
					1: [Setting condition]
					When the host writes to IDR1 in I/O write cycle
0	OBF1	0	R/(W)*	R	Output Buffer Full
					0: [Clearing conditions]
					When the host reads ODR1 in I/O read cycle
					When the slave writes 0 to the OBF1 bit
					1: [Setting condition]
					When the slave writes to ODR1

Note: * Only 0 can be written to clear the flag.

STR2

			R/\	N	
Bit	Bit Name	Initial Value	Slave	Host	Description
7	DBU27	0	R/W	R	Defined by User
6	DBU26	0	R/W	R	The user can use these bits as necessary.
5	DBU25	0	R/W	R	
4	DBU24	0	R/W	R	
3	C/D2	0	R	R	Command/Data
					When the host writes to IDR2, bit 2 of the I/O address is written into this bit to indicate whether IDR2 contains data or a command.
					0: Contents of input data register (IDR2) is data
					Contents of input data register (IDR2) is a command
2	DBU22	0	R/W	R	Defined by User
					The user can use this bit as necessary.
1	IBF2	0	R	R	Input Buffer Full
					This bit is an internal interrupt source to the slave (this LSI).
					0: [Clearing condition]
					When the slave reads IDR2
					1: [Setting condition]
					When the host writes to IDR2 in I/O write cycle
0	OBF2	0	R/(W)*	R	Output Buffer Full
					0: [Clearing conditions]
					When the host reads ODR2 in I/O read cycle
					When the slave writes 0 to the OBF2 bit
					1: [Setting condition]
					When the slave writes to ODR2

Note: * Only 0 can be written to clear the flag.

Feb 14, 2013

STR3 (TWRE = 1 or SELSTR3 = 0)

E) I	W	W
Г	٦/	V	٧

					<u>-</u>
Bit	Bit Name	Initial Value	Slave	Host	Description
7	IBF3B	0	R	R	Bidirectional Data Register Input Buffer Full Flag
					This is an internal interrupt source to the slave (this LSI).
					0: [Clearing condition]
					When the slave reads TWR15
					1: [Setting condition]
					• When the host writes to TWR15 in I/O write cycle
6	OBF3B	0	R/(W)*	R	Bidirectional Data Register Output Buffer Full Flag
					0: [Clearing conditions]
					When the host reads TWR15 in I/O read cycle
					When the slave writes 0 to the OBF3B bit
					1: [Setting condition]
					When the slave writes to TWR15
5	MWMF	0	R	R	Master Write Mode Flag
					0: [Clearing condition]
					 When the slave reads TWR15
					1: [Setting condition]
					 When the host writes to TWR0 in I/O write cycle while SWMF = 0
4	SWMF	0	R/(W)*	R	Slave Write Mode Flag
					In the event of simultaneous writes by the master and the slave, the master write has priority.
					0: [Clearing conditions]
					When the host reads TWR15 in I/O read cycle
					When the slave writes 0 to the SWMF bit
					1: [Setting condition]
					• When the slave writes to TWR0 while MWMF = 0

			R/	W	
Bit	Bit Name	Initial Value	Slave	Host	Description
3	C/D3	0	R	R	Command/Data Flag
					When the host writes to IDR3, bit 2 of the I/O address is written into this bit to indicate whether IDR3 contains data or a command.
					0: Contents of input data register (IDR3) is data.
					Contents of input data register (IDR3) is a command.
2	DBU32	0	R/W	R	Defined by User
					The user can use this bit as necessary.
1	IBF3A	0	R	R	Input Buffer Full
					This bit is an internal interrupt source to the slave (this LSI).
					0: [Clearing condition]
					When the slave reads IDR3
					1: [Setting condition]
					When the host writes to IDR3 in I/O write cycle
0	OBF3A	0	R/(W)*	R	Output Buffer Full
					0: [Clearing conditions]
					When the host reads ODR3 in I/O read cycle
					When the slave writes 0 to the OBF3A bit
					1: [Setting condition]
					When the slave writes to ODR3

Note: * Only 0 can be written to clear the flag.

• STR3 (TWRE = 0 and SELSTR3 = 1)

I I/ VV

Bit	Bit Name	Initial Value	Slave	Host	Description
7	DBU37	0	R/W	R	Defined by User
6	DBU36	0	R/W	R	The user can use these bits as necessary.
5	DBU35	0	R/W	R	
4	DBU34	0	R/W	R	
3	C/D3	0	R	R	Command/Data Flag
					When the host writes to IDR3, bit 2 of the I/O address is written into this bit to indicate whether IDR3 contains data or a command.
					0: Contents of input data register (IDR3) is data
					Contents of input data register (IDR3) is a command
2	DBU32	0	R/W	R	Defined by User
					The user can use this bit as necessary.
1	IBF3A	0	R	R	Input Buffer Full
					This bit is an internal interrupt source to the slave (this LSI).
					0: [Clearing condition]
					When the slave reads IDR3
					1: [Setting condition]
					When the host writes to IDR3 in I/O write cycle
0	OBF3A	0	R/(W)*	R	Output Buffer Full
					0: [Clearing conditions]
					When the host reads ODR3 in I/O read cycle
					When the slave writes 0 to the OBF3A bit
					1: [Setting condition]
					When the slave writes to ODR3

Note: * Only 0 can be written to clear the flag.

STR4 (TWDRE = 0)

			R/	W	
Bit	Bit Name	Initial Value	Slave	Host	Description
7	DBU47	0	R/W	R	Defined by User
6	DBU46	0	R/W	R	The user can use these bits as necessary.
5	DBU45	0	R/W	R	
4	DBU44	0	R/W	R	
3	C/D4	0	R	R	Command/Data Flag
					When the host writes to IDR4, bit 2 of the I/O address is written into this bit to indicate whether IDR4 contains data or a command.
					0: Contents of input data register (IDR4) is data.
					Contents of input data register (IDR4) is a command.
2	DBU42	0	R/W	R	Defined by User
					The user can use this bit as necessary.
1	IBF4A	0	R	R	Input Buffer Full
					This bit is an internal interrupt source to the slave (this LSI).
					0: [Clearing condition]
					When the slave reads IDR4
					1: [Setting condition]
					When the host writes to IDR4 in I/O write cycle
0	OBF4A	0	R/(W)*	R	Output Buffer Full
					0: [Clearing conditions]
					When the host reads ODR4 in I/O read cycle
					When the slave writes 0 to the OBF4A bit
					1: [Setting condition]
					When the slave writes to ODR4

Note: * Only 0 can be written to clear the flag.

Feb 14, 2013

• STR4 (TWDRE = 1)

		R/W			
Bit	Bit Name	Initial Value	Slave	Host	Description
7	IBF4B	0	R	R	CH4 Bidirectional Data Register Input Data Full Flag
					This bit is an internal interrupt source to the slave (this LSI).
					0: [Clearing condition]
					When the slave reads TWDR31
					1: [Setting condition]
					When the host writes to TWDR31 in I/O write
					cycle
6	OBF4B	0	R/(W)*	R	CH4 Bidirectional Data Register Output Data Full Flag
					0: [Clearing conditions]
					When the host reads TWDR31 in I/O read cycle
					When the slave writes 0 to the OBF4B bit
					1: [Setting condition]
					When the slave writes to TWDR31
5	MWM4F	0	R	R	Master Write Mode Flag
					0: [Clearing condition]
					When the slave reads TWDR31
					1: [Setting condition]
					• When the host writes to TWDR0 in I/O write cycle while SWM4F = 0
4	SWM4F	0	R/(W)*	R	Slave Write Mode Flag
					In the event of simultaneous writes by the master and the slave, the master write has priority.
					0: [Clearing conditions]
					When the host reads TWDR31 in I/O read cycle
					When the slave writes 0 to the SWM4F bit
					1: [Setting condition]
					 When the slave writes to TWDR0 while MWM4F = 0

			R/W		
Bit	Bit Name	Initial Value	Slave	Host	Description
3	C/D4	0	R	R	Command/Data Flag
					When the host writes to IDR4, bit 2 of the I/O address is written into this bit to indicate whether IDR4 contains data or a command.
					0: Contents of input data register (IDR4) is data.
					Contents of input data register (IDR4) is a command.
2	DBU42	0	R/W	R	Defined by User
					The user can use this bit as necessary.
1	IBF4A	0	R	R	Input Data Register Full
					This bit is an internal interrupt source to the slave (this LSI).
					0: [Clearing condition]
					When the slave reads IDR4
					1: [Setting condition]
					When the host writes to IDR4 in I/O write cycle
0	OBF4A	0	R/(W)*	R	Output Data Register Full
					0: [Clearing conditions]
					When the host reads ODR4 in I/O read cycle
					When the slave writes 0 to the OBF4A bit
					1: [Setting condition]
					When the slave writes to ODR4

Note: * Only 0 can be written to clear the flag.

• STRA

			R/	W	
Bit	Bit Name	Initial Value	Slave	Host	Description
7	DBUA7	0	R/W	R	Defined by User
6	DBUA6	0	R/W	R	The user can use these bits as necessary.
5	DBUA5	0	R/W	R	
4	DBUA4	0	R/W	R	
3	C/DA	0	R	R	Command/Data Flag
					When the host writes to IDRA, bit 0 of the I/O address is written into this bit to indicate whether IDRA contains data or a command.
					0: Contents of input data register (IDRA) is data.
					Contents of input data register (IDRA) is a command.
2	DBUA2	0	R/W	R	Defined by User
					The user can use this bit as necessary.
1	IBFA	0	R	R	Input Buffer Full
					This bit is an internal interrupt source to the slave (this LSI).
					0: [Clearing condition]
					When the slave reads IDRA
					1: [Setting condition]
					When the host writes to IDRA in I/O write cycle
0	OBFA	0	R/(W)*	R	Output Buffer Full
					0: [Clearing conditions]
					When the host reads ODRA in I/O read cycle
					When the slave writes 0 to the OBFA bit
					1: [Setting condition]
					When the slave writes to ODRA

Note: * Only 0 can be written to clear the flag.

20.3.16 SERIRQ Control Register 0 (SIRQCR0)

SIRQCR0 contains status bits that indicate the SERIRQ operating mode and bits that specify SERIRQ interrupt sources.

			R/	W	
Bit	Bit Name	Initial Value	Slave	Host	Description
7	Q/C	0	R	_	Quiet/Continuous Mode Flag
					Indicates the mode specified by the host at the end of an SERIRQ transfer cycle (stop frame).
					0: Continuous mode
					[Clearing conditions]
					LPC hardware reset or LPC software reset
					 Specification by SERIRQ transfer cycle stop frame.
					1: Quiet mode
					[Setting condition]
					 Specification by SERIRQ transfer cycle stop frame.
6	SELREQ	0	R/W	_	Start Frame Initiation Request Select
					Selects the condition of a start frame initiation request when a host interrupt request is cleared in quiet mode.
					Start frame initiation is requested when all interrupt requests are cleared.
					Start frame initiation is requested when one or more interrupt requests are cleared.
5	IEDIR2	0	R/W	_	Interrupt Enable Direct Mode 2
					Selects whether an SERIRQ interrupt generation of LPC channel 2 is affected only by a host interrupt enable bit or by an OBF flag in addition to the enable bit.
					0: A host interrupt is generated when both the enable bit and the corresponding OBF flag are set.
					1: A host interrupt is generated when the enable bit is set.

			R/	W	
Bit	Bit Name	Initial Value	Slave	Host	Description
4	SMIE3B	0	R/W	_	Host SMI Interrupt Enable 3B
					Enables or disables an SMI interrupt request when OBF3B is set by a TWR15 write.
					0: Host SMI interrupt request by OBF3B and SMIE3B is disabled.
					[Clearing conditions]
					Writing 0 to SMIE3B
					LPC hardware reset, LPC software reset
					• Clearing OBF3B to 0 (when IEDIR3 = 0)
					1: [When IEDIR3 = 0]
					Host SMI interrupt request by setting OBF3B to 1 is enabled.
					[When IEDIR3 = 1]
					Host SMI interrupt is requested.
					[Setting condition]
					• Writing 1 after reading SMIE3B = 0
3	SMIE3A	0	R/W		Host SMI Interrupt Enable 3A
					Enables or disables an SMI interrupt request when OBF3A is set by an ODR3 write.
					0: Host SMI interrupt request by OBF3A and SMIE3A is disabled.
					[Clearing conditions]
					Writing 0 to SMIE3A
					LPC hardware reset, LPC software reset
					• Clearing OBF3A to 0 (when IEDIR3 = 0)
					1: [When IEDIR3 = 0]
					Host SMI interrupt request by setting is enabled.
					[When IEDIR3 = 1]
					Host SMI interrupt is requested.
					[Setting condition]
					Writing 1 after reading SMIE3A = 0

			R/	W	
Bit	Bit Name	Initial Value	Slave	Host	Description
2	SMIE2	0	R/W	_	Host SMI Interrupt Enable 2
					Enables or disables an SMI interrupt request when OBF2 is set by an ODR2 write.
					0: Host SMI interrupt request by OBF2 and SMIE2 is disabled.
					[Clearing conditions]
					Writing 0 to SMIE2
					LPC hardware reset, LPC software reset
					• Clearing OBF2 to 0 (when IEDIR2 = 0)
					1: [When IEDIR2 = 0]
					Host SMI interrupt request by setting OBF2 to 1 is enabled.
					[When IEDIR2 = 1]
					Host SMI interrupt is requested.
					[Setting condition]
					• Writing 1 after reading SMIE2 = 0
1	IRQ12E1	0	R/W	_	Host IRQ12 Interrupt Enable 1
					Enables or disables an HIRQ12 interrupt request when OBF1 is set by an ODR1 write.
					0: HIRQ12 interrupt request by OBF1 and IRQ12E1 is disabled.
					[Clearing conditions]
					Writing 0 to IRQ12E1
					LPC hardware reset, LPC software reset
					Clearing OBF1 to 0
					1: HIRQ12 interrupt request by setting OBF1 to 1 is enabled.
					[Setting condition]
					• Writing 1 after reading IRQ12E1 = 0

			R/	W	
Bit	Bit Name	Initial Value	Slave	Host	Description
0	IRQ1E1	0	R/W	_	Host IRQ1 Interrupt Enable 1
					Enables or disables a host HIRQ1 interrupt request when OBF1 is set by an ODR1 write.
					0: HIRQ1 interrupt request by OBF1 and IRQ1E1 is disabled.
					[Clearing conditions]
					Writing 0 to IRQ1E1
					LPC hardware reset, LPC software reset
					Clearing OBF1 to 0
					1: HIRQ1 interrupt request by setting OBF1 to 1 is enabled.
					[Setting condition]
					 Writing 1 after reading IRQ1E1 = 0

20.3.17 SERIRQ Control Register 1 (SIRQCR1)

SIRQCR1 contains status bits that indicate the SERIRQ operating mode and bits that specify SERIRQ interrupt sources.

			R/	W	
Bit	Bit Name	Initial Value	Slave	Host	Description
7	IRQ11E3	0	R/W	_	Host IRQ11 Interrupt Enable 3
					Enables or disables an HIRQ11 interrupt request when OBF3A is set by an ODR3 write.
					0: HIRQ11 interrupt request by OBF3A and IRQE11E3 is disabled.
					[Clearing conditions]
					Writing 0 to IRQ11E3
					 LPC hardware reset, LPC software reset
					 Clearing OBF3A to 0 (when IEDIR3 = 0)
					1: [When IEDIR3 = 0]
					HIRQ11 interrupt request by setting OBF3A to 1 is enabled.
					[When IEDIR3 = 1]
					HIRQ11 interrupt is requested.
					[Setting condition]
					 Writing 1 after reading IRQ11E3 = 0
6	IRQ10E3	0	R/W	_	Host IRQ10 Interrupt Enable 3
					Enables or disables an HIRQ10 interrupt request when OBF3A is set by an ODR3 write.
					0: HIRQ10 interrupt request by OBF3A and IRQE10E3 is disabled.
					[Clearing conditions]
					Writing 0 to IRQ10E3
					 LPC hardware reset, LPC software reset
					 Clearing OBF3A to 0 (when IEDIR3 = 0)
					1: [When IEDIR3 = 0]
					HIRQ10 interrupt request by setting OBF3A to 1 is enabled.
					[When IEDIR3 = 1]
					HIRQ10 interrupt is requested.
					[Setting condition]
					• Writing 1 after reading IRQ10E3 = 0

			R/	W	
Bit	Bit Name	Initial Value	Slave	Host	Description
5	IRQ9E3	0	R/W	_	Host IRQ9 Interrupt Enable 3
					Enables or disables an HIRQ9 interrupt request when OBF3A is set by an ODR3 write.
					0: HIRQ9 interrupt request by OBF3A and IRQE9E3 is disabled.
					[Clearing conditions]
					Writing 0 to IRQ9E3
					LPC hardware reset, LPC software reset
					• Clearing OBF3A to 0 (when IEDIR3 = 0)
					1: [When IEDIR3 = 0]
					HIRQ9 interrupt request by setting OBF3A to 1 is enabled.
					[When IEDIR3 = 1]
					HIRQ9 interrupt is requested.
					[Setting condition]
					• Writing 1 after reading IRQ9E3 = 0
4	IRQ6E3	0	R/W	_	Host IRQ6 Interrupt Enable 3
					Enables or disables an HIRQ6 interrupt request when OBF3A is set by an ODR3 write.
					0: HIRQ6 interrupt request by OBF3A and IRQE6E3 is disabled.
					[Clearing conditions]
					Writing 0 to IRQ6E3
					LPC hardware reset, LPC software reset
					• Clearing OBF3A to 0 (when IEDIR3 = 0)
					1: [When IEDIR3 = 0]
					HIRQ6 interrupt request by setting OBF3A to 1 is enabled.
					[When IEDIR3 = 1]
					HIRQ6 interrupt is requested.
					[Setting condition]
					• Writing 1 after reading IRQ6E3 = 0

			R/	W	
Bit	Bit Name	Initial Value	Slave	Host	Description
3	IRQ11E2	0	R/W	_	Host IRQ11 Interrupt Enable 2
					Enables or disables an HIRQ11 interrupt request when OBF2 is set by an ODR2 write.
					0: HIRQ11 interrupt request by OBF2 and IRQE11E2 is disabled.
					[Clearing conditions]
					Writing 0 to IRQ11E2
					LPC hardware reset, LPC software reset
					• Clearing OBF2 to 0 (when IEDIR2 = 0)
					1: [When IEDIR2 = 0]
					HIRQ11 interrupt request by setting OBF2 to 1 is enabled.
					[When IEDIR2 = 1]
					HIRQ11 interrupt is requested.
					[Setting condition]
					• Writing 1 after reading IRQ11E2 = 0
2	IRQ10E2	0	R/W	_	Host IRQ10 Interrupt Enable 2
					Enables or disables an HIRQ10 interrupt request when OBF2 is set by an ODR2 write.
					0: HIRQ10 interrupt request by OBF2 and IRQE10E2 is disabled.
					[Clearing conditions]
					Writing 0 to IRQ10E2
					LPC hardware reset, LPC software reset
					• Clearing OBF2 to 0 (when IEDIR2 = 0)
					1: [When IEDIR2 = 0]
					HIRQ10 interrupt request by setting OBF2 to 1 is enabled.
					[When IEDIR2 = 1]
					HIRQ10 interrupt is requested.
					[Setting condition]
					• Writing 1 after reading IRQ10E2 = 0

			R/	W	
Bit	Bit Name	Initial Value	Slave	Host	Description
1	IRQ9E2	0	R/W	_	Host IRQ9 Interrupt Enable 2
					Enables or disables an HIRQ9 interrupt request when OBF2 is set by an ODR2 write.
					0: HIRQ9 interrupt request by OBF2 and IRQE9E2 is disabled.
					[Clearing conditions]
					Writing 0 to IRQ9E2
					LPC hardware reset, LPC software reset
					• Clearing OBF2 to 0 (when IEDIR2 = 0)
					1: [When IEDIR2 = 0]
					HIRQ9 interrupt request by setting OBF2 to 1 is enabled.
					[When IEDIR2 = 1]
					HIRQ9 interrupt is requested.
					[Setting condition]
					• Writing 1 after reading IRQ9E2 = 0
0	IRQ6E2	0	R/W	_	Host IRQ6 Interrupt Enable 3
					Enables or disables an HIRQ6 interrupt request when OBF2 is set by an ODR2 write.
					0: HIRQ6 interrupt request by OBF2 and IRQE6E2 is disabled.
					[Clearing conditions]
					Writing 0 to IRQ6E2
					LPC hardware reset, LPC software reset
					• Clearing OBF2 to 0 (when IEDIR2 = 0)
					1: [When IEDIR2 = 0]
					HIRQ6 interrupt request by setting OBF2 to 1 is enabled.
					[When IEDIR2 = 1]
					HIRQ6 interrupt is requested.
					[Setting condition]
					Writing 1 after reading IRQ6E2 = 0

20.3.18 SERIRQ Control Register 2 (SIRQCR2)

SIRQCR2 contains bits that enable or disable SERIRQ interrupt requests and select the host interrupt request outputs.

			R/	W	
Bit	Bit Name	Initial Value	Slave	Host	Description
7	IEDIR3	0	R/W	_	Interrupt Enable Direct Mode 3
					Selects whether an SERIRQ interrupt generation of LPC channel 3 is affected only by a host interrupt enable bit or by an OBF flag in addition to the enable bit.
					0: A host interrupt is generated when both the enable bit and the corresponding OBF flag are set.
					1: A host interrupt is generated when the enable bit
					is set.
6	IEDIR4	0	R/W	_	Interrupt Enable Direct Mode 4
					Selects whether an SERIRQ interrupt generation of LPC channel 4 is affected only by a host interrupt enable bit or by an OBF flag in addition to the enable bit.
					0: A host interrupt is generated when both the enable bit and the corresponding OBF flag are set.
					A host interrupt is generated when the enable bit is set.

			R/	W	
Bit	Bit Name	Initial Value	Slave	Host	Description
5	IRQ11E4	0	R/W	_	Host IRQ11 Interrupt Enable 4
					Enables or disables an HIRQ11 interrupt request when OBF4A is set by an ODR4 write.
					0: HIRQ11 interrupt request by OBF4 and IRQE11E4 is disabled.
					[Clearing conditions]
					Writing 0 to IRQ11E4
					LPC hardware reset, LPC software reset
					• Clearing OBF4A to 0 (when IEDIR4 = 0)
					1: [When IEDIR4 = 0]
					HIRQ11 interrupt request by setting OBF4A to 1 is enabled.
					[When IEDIR4 = 1]
					HIRQ11 interrupt is requested.
					[Setting condition]
					• Writing 1 after reading IRQ11E4 = 0
4	IRQ10E4	0	R/W	_	Host IRQ10 Interrupt Enable 4
					Enables or disables an HIRQ10 interrupt request when OBF4A is set by an ODR4 write.
					0: HIRQ10 interrupt request by OBF4 and IRQE10E4 is disabled.
					[Clearing conditions]
					Writing 0 to IRQ10E4
					LPC hardware reset, LPC software reset
					• Clearing OBF4A to 0 (when IEDIR4 = 0)
					1: [When IEDIR4 = 0]
					HIRQ10 interrupt request by setting OBF4A to 1 is enabled.
					[When IEDIR4 = 1]
					HIRQ10 interrupt is requested.
					[Setting condition]
					Writing 1 after reading IRQ10E4 = 0

			R/	W	
Bit	Bit Name	Initial Value	Slave	Host	Description
3	IRQ9E4	0	R/W	_	Host IRQ9 Interrupt Enable 4
					Enables or disables an HIRQ9 interrupt request when OBF4A is set by an ODR4 write.
					0: HIRQ9 interrupt request by OBF4 and IRQ9E4 is disabled.
					[Clearing conditions]
					Writing 0 to IRQ9E4
					LPC hardware reset, LPC software reset
					• Clearing OBF4A to 0 (when IEDIR4 = 0)
					1: [When IEDIR4 = 0]
					HIRQ9 interrupt request by setting OBF4A to 1 is enabled.
					[When IEDIR4 = 1]
					HIRQ9 interrupt is requested.
					[Setting condition]
					• Writing 1 after reading IRQ9E4 = 0
2	IRQ6E4	0	R/W	_	Host IRQ6 Interrupt Enable 4
					Enables or disables an HIRQ6 interrupt request when OBF4A is set by an ODR4 write.
					0: HIRQ6 interrupt request by OBF4 and IRQE6E4 is disabled.
					[Clearing conditions]
					Writing 0 to IRQ6E4
					LPC hardware reset, LPC software reset
					• Clearing OBF4A to 0 (when IEDIR4 = 0)
					1: [When IEDIR4 = 0]
					HIRQ6 interrupt request by setting OBF4A to 1 is enabled.
					[When IEDIR4 = 1]
					HIRQ6 interrupt is requested.
					[Setting condition]
					Writing 1 after reading IRQ6E4 = 0

		R/W		W	
Bit	Bit Name	Initial Value	Slave	Host	Description
1	SMIE4	0	R/W	_	Host SMI Interrupt Enable 4
					Enables or disables an SMI interrupt request when OBF4A is set by an ODR4 write.
					0: SMI interrupt request by OBF4 and SMIE4 is
					disabled.
					[Clearing conditions]
					Writing 0 to SMIE4
					LPC hardware reset, LPC software reset
					• Clearing OBF4A to 0 (when IEDIR4 = 0)
					1: [When IEDIR4 = 0]
					SMI interrupt request by setting OBF4A to 1 is enabled.
					[When IEDIR4 = 1]
					SMI interrupt is requested.
					[Setting condition]
					 Writing 1 after reading SMIE4 = 0
0	_	0	R/W	_	Reserved
					The initial value should not be changed.

20.3.19 SERIRQ Control Register 3 (SIRQCR3)

SIRQCR3 contains bits that select the host interrupt request outputs.

		Initial	R/W		_
Bit	Bit Name	Value	Slave	Host	Description
7	SELIRQ15	0	R/W	_	Host IRQ Interrupt Select
6	SELIRQ14	0	R/W	_	These bits select the state of the output on the
5	SELIRQ13	0	R/W		SERIRQ pins.
4	SELIRQ8	0	R/W	_	O: [When the host interrupt request is clear] SERIRQ pin output is in the Hi-Z state.
3	SELIRQ7	0	R/W	_	[When the host interrupt request is set]
2	SELIRQ5	0	R/W	_	SERIRQ pin output is at the low level.
1	SELIRQ4	0	R/W	_	1: [When the host interrupt request is clear]
0	SELIRQ3	0	R/W	_	SERIRQ pin output is at the low level.
					[When the host interrupt request is set]
					SERIRQ pin output is in the Hi-Z state.

20.3.20 SERIRQ Control Register 4 (SIRQCR4)

SIRQCR4 has bits to select the SERIRQ interrupt requests of the TWDR and SCIF.

		Initial	R/W		
Bit	Bit Name	Value	Slave	Host	Description
7	TWSIRQ3	0	R/W	_	TWDR SERIRQ Request
6	TWSIRQ2	0	R/W	_	These bits select host interrupt requests of the
5	TWSIRQ1	0	R/W	_	TWDR.
4	TWSIRQ0	0	R/W	—	0000: No host interrupt request
					0001: HIRQ1
					0010: SMI
					0011: HIRQ3
					0100: HIRQ4
					0101: HIRQ5
					0110: HIRQ6
					0111: HIRQ7
					1000: HIRQ8
					1001: HIRQ9
					1010: HIRQ10
					1011: HIRQ11
					1100: HIRQ12
					1101: HIRQ13
					1110: HIRQ14
					1111: HIRQ15

		Initial	R/W		
Bit	Bit Name	Value	Slave	Host	Description
3	SCSIRQ3	0	R/W	_	SCIF SERIRQ Request
2	SCSIRQ2	0	R/W		These bits select host interrupt requests of the SCIF.
1	SCSIRQ1	0	R/W		0000: No host interrupt request
0	SCSIRQ0	0	R/W		0001: HIRQ1
					0010: SMI
					0011: HIRQ3
					0100: HIRQ4
					0101: HIRQ5
					0110: HIRQ6
					0111: HIRQ7
					1000: HIRQ8
					1001: HIRQ9
					1010: HIRQ10
					1011: HIRQ11
					1100: HIRQ12
					1101: HIRQ13
					1110: HIRQ14
					1111: HIRQ15

20.3.21 SERIRQ Control Register 5 (SIRQCR5)

SIRQCR5 has a bit to enable or disable SERIRQ interrupt requests.

		Initial	R/	W		
Bit	Bit Name	Value	Slave	Host	Description	
7	IRQE4B	0	R/W	_	Host Interrupt Enable 4B	
					Enables or disables an interrupt request when OBF4B is set by a TWDR31 write.	
					0: Host interrupt request by OBF4B and IRQE4B is disabled.	
					[Clearing conditions]	
					Writing 0 to RQE4B	
					LPC hardware reset, LPC software reset	
					• Clearing OBF4B to 0 (when IEDIR4 = 0)	
					1: [When IEDIR4 = 0]	
					Host interrupt request by setting OBF4B to 1 is enabled.	
					[When IEDIR4 = 1]	
					Host interrupt is requested.	
					[Setting condition]	
					• Writing 1 after reading IRQE4B = 0	
6 to 0	_	All 0	R/W	_	Reserved	
					The initial value should not be changed.	

20.3.22 SCIF Address Register (SCIFADRH, SCIFADRL)

SCIFADR sets the host addresses of the SCIF. Do not change the contents of SCIFADR during operation of the SCIF (i.e. while SCIFE is set to 1).

SCIFADRH

		Initial	R/W	
Bit	Bit Name	Value	Slave Host	Description
7	_	0	R/W —	SCIF Addresses 15 to 8
6	_	0	R/W —	These bits set the host addresses of the SCIF.
5	_	0	R/W —	-
4	_	0	R/W —	_
3	_	0	R/W —	_
2	_	0	R/W —	_
1	_	1	R/W —	_
0	_	1	R/W —	-

SCIFADRL

		Initial	R/W	_
Bit	Bit Name	Value	Slave Host	Description
7	_	1	R/W —	SCIF Addresses 7 to 0
6	_	1	R/W —	These bits set the host addresses of the SCIF.
5	_	1	R/W —	-
4	_	1	R/W —	-
3	_	1	R/W —	
2	_	0	R/W —	-
1	_	0	R/W —	-
0	_	0	R/W —	

Note: If the SCIF is in use, set different addresses from that in SCIFADR (for the SCIF) in the registers for channels 1, 2, 3, 4, and A.

20.3.23 Host Interface Select Register (HISEL)

HISEL selects the function of bits 7 to 4 in STR3 and selects the output of the host interrupt request signal of each frame.

		Initial	R/	W	
Bit	Bit Name	Value	Slave	Host	Description
7	SELSTR3	0	R/W	_	Status Register 3 Selection
				Selects the function of bits 7 to 4 in STR3 in combination with the TWRE bit in LADR3L. For details of STR3, see section 20.3.15, Status Registers 1 to 4 and A (STR1 to STR4 and STRA).	
					0: Bits 7 to 4 in STR3 indicate processing status of the LPC interface.
					1: [When TWRE = 0]
					Bits 7 to 4 in STR3 are readable/writable bits which user can use as necessary.
					[When TWRE = 1]
					Bits 7 to 4 in STR3 indicate processing status of the LPC interface.
6	SELIRQ11	0	R/W	_	Host IRQ Interrupt Select
5	SELIRQ10	0	R/W	_	These bits select the state of the output on the
4	SELIRQ9	0	R/W	_	SERIRQ pins.
3	SELIRQ6	0	R/W	_	0: [When host interrupt request is cleared]
2	SELSMI	0	R/W	_	SERIRQ pin output is in the Hi-Z state.
1	SELIRQ12	1	R/W	_	[When host interrupt request is set]
0	SELIRQ1	1	R/W	_	SERIRQ pin output is at the low level.
Ū	OLLINGT	•	1 1/ * *		1: [When host interrupt request is cleared]
					SERIRQ pin output is at the low level.
					[When host interrupt request is set]
					SERIRQ pin output is in the Hi-Z state.

20.3.24 Clock Run Control Register (CKRCR)

CKRCR has bits to control LCLK restart requests through the $\overline{\text{CLKRUN}}$ signal when LCLK is stopped.

		Initial	R/W		
Bit	Bit Name	Value	Slave	Host	Description
7	CKREA	0	R/W	_	Clock Request Enable A
					Enables or disables LCLK restart requests through the CLKRUN signal when LCLK has been stopped during FSI transfer.
					This bit is valid when LCKL is specified as the transfer clock for the FSI.
					0: LCLK restart requests through the $\overline{\text{CLKRUN}}$ signal are disabled
					1: LCLK restart requests through the $\overline{\text{CLKRUN}}$ signal are enabled
6	CKREB	0	R/W	_	Clock Request Enable B
					Enables or disables LCLK restart requests through the CLKRUN signal when LCLK has been stopped.
					LCLK restart requests can be issued through the CLKRUN signal even when no host interrupt request has been generated.
					0: LCLK restart requests through the $\overline{\text{CLKRUN}}$ signal are disabled
					1: LCLK restart requests through the CLKRUN signal are enabled
5 to 0	_	All 0	R/W	_	Reserved
					The initial value should not be changed.

20.4 Operation

20.4.1 LPC interface Activation

The LPC interface is activated by setting one of the following bits to 1: LPC3E to LPC1E in HICR0, LPC4E in HICR4, and LPCAE in HICR6. When the LPC interface is activated, the related I/O ports function as dedicated LPC interface input/output pins. In addition, setting the FGA20E, PMEE, LSMIE, and LSCIE bits to 1 adds the related I/O ports to the LPC interface's input/output pins.

Use the following procedure to activate the LPC interface after a reset release.

- 1. Read the signal line status and confirm that the LPC module can be connected. Also check that the LPC module is initialized internally.
- 2. When using channels 1 and 2, set LADR1 and LADR2 to determine the I/O address.
- 3. When using channels 3 and 4, set LADR3 and LADR4 to determine the I/O addresses of channels 3 and 4, and whether bidirectional data registers are to be used.
- 4. When using channel A, set LADRA to determine the I/O address. To enable the extended function of channel A, set the extended LPC channel A enable bit (ELPCAE).
- 5. Set the enable bit (LPCAE and LPC4E to LPC1E) for the channel to be used.
- 6. Set the enable bits (FGA20E, PMEE, LSMIE, and LSCIE) for the additional functions to be used.
- 7. Set the selection bits for other functions (SDWNE, IEDIR).
- 8. As a precaution, clear the interrupt flags (LRST, SDWN, ABRT, OBF, and OBEI). Read IDR, TWR15, or TWDR31 to clear IBF.
- 9. Set receive complete interrupt enable bits (IBFIEA, IBFIE4 to IBFIE1, ERRIE, and OBEIE) as necessary.

20.4.2 LPC I/O Cycles

There are 12 types of LPC transfer cycle: LPC memory read, LPC memory write, I/O read, I/O write, DMA read, DMA write, bus master memory read, bus master memory write, bus master I/O read, bus master I/O write, FW memory read, and FW memory write. Of these, the LPC of this LSI supports I/O read and I/O write.

An LPC transfer cycle is started when the \overline{LFRAME} signal goes low in the bus idle state. If the \overline{LFRAME} signal goes low when the bus is not idle, this means that a forced termination (abort) of the LPC transfer cycle has been requested.

In an I/O read cycle or I/O write cycle, transfer is carried out using LAD3 to LAD0 in the following order, in synchronization with LCLK. The host can be made to wait by sending back a value other than B'0000 in the slave's synchronization return cycle, but with the LPC of this LSI a value of B'0000 always returns.

If the received address matches the host address in an LPC register (IDR, ODR, STR, TWR, and TWDR), the LPC interface enters the busy state; it returns to the idle state by output of a state count 12 turnaround. Register and flag changes are made at this timing, so in the event of a transfer cycle forced termination (abort), registers and flags are not changed.

The timing of the LFRAME, LCLK, and LAD signals is shown in figures 20.2 and 20.3.

Table 20.3 LPC I/O Cycle

	I/O Read Cycle			I/O Write Cycle			
State Count	Contents	Drive Source	Value (3 to 0)	Contents	Drive Source	Value (3 to 0)	
1	Start	Host	0000	Start	Host	0000	
2	Cycle type/direction	Host	0000	Cycle type/direction	Host	0010	
3	Address 1	Host	Bits 15 to 12	Address 1	Host	Bits 15 to 12	
4	Address 2	Host	Bits 11 to 8	Address 2	Host	Bits 11 to 8	
5	Address 3	Host	Bits 7 to 4	Address 3	Host	Bits 7 to 4	
6	Address 4	Host	Bits 3 to 0	Address 4	Host	Bits 3 to 0	
7	Turnaround (recovery)	Host	1111	Data 1	Host	Bits 3 to 0	
8	Turnaround	None	ZZZZ	Data 2	Host	Bits 7 to 4	
9	Synchronization	Slave	0000	Turnaround (recovery)	Host	1111	
10	Data 1	Slave	Bits 3 to 0	Turnaround	None	ZZZZ	
11	Data 2	Slave	Bits 7 to 4	Synchronization	Slave	0000	
12	Turnaround (recovery)	Slave	1111	Turnaround (recovery)	Slave	1111	
13	Turnaround	None	ZZZZ	Turnaround	None	ZZZZ	

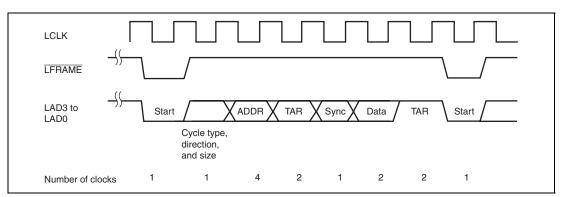


Figure 20.2 Typical LFRAME Timing

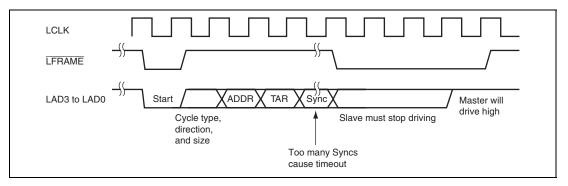


Figure 20.3 Abort Mechanism

20.4.3 Gate A20

The Gate A20 signal can mask address A20 to emulate the address mode of the 8086* architecture CPU used in personal computers. Normally, the Gate A20 signal can be controlled by a firmware. The fast Gate A20 function that realizes high-seed performance by hardware is enabled by setting the FGA20E bit to 1 in HICR0.

Note: An Intel microprocessor

(1) Regular Gate A20 Operation

Output of the Gate A20 signal can be controlled by an H'D1 command and data. When the slave (this LSI) receives data, it normally reads IDR1 in the interrupt handling routine activated by the IBFI1 interrupt. At this time, firmware copies bit 1 of data following an H'D1 command and outputs it on pin GA20.

(2) Fast Gate A20 Operation

The internal state of pin GA20 is initialized to 1 since the initial value of the FGA20E bit is 0. When the FGA20E bit is set to 1, pin P81/GA20 functions as the output of the fast GA20 signal. The state of pin GA20 can be monitored by reading bit GA20 in HICR2.

The initial output from this pin is 1, which is the initial value. Afterward, the host can manipulate the output from this pin by sending commands and data. This function is only available via the IDR1. The LPC decodes commands input from the host. When an H'D1 host command is detected, bit 1 of the data following the host command is output from pin GA20. This operation does not depend on firmware or interrupts, and is faster than the regular processing using interrupts. Table 20.4 shows the conditions that set and clear pin GA20. Figure 20.4 shows the GA20 output flow. Table 20.5 indicates the GA20 output signal values.

Table 20.4 GA20 Setting/Clearing Timing

Pin Name	Setting Condition	Clearing Condition
GA20	When bit 1 of the data that follows an H'D1 host command is 1	When bit 1 of the data that follows an H'D1 host command is 0

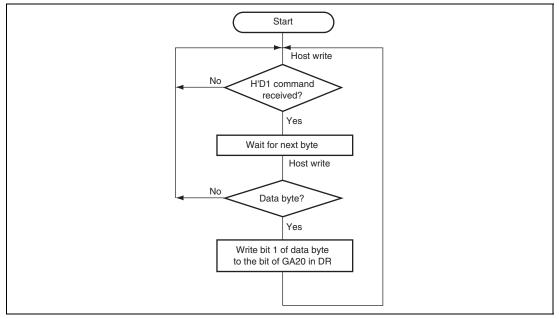


Figure 20.4 GA20 Output

Table 20.5 Fast Gate A20 Output Signals

C/ D 1	Data/Command	Internal CPU Interrupt Flag (IBF)	GA20 (P81)	Remarks
1	H'D1 command	0	Q	Turn-on sequence
0	1 data*1	0	1	
1	H'FF command	0	Q (1)	
1	H'D1 command	0	Q	Turn-off sequence
0	0 data*2	0	0	
1	H'FF command	0	Q (0)	
1	H'D1 command	0	Q	Turn-on sequence
0	1 data*1	0	1	(abbreviated form)
1/0	Command other than H'FF and H'D1	1	Q (1)	
1	H'D1 command	0	Q	Turn-off sequence
0	0 data*2	0	0	(abbreviated form)
1/0	Command other than H'FF and H'D1	1	Q (0)	
1	H'D1 command	0	Q	Cancelled sequence
1	Command other than H'D1	1	Q	
1	H'D1 command	0	Q	Retriggered sequence
1	H'D1 command	0	Q	
1	H'D1 command	0	Q	Consecutively executed
0	Any data	0	1/0	sequences
1	H'D1 command	0	Q (1/0)	

Notes: 1. Any data with bit 1 set to 1.

2. Any data with bit 1 cleared to 0.

20.4.4 LPC Interface Shutdown Function (LPCPD)

The LPC interface can be placed in the shutdown state according to the state of the LPCPD pin. There are two kinds of LPC interface shutdown state: LPC hardware shutdown and LPC software shutdown. The LPC hardware shutdown state is controlled by the $\overline{\text{LPCPD}}$ pin, while the LPC software shutdown state is controlled by the SDWNB bit. In both states, the LPC interface enters the reset state by itself, and is no longer affected by external signals other than the $\overline{\text{LRESET}}$ and $\overline{\text{LPCPD}}$ signals.

Placing the slave in sleep mode or software standby mode is effective in reducing current dissipation in the shutdown state. If software standby mode is set, some means must be provided for exiting software standby mode before clearing the shutdown state with the LPCPD signal.

If the SDWNE bit has been set to 1 beforehand, the LPC hardware shutdown state is entered at the same time as the $\overline{\text{LPCPD}}$ signal falls. The following shows the operating procedure of LPC hardware shutdown.

- 1. Set the SDWNE bit to 1.
- 2. Set the ERRIE bit to 1 and wait for an interrupt by the SDWN flag.
- 3. When an ERRI interrupt is generated by the SDWN flag, check the LPC interface internal status flags and perform any necessary processing.
- 4. Check the state of the \overline{LPCPD} signal to make sure that the \overline{LPCPD} signal has not risen. If the signal has risen, clear SDWNE to 0 to return to the state in step 1.
- Set to sleep mode or software standby mode. When software standby mode is set, exit the mode by some means independent of the LPC before clearing the LPC hardware shutdown state.
- 6. When a rising edge is detected in the $\overline{\text{LPCPD}}$ signal, the SDWNE bit is automatically cleared to 0. If the slave has been placed in sleep mode, the mode is exited by means of $\overline{\text{LRESET}}$ signal input, on completion of the LPC transfer cycle, or by some other means.

Table 20.6 shows the scope of the LPC interface pin shutdown.

Table 20.6 Scope of LPC Interface Pin Shutdown

Abbreviation	Scope of Shutdown	I/O	Notes
LAD3 to LAD0	0	I/O	Hi-Z
LFRAME	0	Input	Hi-Z
LRESET	Х	Input	LPC hardware reset function is active
LCLK	X	Input	Needed to clear shutdown state
SERIRQ	0	I/O	Hi-Z
LSCI	Δ	I/O	Hi-Z, only when LSCIE = 1
LSMI	Δ	I/O	Hi-Z, only when LSMIE = 1
PME	Δ	I/O	Hi-Z, only when PMEE = 1
GA20	Δ	I/O	Hi-Z, only when FGA20E = 1
CLKRUN	0	Input	Hi-Z
LPCPD	Х	Input	Needed to clear shutdown state
PME GA20 CLKRUN	Δ Δ Ο	I/O I/O Input	Hi-Z, only when PMEE = 1 Hi-Z, only when FGA20E = 1 Hi-Z

[Legend]

O: Pin that is shutdown by the shutdown function

Δ: Pin that is shutdown only when the LPC function is selected by register setting

X: Pin that is not shutdown

In the LPC shutdown state, the LPC's internal state and some register bits are initialized. The order of priority of LPC shutdown and reset states is as follows.

- 1. System reset (reset by \overline{RES} pin input, power-on reset or WDT overflow) All register bits, including bits LPC4E to LPC1E, are initialized.
- 2. LPC hardware reset (reset by LRESET pin input)
 LRSTB, SDWNE, and SDWNB bits are cleared to 0.
- LPC software reset (reset by LRSTB)
 SDWNE and SDWNB bits are cleared to 0.
- 4. LPC hardware shutdown SDWNB bit is cleared to 0.
- 5. LPC software shutdown

The scope of the initialization in each mode is shown in table 20.7.

Table 20.7 Scope of Initialization in Each LPC interface Mode

Items Initialized	System Reset	LPC Reset	LPC Shutdown
LPC transfer cycle sequencer (internal state), LPCBSY flag, and ABRT flag	Initialized	Initialized	Initialized
SERIRQ transfer cycle sequencer (internal state), CLKREQ flag, and IRQBSY flag	Initialized	Initialized	Initialized
LPC interface flags (IBF1, IBF2, IBF3A, IBF3B, IBF4A, IBF4B, IBFA, MWMF, MWM4F, C/\overline{D}1, C/\overline{D}2, C/\overline{D}3, C/\overline{D}4, C/\overline{D}4, OBF1, OBF2, OBF3A, OBF3B, OBF4A, OBF4B, OBFA, SWMF, SWM4F, DBU, OBEI), and GA20 (internal state)	Initialized	Initialized	Retained
Host interrupt enable bits (IRQ1E1, IRQ12E1, SMIE2, IRQ6E2, IRQ9E2 to IRQ11E2, SMIE3B, SMIE3A, IRQ6E3, IRQ9E3 to IRQ11E3, SELREQ, SMIE4, IRQ6E4, IRQ9E4 to IRQ11E4, IRQE4B, IEDIR2 to IEDIR4), Q/C flag	Initialized	Initialized	Retained
LRST flag	Initialized (0)	Can be set/cleared	Can be set/cleared
SDWN flag	Initialized (0)	Initialized (0)	Can be set/cleared
LRSTB bit	Initialized (0)	HR: 0 SR: 1	0 (can be set)
SDWNB bit	Initialized (0)	Initialized (0)	HS: 0 SS: 1
SDWNE bit	Initialized (0)	Initialized (0)	HS: 1 SS: 0 or 1
LPC interface operation control bits (LPC4E to LPC1E, LPCAE, ELPCAE, FGA20E, LADR1 to LADR4, LADRA, IBFIE1 to IBFIE4, IBFIEA, PMEE, PMEB, LSMIE, LSMIB, LSCIE, LSCIB, TWRE, TWDRE, SELSTR3, SELIRQ1, SELSMI, SELIRQ3 to SELIRQ15, OBEIE, SCIFE, IDR1 to IDR4, IDRA, ODR1 to ODR4, ODRA, TWR0 to TWR15, TWDR0 to TWDR31, SCSIRQ0 to SCSIRQ3, TWSIRQ0 to TWSIRQ3, and SCIFADRH/L, CKREA, CKREB)	Initialized	Retained	Retained

Items Initialized	System Reset	LPC Reset	LPC Shutdown
TRESET, TPCPD, LCLK signals	Input (port	Input	Input
LAD3 to LAD0, LFRAME, SERIRQ, CLKRUN signals	function)	Input	Hi-Z
PME, LSMI, LSCI, GA20 signals (when function is selected)		Output	Hi-Z
PME, LSMI, LSCI, GA20 signals (when function is not selected)		Port function	Port function

Note: System reset: Reset by RES pin input, power-on reset or WDT overflow

LPC reset: Reset by LPC hardware reset (HR) or LPC software reset (SR)

LPC shutdown: Reset by LPC hardware shutdown (HS) or LPC software shutdown (SS)

Figure 20.5 shows the timing of the \overline{LPCPD} and \overline{LRESET} signals.

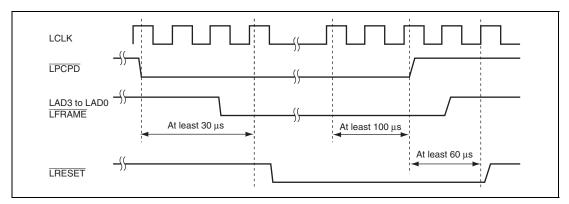


Figure 20.5 Power-Down State Termination Timing

20.4.5 LPC Interface Serialized Interrupt Operation (SERIRQ)

A host interrupt request can be issued from the LPC interface by means of the SERIRQ pin. In a host interrupt request via the SERIRQ pin, LCLK cycles are counted from the start frame of the serialized interrupt transfer cycle generated by the host or a peripheral function, and a request signal is generated by the frame corresponding to that interrupt. The timing is shown in figure 20.6.

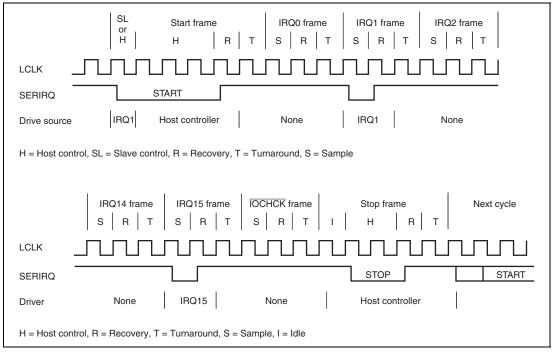


Figure 20.6 SERIRQ Timing

The serialized interrupt transfer cycle frame configuration is as follows. Two of the states comprising each frame are the recover state in which the SERIRQ signal is returned to the 1-level at the end of the frame, and the turnaround state in which the SERIRQ signal is not driven. The recover state must be driven by the host or slave that was driving the preceding state.

Table 20.8 Serialized Interrupt Transfer Cycle Frame Configuration

	Serial Interrupt Transfer Cycle		sfer Cycle	
Frame Count	Contents	Drive Source	Number of States	Notes
0	Start	Slave	6	In quiet mode only, slave drive possible in first
		Host		state, then next 3 states 0-driven by host
1	IRQ0	Slave	3	
2	IRQ1	Slave	3	Drive possible in LPC channels 1, 4, and SCIF
3	SMI	Slave	3	Drive possible in LPC channels 2, 3, 4, and SCIF
4	IRQ3	Slave	3	Drive possible in LPC channel 4 and SCIF
5	IRQ4	Slave	3	Drive possible in LPC channel 4 and SCIF
6	IRQ5	Slave	3	Drive possible in LPC channel 4 and SCIF
7	IRQ6	Slave	3	Drive possible in LPC channels 2, 3, 4, and SCIF
8	IRQ7	Slave	3	Drive possible in LPC channel 4 and SCIF
9	IRQ8	Slave	3	Drive possible in LPC channel 4 and SCIF
10	IRQ9	Slave	3	Drive possible in LPC channels 2, 3, 4, and SCIF
11	IRQ10	Slave	3	Drive possible in LPC channels 2, 3, 4, and SCIF
12	IRQ11	Slave	3	Drive possible in LPC channels 2, 3, 4, and SCIF
13	IRQ12	Slave	3	Drive possible in LPC channels 1, 4, and SCIF
14	IRQ13	Slave	3	Drive possible in LPC channel 4 and SCIF
15	IRQ14	Slave	3	Drive possible in LPC channel 4 and SCIF
16	IRQ15	Slave	3	Drive possible in LPC channel 4 and SCIF
17	IOCHCK	Slave	3	
18	Stop	Host	Undefined	First, 1 or more idle states, then 2 or 3 states 0-driven by host
				2 states: Quiet mode next
				3 states: Continuous mode next

There are two modes—continuous mode and quiet mode—for serialized interrupts. The mode initiated in the next transfer cycle is selected by the stop frame of the serialized interrupt transfer cycle that ended before that cycle.

In continuous mode, the host initiates host interrupt transfer cycles at regular intervals. In quiet mode, the slave with interrupt sources requiring a request can also initiate an interrupt transfer cycle, in addition to the host. In quiet mode, since the host does not necessarily initiate interrupt transfer cycles, it is possible to suspend the clock (LCLK) supply and enter the power-down state. In order for a slave to transfer an interrupt request in this case, a request to restart the clock must first be issued to the host. For details see section 20.4.6, LPC Interface Clock Start Request.

20.4.6 LPC Interface Clock Start Request

A request to restart the clock (LCLK) can be sent to the host by means of the CLKRUN pin. With LPC data transfer and SERIRQ in continuous mode, a clock restart is never requested since the transfer cycles are initiated by the host. With SERIRQ in quiet mode, when a host interrupt request is generated the CLKRUN signal is driven and a clock (LCLK) restart request is sent to the host. The timing for this operation is shown in figure 20.7.

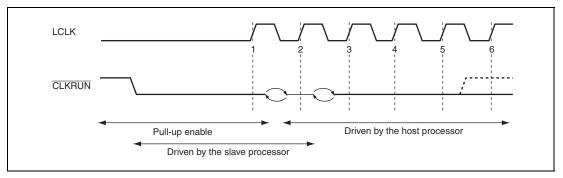


Figure 20.7 Clock Start Request Timing

Cases other than SERIRQ in quiet mode when clock restart is required must be handled with a different protocol, using the PME signal, etc.

20.4.7 SCIF Control from LPC Interface

Setting the SCIFE bit in HICR5 to 1 allows the LPC host to communicate with the SCIF. Then, the LPC interface can access the registers of the module SCIF other than SCIFCR. For details on transmission and reception, see section 16, Serial Communication Interface with FIFO (SCIF).

20.5 Interrupt Sources

20.5.1 IBFI1, IBFI2, IBFI3, IBFI4, IBFIA, OBEI, and ERRI

The host has seven interrupt requests for the slave (this LSI): IBFI1, IBFI2, IBFI3, IBFI4, IBFI4, OBEI, and ERRI. IBFI1, IBFI2, IBFI3, IBFI4, and IBFIA are IDR receive complete interrupts respectively for IDR1, IDR2, IDR3 and TWR, IDR4 and TWDR, and IDRA. The ERRI interrupt indicates the occurrence of a special state such as an LPC reset, LPC shutdown, or transfer cycle abort. OBEI is an output buffer empty interrupt. An interrupt request is enabled by setting the corresponding enable bit.

Table 20.9 Receive Complete Interrupts and Error Interrupt

Interrupt	Description
IBFI1	When IBFIE1 is set to 1 and IDR1 reception is completed
IBFI2	When IBFIE2 is set to 1 and IDR2 reception is completed
IBFI3	When IBFIE3 is set to 1 and IDR3 reception is completed, or when TWRE and IBFIE3 are set to 1 and reception is completed up to TWR15
IBFI4	When IBFIE4 is set to 1 and IDR4 reception is completed or when TWDRE and IBFIE4 are set to 1 and reception is completed up to TWDR31
IBFIA	When IBFIEA is set to 1 and IDRA reception is completed.
OBEI	When OBEIE is set to 1 with OBEI set to 1.
ERRI	When ERRIE is set to 1 and one of LRST, SDWN and ABRT is set to 1

20.5.2 SMI, HIRQ1, HIRQ3, HIRQ4, HIRQ5, HIRQ6, HIRQ7, HIRQ8, HIRQ9, HIRQ10, HIRQ11, HIRQ12, HIRQ13, HIRQ14, and HIRQ15

The LPC interface can request 15 kinds of host interrupt by means of SERIRQ. HIRQ1 and HIRQ12 can be requested from LPC channels 1 and 4 and the SCIF. SMI, HIRQ6, HIRQ9, HIRQ10, and HIRQ11 can be requested from LPC channels 2, 3, and 4 and SCIF. HIRQ3, HIRQ4, HIRQ5, HIRQ7, HIRQ8, HIRQ13, HIRQ14, and HIRQ15 are for LPC channel 4 and SCIF.

There are two ways of clearing a host interrupt request when the LPC channels are used.

When the IEDIR bit in SIRQCR is cleared to 0, host interrupt sources and LPC channels are all linked to the host interrupt request enable bits. When the OBF flag is cleared to 0 by a read of ODR, TWR15, or TWDR31 by the host in the corresponding LPC channel, the corresponding host interrupt enable bit is automatically cleared to 0, and the host interrupt request is cleared.

When the IEDIR bit is set to 1 in SIRQCR, a host interrupt is requested by the only upon the host interrupt enable bits. The host interrupt enable bit is not cleared when OBF is cleared. Therefore, SMIE2, SMIE3A, SMIE3B, SMIE4, IRQ6En, IRQ9En, IRQ10En, and IRQ11En lose their respective functional differences. In order to clear a host interrupt request, it is necessary to clear the host interrupt enable bit. (n = 2 to 4.)

When the SCIF channels are used, clearing the DDCD bit in FMSR of the SCIF clears a host interrupt request.

Table 20.10 summarizes the methods of setting and clearing these bits when the LPC channels are used, and table 20.11 summarizes the methods of setting and clearing these bits when the SCIF channels are used. Figure 20.8 shows the processing flowchart.

Table 20.10 HIRQ Setting and Clearing Conditions when LPC Channels are Used

Host Interrupt	Setting Condition	Clearing Condition		
HIRQ1	Internal CPU writes to ODR1, then reads 0 from bit IRQ1E1 and writes 1	Internal CPU writes 0 to bit IRQ1E1, or host reads ODR1		
HIRQ12	Internal CPU writes to ODR1, then reads 0 from bit IRQ12E1 and writes 1	Internal CPU writes 0 to bit IRQ12E1, or host reads ODR1		
SMI (IEDIR2 = 0	Internal CPU writes to ODR2, then reads 0 from bit SMIE2 and writes 1	Internal CPU writes 0 to bit SMIE2, or host reads ODR2		
IEDIR3 = 0, or $IEDIR4 = 0$)	 Internal CPU writes to ODR3, then reads 0 from bit SMIE3A and writes 1 	 Internal CPU writes 0 to bit SMIE3A, or host reads ODR3 		
	 Internal CPU writes to TWR15, then reads 0 from bit SMIE3B and writes 1 	 Internal CPU writes 0 to bit SMIE3B, or host reads TWR15 		
	 Internal CPU writes to ODR4, then reads 0 from bit SMIE4 and writes 1 	 Internal CPU writes 0 to bit SMIE4, or host reads ODR4 		
SMI (IEDIR2 = 1,	 Internal CPU reads 0 from bit SMIE2, then writes 1 	Internal CPU writes 0 to bit SMIE2		
IEDIR3 = 1, or IEDIR4 = 1)	• Internal CPU reads 0 from bit SMIE3A, then writes 1	 Internal CPU writes 0 to bit SMIE3A 		
	• Internal CPU reads 0 from bit SMIE3B, then writes 1	 Internal CPU writes 0 to bit SMIE3B 		
	 Internal CPU reads 0 from bit SMIE4, then writes 1 	 Internal CPU writes 0 to bit SMIE4 		
HIRQi (i = 6, 9, 10, 11)	Internal CPU writes to ODR2, then reads 0 from bit IRQiE2 and writes 1	Internal CPU writes 0 to bit IRQiE2, or host reads ODR2		
(IEDIR2 = 0, IEDIR3 = 0, or IEDIR4 = 0)	 Internal CPU writes to ODR3, then reads 0 from bit IRQiE3 and writes 1 	 Internal CPU writes 0 to bit IRQiE3, or host reads ODR3 		
125 = 0)	 Internal CPU writes to ODR4, then reads 0 from bit IRQiE4 and writes 1 	 Internal CPU writes 0 to bit IRQiE4, or host reads ODR4 		
HIRQi (i = 6, 9, 10, 11)	 Internal CPU reads 0 from bit IRQiE2, then writes 1 	Internal CPU writes 0 to bit IRQiE2		
(IEDIR2 = 1, IEDIR3 = 1, or IEDIR4 = 1)	 Internal CPU reads 0 from bit IRQiE3, then writes 1 	 Internal CPU writes 0 to bit IRQiE3 		
	 Internal CPU reads 0 from bit IRQiE4, then writes 1 	 Internal CPU writes 0 to bit IRQiE4 		

Host Interrupt	Setting Condition	Clearing Condition		
HIRQi (i = 1 to 15) (IEDIR4 = 0)	Internal CPU sets the corresponding SERIRQ host interrupt request for the TWDR in SIRQCR4 (for details, see the description of SIRQCR4).	Internal CPU writes 0 to bit IRQE4B, or host reads TWDR31		
	Internal CPU writes to TWDR31, then reads 0 from bit IRQE4B and writes 1.			
HIRQi (i = 1 to 15) (IEDIR4 = 1)	Internal CPU sets the corresponding SERIRQ host interrupt request for the TWDR in SIRQCR4.	Internal CPU writes 0 to bit IRQE4B		
	Internal CPU reads 0 from bit IRQE4B, then writes 1.			

Table 20.11 HIRQ Setting and Clearing Conditions when SCIF Channels are Used

Host Interrupt	Setting Condition	Clearing Condition
HIRQi (i = 1 to 15)	Internal CPU sets the corresponding SERIRQ host interrupt request for the SCIF in SIRQCR4 (for details, see the description of SIRQCR4).	Reads FMSR and clears the DDCD bit in FMSR
	Changes in the SCIF input signal $\overline{\text{DCD}}$ are detected.	

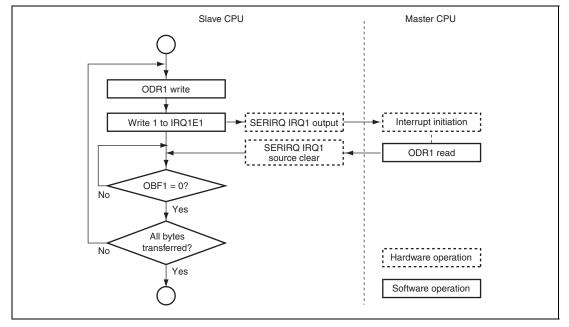


Figure 20.8 HIRQ Flowchart (Example of Channel 1)

20.6 Usage Note

20.6.1 Data Conflict

The LPC interface provides buffering of asynchronous data from the host and slave (this LSI), but an interface protocol that uses the flags in STR must be followed to avoid data conflict.

For example, if the host and slave both try to access IDR or ODR at the same time, the data will be corrupted. To prevent simultaneous accesses, IBF and OBF must be used to allow access only to data for which writing has finished.

Unlike the IDR and ODR registers, the transfer direction is not fixed for the bidirectional data registers (TWR and TWDR). MWMF (MWM4F) and SWMF (SWM4F) are provided in STR to handle this situation. After writing to TWR0, MWMF and SWMF must be used to confirm that the write authority for TWR1 to TWR15 has been obtained. After writing to TWDR0, MWM4F and SWM4F must be used to confirm that the write authority for TWDR1 to TWDR31 has been obtained.

Table 20.12 shows host address examples for registers LADR3, IDR3, ODR3, STR3, TWR0MW, TWR0SW, and TWR1 to TWR15.

Table 20.12 Host Address Examples of Channel 3

Register	Host Address when LADR3 = H'A24F	Host Address when LADR3 = H'3FD0
IDR3	H'A24A and H'A24E	H'3FD0 and H'3FD4
ODR3	H'A24A	H'3FD0
STR3	H'A24E	H'3FD4
TWR0MW	H'A250	H'3FC0
TWR0SW	H'A250	H'3FC0
TWR1	H'A251	H'3FC1
TWR2	H'A252	H'3FC2
TWR3	H'A253	H'3FC3
TWR4	H'A254	H'3FC4
TWR5	H'A255	H'3FC5
TWR6	H'A256	H'3FC6
TWR7	H'A257	H'3FC7
TWR8	H'A258	H'3FC8
TWR9	H'A259	H'3FC9
TWR10	H'A25A	H'3FCA
TWR11	H'A25B	H'3FCB
TWR12	H'A25C	H'3FCC
TWR13	H'A25D	H'3FCD
TWR14	H'A25E	H'3FCE
TWR15	H'A25F	H'3FCF

Table 20.13 shows host address examples for registers LADR4, IDR4, ODR4, STR4, TWDR0MW, TWDR0SW, and TWDR1 to TWDR31.

Table 20.13 Host Address Examples of Channel 4

Register	Host Address when LADR4 = H'B35F	Host Address when LADR4 = H'1FF0
IDR4	H'B35F and H'B35B	H'1FF0 and H'1FF4
ODR4	H'B35B	H'1FF0
STR4	H'B35F	H'1FF4
TWDR0MW	H'B360	H'1FC0
TWDR0SW	H'B360	H'1FC0
TWDR1	H'B361	H'1FC1
TWDR2	H'B362	H'1FC2
TWDR3	H'B363	H'1FC3
TWDR4	H'B364	H'1FC4
TWDR5	H'B365	H'1FC5
TWDR6	H'B366	H'1FC6
TWDR7	H'B367	H'1FC7
TWDR8	H'B368	H'1FC8
TWDR9	H'B369	H'1FC9
TWDR10	H'B36A	H'1FCA
TWDR11	H'B36B	H'1FCB
TWDR12	H'B36C	H'1FCC
TWDR13	H'B36D	H'1FCD
TWDR14	H'B36E	H'1FCE
TWDR15	H'B36F	H'1FCF
TWDR16	H'B370	H'1FD0
TWDR17	H'B371	H'1FD1
TWDR18	H'B372	H'1FD2
TWDR19	H'B373	H'1FD3
TWDR20	H'B374	H'1FD4
TWDR21	H'B375	H'1FD5
TWDR22	H'B376	H'1FD6
TWDR23	H'B377	H'1FD7
TWDR24	H'B378	H'1FD8
TWDR25	H'B379	H'1FD9

Register	Host Address w	hen LADR4 = H'B35F Host Address when LADR4 = H'1FF0
TWDR26	H'B37A	H'1FDA
TWDR27	H'B37B	H'1FDB
TWDR28	H'B37C	H'1FDC
TWDR29	H'B37D	H'1FDD
TWDR30	H'B37E	H'1FDE
TWDR31	H'B37F	H'1FDF

Section 21 FSI Interface

This LSI incorporates the SPI flash memory serial interface (FSI) that supports the communication between this LSI and SPI flash memory. The FSI performs communications using the LPC or CPU of this LSI as a master.

21.1 Features

Figure 21.1 shows a block diagram of the FSI.

- Supports communications between this LSI and SPI flash memory.
- Can operate as a master.
- Transfer clock selectable from system clock or LCLK.
- Four interrupt sources: Transmit end, receive data full, and command and write receive interrupts
- Direct transfer between the LPC and SPI: Supports the Read, Byte/Page-Program, and AAI-Program instructions.
 - The Byte-Program and AAI-Program instructions support direct block transfer.
- LPC-SPI command transfer: Supports instructions other than above.
- LPC-SPI direct command transfer: Supports the WREN, WRDI, EWSR, Chip/Bulk-Erase, WRSR, and RDSR instructions.
- Supports LPC/FW memory cycles of the LPC interface.
- Supports byte, word, and longword transfers of FW memory cycles.
- Provides independent LPC communication enable bits
- Supports LPC reset and LPC shut-down.

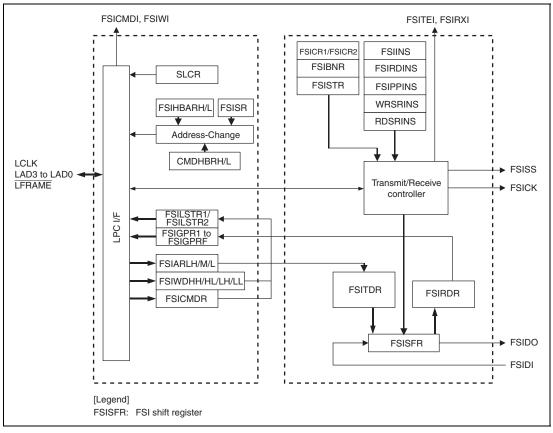


Figure 21.1 FSI Block Diagram

21.2 Input/Output Pins

Table 21.1 shows the input/output pins of the FSI.

Table 21.1 Pin Configuration

Pin Name	Symbol	I/O	Function
FSI slave select	FSISS	Output	FSI slave select signal
FSI clock	FSICK	Output	FSI clock signal
FSI master data input	FSIDI	Input	FSI data input signal
FSI master data output	FSIDO	Output	FSI address/direction/data output signal

For details on the input/output pins of the LPC interface, see section 20.2, Input/Output Pins.

Table 21.2 shows the initial state of the FSI input/output pins when the FSIE bit in the FSICR1 register is set to 1.

Table 21.2 Initial State of FSI Pins (when FSIE = 1)

Pin Name	Symbol	Pin State When FSIE is Set to 1
FSI slave select	FSISS	Outputs high level
FSI clock	FSICK	Outputs low level
FSI master data input	FSIDI	Inputs data
FSI master data output	FSIDO	Outputs high level

21.3 Register Description

The FSI has the following registers.

Table 21.3 Register Configuration

Register NameAbbreviationECHoFSI control register 1FSICR1R/W—FSI control register 2FSICR2R/W—FSI byte count registerFSIBNRR/W—FSI instruction registerFSIINSR/W—	ost Valu - H'00 - H'00 - H'00 - H'00	H'FC90
FSI control register 2 FSICR2 R/W — FSI byte count register FSIBNR R/W —	– H'00 – H'00	
FSI byte count register FSIBNR R/W —	– H'00	LIEC01
, 3		пгоэт
ESI instruction register ESIINS B/M	_ H'00	H'FC92
To instruction register To invo —	1100	H'FC93
FSI read instruction register FSIRDINS R/W —	- H'03	H'FC94
FSI program instruction register FSIPPINS R/W —	- H'02	H'FC95
FSI status register FSISTR R/W —	- H'00	H'FC96
FSI transmit data register 0 FSITDR0 R/W —	- H'00	H'FC98
FSI transmit data register 1 FSITDR1 R/W —	- H'00	H'FC99
FSI transmit data register 2 FSITDR2 R/W —	- H'00	H'FC9A
FSI transmit data register 3 FSITDR3 R/W —	– H'00	H'FC9B
FSI transmit data register 4 FSITDR4 R/W —	- H'00	H'FC9C
FSI transmit data register 5 FSITDR5 R/W —	– H'00	H'FC9D
FSI transmit data register 6 FSITDR6 R/W —	- H'00	H'FC9E
FSI transmit data register 7 FSITDR7 R/W —	- H'00	H'FC9F
FSI receive data register FSIRDR R —	– H'00	H'FCA0
WRSR instruction register WRSRINS R/W —	- H'01	H'FCA4
RDSR instruction register RDSRINS R/W —	– H'05	H'FCA5
FSI access host base address register H FSIHBARH R/W —	– H'00	H'FC50
FSI access host base address register L FSIHBARL R/W —	- H'00	H'FC51
FSI flash memory size register FSISR R/W —	- H'00	H'FC52
FSI command host base address register H CMDHBARH R/W —	– H'00	H'FC53
FSI command host base address register L CMDHBARL R/W —	– H'00	H'FC54
FSI command register FSICMDR R —	– H'00	H'FC55
FSILPC command status register 1 FSILSTR1 R/W R	H'00	H'FC56

		R/W		Initial	
Register Name	Abbreviation	EC	Host	Value	Address
FSI general-purpose register 1	FSIGPR1	R/W	R	H'00	H'FC57
FSI general-purpose register 2	FSIGPR2	R/W	R	H'00	H'FC58
FSI general-purpose register 3	FSIGPR3	R/W	R	H'00	H'FC59
FSI general-purpose register 4	FSIGPR4	R/W	R	H'00	H'FC5A
FSI general-purpose register 5	FSIGPR5	R/W	R	H'00	H'FC5B
FSI general-purpose register 6	FSIGPR6	R/W	R	H'00	H'FC5C
FSI general-purpose register 7	FSIGPR7	R/W	R	H'00	H'FC5D
FSI general-purpose register 8	FSIGPR8	R/W	R	H'00	H'FC5E
FSI general-purpose register 9	FSIGPR9	R/W	R	H'00	H'FC5F
FSI general-purpose register A	FSIGPRA	R/W	R	H'00	H'FC60
FSI general-purpose register B	FSIGPRB	R/W	R	H'00	H'FC61
FSI general-purpose register C	FSIGPRC	R/W	R	H'00	H'FC62
FSI general-purpose register D	FSIGPRD	R/W	R	H'00	H'FC63
FSI general-purpose register E	FSIGPRE	R/W	R	H'00	H'FC64
FSI general-purpose register F	FSIGPRF	R/W	R	H'00	H'FC65
FSILPC control register	SLCR	R/W	_	H'00	H'FC66
FSI address register H	FSIARH	R	_	H'00	H'FC67
FSI address register M	FSIARM	R	_	H'00	H'FC68
FSI address register L	FSIARL	R	_	H'00	H'FC69
FSI write data register HH	FSIWDRHH	R	_	H'00	H'FC6A
FSI write data register HL	FSIWDRHL	R	_	H'00	H'FC6B
FSI write data register LH	FSIWDRLH	R	_	H'00	H'FC6C
FSI write data register LL	FSIWDRLL	R	_	H'00	H'FC6D
FSI LPC command status register 2	FSILSTR2	R/W	R	H'01	H'FC6E

Notes: 1. Before accessing these registers, clear bit 0 in MSTPCRL (MSTP0) and bit 2 in MSTPCRA (MSTPA2) to 0.

- 2. "R/W" in table 21.3 has the following meanings.
 - a) "R/W EC" indicates the access from the EC (Embedded Controller = this LSI).
 - b) "R/W Host" indicates the access from the host.

21.3.1 FSI Control Register 1 (FSICR1)

The FSICR1 control bits are classified into three functionalities: resetting the FSI internal signals, enabling/disabling FSI functions, and selecting FSI functions.

		Initial	F	R/W	
Bit	Bit Name	Value	EC	Host	Description
7	SRES	0	R/W	_	Software Reset
					Controls initialization of the FSI internal sequencer.
					0: Normal state
					1: Clears the internal sequencer.
					Writing 1 to this bit generates a clear signal for the sequencer in the corresponding module, resulting in the initialization of the FSI's internal state.
6	FSIE	0	R/W	_	FSI Enable
					0: Disables FSI operation.
					1: Enables FSI operation.
					The following shows the initial state of the FSI pins when FSIE is set to 1:
					FSISS: Outputs high level.
					FSICK: Outputs high level or low level depending on DPHS and CPOS.
					FSIDO: Outputs high level.
					FSIDI: Inputs data.
5	FRDE	0	R/W	_	Fast-Read Enable
					0: The FSI is in normal read operation mode.
					1: The FSI is in fast-read operation mode.
4	AAIE	0	R/W		AAI (Auto Address Increment) Program Enable
					0: The FSI performs byte-program operation.
					1: The FSI performs AAI program operation.

		Initial	F	R/W						
Bit	Bit Name	Value	EC	Host	Descrip	tion				
3	CPHS	0	R/W	_	CPHS: S	CPHS: Selects the polarity of the FSICK clock.				
2	CPOS	0	R/W	_	CPOS: S	CPOS: Selects the phase of the FSICK clock.				
					CPHS	CPOS				
					0	0	Initial value of FSICK: Low level Data changes at the FSICK falling edge.			
					1	1	Setting prohibited			
					0	1	Setting prohibited			
					1	0	Setting prohibited			
1	_	0	R/W	_	Reserve	d				
					The initial value should not be modified.					
0	CKSEL	0	R/W		Clock Select					
					0: Selects the system clock for FSICK					
					1: Selects LCLK for FSICK					

21.3.2 FSI Control Register 2 (FSICR2)

The FSICR2 control bits are classified into two functionalities: enabling/disabling the FSI communications and enabling/disabling the FSI internal interrupts.

		Initial	F	R/W	
Bit	Bit Name	Value	EC	Host	Description
7	TE	0	R/W	_	FSI Transmit Enable
					Controls FSI transmission and indicates transmission status in combination with the LFBUSY bit.
					0: FSI transmission wait state
					[Clearing condition]
					When FSI data transmission is completed.
					1: When LFBUSY = 0: Starts transmission.
					When LFBUSY = 1: FSI transmission is in progress
					(automatically set).

		Initial	R/W		
Bit	Bit Name	Value	EC	Host	Description
6	RE	0	R/W	_	FSI Receive Enable
					Controls FSI reception and indicates reception status in combination with the LFBUSY bit.
					0: FSI reception wait state
					[Clearing condition]
					When FSI data reception is completed.
					1: When LFBUSY = 0: Starts reception.
					When LFBUSY = 1: FSI reception is in progress (automatically set).
5	FSITEIE	0	R/W	_	FSI Transmit End Interrupt Enable
					0: Disables the FSITEI interrupt request.
					1: Enables the FSITEI interrupt request.
4	FSIRXIE	0	R/W	_	FSI Receive Interrupt Enable
					0: Disables the FSIRXI interrupt request.
					1: Enables the FSIRXI interrupt request.
3 to 0	_	All 0	R/W	_	Reserved
					The initial value should not be modified.

21.3.3 FSI Byte Count Register (FSIBNR)

The FSIBNR sets the number of bytes to be transmitted or received by the FSI. This register should not be set in the processing other than FSICMDI and FSIWI interrupt processing.

		Initial	R/W		_
Bit	Bit Name	Value	EC	Host	Description
7 to 4	TBN3	0	R/W	_	Transmit Byte Count 3-0
	TBN2	0			These bits specify the number of data bytes to be
	TBN1	0			transmitted. The TBN value is decremented each time one byte of FSI data transmission is completed.
	TBN0	0			When the FSI transmission ends, TBN is cleared to B'0000.
					0000: Transmits no data
					0001: Transmits one byte of data
					0010: Transmits two bytes of data
					0011: Transmits three bytes of data
					0100: Transmits four bytes of data
					0101: Transmits five bytes of data
					0110: Transmits six bytes of data
					0111: Transmits seven bytes of data
					1000: Transmits eight bytes of data
					1001 to 1111: Setting prohibited
					If transmission of nine bytes or more is specified, data in FSITDR7 is transmitted.
3	_	0	R/W	_	Reserved
					The initial value should not be modified.

		Initial	R/W		
Bit	Bit Name	Value	EC	Host	Description
2 to 0	RBN2	0	R/W	_	Receive Byte Count 2-0
	RBN1	0			These bits specify the number of data bytes to be
	RBN0	0			received. After the FSI reception operation ends (when FSIRXI in FSISTR is 1), the RBN value is decremented (-1) each time FSIRDR is read. When all the data bytes have been received, RBN is cleared to B'000.
					000: Receives no data
					001: Receives one byte of data
					010: Receives two bytes of data
					011: Receives three bytes of data
					100: Receives four bytes of data
					101 to 111: Setting prohibited
					If reception of five bytes or more is specified, FSIRDR is overwritten.

21.3.4 FSI Instruction Register (FSIINS)

FSIINS sets an instruction to be sent to the SPI flash memory during command transfer. When LFBUSY is 1, a write to this register by the EC (this LSI) is invalid. This register should not be set in the processing other than FSICMDI and FSIWI interrupt processing.

		Initial	R/W		
Bit	Bit Name		EC	Host	Description
7 to 0	bit 7 to bit 0	All 0	R/W	_	These bits store an instruction to be transmitted to the SPI flash memory.

21.3.5 FSI Read Instruction Register (FSIRDINS)

FSIRDINS sets a read operation instruction to be sent to FSITDR during read operation. When LFBUSY is set to 1, a write to this register by the EC (this LSI) is invalid. To change the value of this register, do so in the initial settings for the module.

		Initial	R/W		
Bit	Bit Name		EC	Host	Description
7 to 0	bit 7 to bit 0	H'03	R/W	_	These bits store a read operation instruction.

21.3.6 FSI Program Instruction Register (FSIPPINS)

FSIPPINS sets a program operation instruction to be sent to FSITDR during program operation. When LFBUSY is set to 1, a write to this register by the EC (this LSI) is invalid. To change the value of this register, do so in the initial settings for the module.

		Initial	R/W		
Bit	Bit Name		EC	Host	Description
7 to 0	bit 7 to bit 0	H'02	R/W		These bits store a program operation instruction.

21.3.7 WRSR Instruction Register (WRSRINS)

WRSRINS holds WRSR instructions during direct command transfer. To change the value of this register, do so in the initial settings for the module.

		Initial	F	R/W	
Bit	Bit Name		EC	Host	Description
7 to 0	bit 7 to bit 0	H'01	R/W		These bits hold WRSR instructions.

21.3.8 RDSR Instruction Register (RDSRINS)

RDSRINS holds RDSR instructions during direct command transfer. To change the value of this register, do so in the initial settings for the module.

		Initial	R/W		
Bit	Bit Name		EC	Host	Description
7 to 0	bit 7 to bit 0	H'05	R/W	_	These bits hold RDSR instructions.

21.3.9 FSI Status Register (FSISTR)

FSISTR indicates the processing status of the EC (this LSI) and the SPI flash memory transfer.

		Initial	R	/W	
Bit	Bit Name	Value	EC	Host	Description
7	FSITEI	0	R/(W)*	· —	FSI Transmit End Interrupt Flag
					[Setting condition]
					 When write data has been transmitted to the SPI flash memory.
					[Clearing condition]
					• When this bit is read as 1 and then written with 0.
6	OBF	0	R	_	Transmit Data Register Full
					Indicates whether or not there is data to be written by the EC (this LSI).
					0: There is no write data.
					[Clearing condition]
					 When write data transmission to the SPI flash memory is completed.
					1: There is write data.
					[Setting condition]
					• When the TE bit is set to 1.

		Initial	F	R/W	
Bit	Bit Name	Value	EC	Host	Description
5	FSIRXI	0	R	_	FSI Receive End Interrupt Flag
					Indicates whether or not there is data to be read by the EC (this LSI).
					0: There is no read data.
					[Clearing conditions]
					 LFBUSY = 0: When all receive data has been read by the EC (when RBN is cleared to 0).
					 LFBUSY = 1: When all receive data has been I/O-read by the host (automatically cleared). 1: There is read data.
					[Setting condition]
					 When receive data has been transferred to FSIRDR.
4 to 0	_	All 0	R/W	_	Reserved
					The initial value should not be modified.

Note: * Only 0 can be written to bit 7 to clear it.

21.3.10 FSI Transmit Data Registers 0 to 7 (FSITDR0 to FSITDR7)

FSITDR stores a total of 8 bytes of transmit data. A total of 8 bytes of addresses, instructions, and data items can be transferred continuously from FSITDR0 through FSITDR7 in this order to the SPI flash memory. When LFBUSY is set to 1, a write to this register by the EC (this LSI) is invalid. This register should not be set in the processing other than FSICMDI and FSIWI interrupt processing.

		Initial	R/W		
Bit	Bit Name		EC	Host	Description
7 to 0	bit 7 to bit 0	All 0	R/W	_	These bits store transmit data.

21.3.11 FSI Receive Data Register (FSIRDR)

FSIRDR stores a total of 4 bytes of receive data items continuously sent from the SPI flash memory. This register should not be read in the processing other than FSICMDI interrupt processing. Note that four bytes of receive registers share a single register address. A register to be read will be determined according to the RBN bits in FSIBNR. When RBN = B'000, H'00 is read out.

		Initial	R/W		
Bit	Bit Name		EC	Host	Description
7 to 0	bit 7 to bit 0	All 0	R	_	These bits store receive data.

21.3.12 FSI Access Host Base Address Registers H and L (FSIHBARH and FSIHBARL)

FSIHBARH and FSIHBARL store the upper 16 bits of the host start address which is necessary to convert the host address to the SPI flash memory address. The input range of the host address will be determined based on the host start address set in these registers and the memory size set in FSISR. If a host address to be input is out of the determined range, Sync will not be returned. If FW memory cycle is used, bit 31 to bit 28 in FSIHBARH is set as IDSEL. During FSI operation (in the state where FSIE or FSILIE is set), do not change the setting in this register.

FSIHBARH

		Initial	R/W		
Bit	Bit Name	Value	EC	Host	Description
7 to 0	bit 31 to bit 24	All 0	R/W	_	These bits specify bits [31:24] of the host start address.

FSIHBARL

		Initial	R/W			
Bit	Bit Name	Value	EC	Host	Description	
7 to 0	bit 23 to bit 16	All 0	R/W	_	These bits specify bits [23:16] of the host start address.	
					The settings by bit 19 to bit 16 do not affect the operation.	

21.3.13 FSI Flash Memory Size Register (FSISR)

FSISR sets the size of SPI flash memory. The host input address range will be determined based on the size set in this register. Note that the host input address should not be greater than the SPI flash memory capacity. During FSI operation (in the state where FSIE or FSILIE is set), do not change the setting in this register.

		Initial	R/W		_
Bit	Bit Name	Value	EC	Host	Description
7 to 2	_	All 0	R/W	_	Reserved
					The initial value should not be changed.
1	FSIMS1	0	R/W	_	These bits specify the SPI flash memory size.
0	FSIMS0	0	R/W	_	00: 1 Mbyte
					01: 2 Mbytes
					10: 4 Mbytes
					11: 8 Mbytes

21.3.14 FSI Command Host Base Address Registers H and L (CMDHBARH and CMDHBARL)

CMDHBARH and CMDHBARL set the upper 16 bits of the host start address which is necessary to set a command address.

Within the range from H'F000 to H'F00F, the lower 16 bits become the FSI command indirect address. Within the range from H'F010 to H'F013, the lower 16 bits become the FSI command direct address. If a host address to be input to CMDHBARH and CMDHBARL is out of the determined range, Sync will not be returned. If FW memory cycle is used, bit 31 to bit 28 in CMDHBARH is set as IDSEL. During FSI operation (in the state where FSIE or FSILIE is set), do not change the setting in this register.

CMDHBARH

		Initial	R/W		
Bit	Bit Name		EC	Host	Description
7 to 0	bit 31 to bit 24	All 0	R/W	_	These bits specify bits [31:24] of the host start address.

CMDHBARL

		Initial	R/W		
Bit	Bit Name	Value	EC	Host	Description
7 to 0	bit 23 to bit 16	All 0	R/W	_	These bits specify bits [23:16] of the host start address.

21.3.15 FSI Command Register (FSICMDR)

FSICMDR stores command data during FSI command reception. FSICMDR stores command data when the FSICMDI bit in FSILSTR1 is cleared to 0. It does not store command data when the FSICMDI bit is set to 1.

		Initial	R/W		
Bit	Bit Name		EC	Host	Description
7 to 0	bit 7 to bit 0	All 0	R	_	These bits store an FSI command.

21.3.16 FSI LPC Command Status Register 1 (FSILSTR1)

FSILSTR1 indicates the LPC internal status.

		Initial	R	/W	
Bit	Bit Name	Value	EC	Host	Description
7	CMDBUSY	0	R/W*	R	FSI Command Busy Flag
					0: The FSI command execution is completed.
					[Clearing condition]
					• When this bit is read as 1 and then written with 0.
					1: The FSI command execution is in progress.
					[Setting condition]
					When an FSI command is received.
6	FSICMDI	0	R/W*	R	FSI Command Interrupt Flag
					The FSI command interrupt processing is completed.
					[Clearing condition]
					• When this bit is read as 1 and then written with 0.
					 The FSI command interrupt processing is in progress.
					[Setting condition]
					When an FSI command is received.
5	FSIDMYE	0	R/W	R	FSI Dummy Enable
					0: Disables FSI dummy.
					1: Enables FSI dummy.
4	FSIWBUSY	0	R/W*	R	FSI Write Busy Flag
					0: FSI write transfer is completed.
					[Clearing condition]
					 When this bit is read as 1 and then written with 0.
					1: FSI write in transferring
					[Setting condition]
					 SPI flash memory write is received when FLDCT=0.

		Initial	R/W		
Bit	Bit Name	Value	EC	Host	Description
3	FSIWI	0	R/W*	R	FSI Write Interrupt Flag
					0: FSI write interrupt is completed.
					[Clearing condition]
					 Read FSIWI=1 and then write 0.
					1: FSI write interrupt is in progress.
					[Setting condition]
					 SPI flash memory write is received when FLDCT=0.
2	LFBUSY	0	R	R	LPC-SPI Direct Transfer Busy Flag
					Indicates an LPC-SPI direct transfer status.
					0: Direct transfer is completed.
					1: During direct transfer
1	BBUSY	0	R	R	Buffer Busy
					Indicates the state of the FSIWDR buffer when direct block transfer is enabled (BTTRG1 and BTTRG0 are not both 0).
					0: Data are not buffered in FSIWDR.
					[Clearing condition]
					Transfer of data in FSIWDR to FSITDR
					1: Data are buffered in FSIWDR.
					[Setting condition]
					Writing data to FSIWDR
0		0	R/W	R	Reserved
					The initial value should not be modified.

Note: * Only 0 can be written to clear the flag.

21.3.17 FSI LPC Command Status Register 2 (FSILSTR2)

FSILSTR2 indicates the LPC internal status. For reading from the LPC host, set the DCE bit in SLCR to 1.

		Initial	R/W		
Bit	Bit Name	Value	EC	Host	Description
7	_	0	R/W	R	Reserved
					The initial value should not be modified.
6	SRDCBUSY	0	R	R	Status Register Direct Command Transfer Busy Flag
					Indicates the state of direct command transfer of a WRSR or RDSR instruction.
					0: Direct command transfer of a WRSR or RDSR instruction has been completed.
					1: Direct command transfer of a WRSR or RDSR instruction is in progress.
5	DCBUSY	0	R	R	Direct Command Transfer Busy Flag
					Indicates the status of direct command transfer.
					0: Direct command transfer is completed.
					1: Direct command transfer is in progress.
4	FSIDWBUSY	0	R	R	FSI Direct Write Busy Flag
					Indicates a FSI write transfer status during LPC-SPI direct transfer.
					0: FSI write transfer is completed.
					1: During FSI write transfer
3	FSIDRBUSY	0	R	R	FSI Direct Read Busy Flag
					Indicates a FSI read transfer status during LPC-SPI direct transfer.
					0: FSI read transfer is completed.
					1: During FSI read transfer

		Initial	R/W		
Bit	Bit Name	Value	EC	Host	Description
2 to 0	SIZE2	0	R	R	Transfer Byte Count Monitor
	SIZE1	0	R	R	Indicates the number of transferred bytes when
	SIZE0	1	R	R	data is received in the LPC/FW memory cycles. When the Byte/Page-Program or AAI-Program instruction is executed from the EC CPU, the number of transferred bytes can be confirmed by these bits.
					001: LPC/FW memory cycle (byte transfer)
					010: FW memory cycle (word transfer)
					100: FW memory cycle transfer (longword transfer)
					When a transfer is made in units other than byte/word/longword, the previous value is retained.
					Note: This bit is not set to the value other than above.

21.3.18 FSI General-Purpose Registers 1 to F (FSIGPR1 to FSIGPRF)

FSIGPR1 to FSIGPRF store data such as the result of FSI command interrupt processing.

• FSIGPR1 to FSIGPRF

		Initial	R/W		
Bit	Bit Name		EC	Host	Description
7 to 0	bit 7 to bit 0	All 0	R/W	R	These bits store results of FSI command interrupt processing.

21.3.19 FSI LPC Control Register (SLCR)

SLCR enables or disables the LPC host interface function of the FSI, FSI interrupt enable bit, and FSI operation mode control bit.

		Initial	R	/W	
Bit	Bit Name	Value	EC	Host	Description
7	FSILIE	0	R/W	_	FSI LPC Interface Enable
					Enables or disables the LPC host interface function of the FSI. When disabled, address-matching is not performed and Sync is not returned.
					0: Disables the LPC host interface function.
					1: Enables the LPC host interface function.
6	FSICMDIE	0	R/W	_	FSI Command Interrupt Enable
					0: Disables the FSI command interrupt.
					1: Enables the FSI command interrupt.
5	FSIWIE	0	R/W	_	FSI Write Interrupt Enable
					0: Disables the FSI write interrupt.
					1: Enables the FSI write interrupt.
4	FLDCT	0	R/W	_	FSI LPC Direct
					Selects access mode in SPI flash memory write. For details, see section 21.4.5 (8), SPI Flash Memory Write Operation Mode.
					0: LPC-SPI indirect transfer
					1: LPC-SPI direct transfer
3	FLWAIT	0	R/W	_	FSI LPC Wait
					Selects the mode of access for writing or direct command transfer to SPI flash memory. For details, see section 21.4.5 (8), SPI Flash Memory Write Operation Mode and section 21.4.5 (2), Direct Command Transfer.
					0: No wait cycles are inserted.
					1: Wait cycles are inserted.

		Initial	R/W		
Bit	Bit Name	Value	EC	Host	Description
2	DCE	0	R/W	_	Direct Command Transfer Enable
					0: Direct command transfer is disabled.
					1: Direct command transfer is enabled.
1	BTTRG1	All 0	R/W	_	Direct Block Transfer Trigger Level 1, 0
0	BTTRG0				These bits specify the number of bytes to be buffered in FSIWDR. Once the specified number of bytes has been written to FSIWDR, the data in FSIWDR are transferred to FSITDR, and direct transfer between the LPC and SPI starts.
					00: One byte
					01: Two bytes
					10: Four bytes
					11: Setting prohibited

21.3.20 FSI Address Registers H, M, and L (FSIARH, FSIARM, and FSIARL)

FSIAR stores an SPI flash memory address. If the host address matches FSIHBAR, the FSIAR value is updated. FSIAR value is not updated by command access.

FSIARH

		Initial	R/W		
Bit	Bit Name		EC	Host	Description
7 to 0	bit 23 to bit 16	All 0	R	_	These bits store bits [23:16] of the SPI flash memory address.

FSIARM

		R/W Initial		R/W	
Bit	Bit Name		EC Host		Description
7 to 0	bit 15 to bit 8	All 0	R	_	These bits store bits [15:8] of the SPI flash memory address.

FSIARL

		R/W Initial			
Bit	Bit Name		EC	Host	Description
7 to 0	bit 7 to bit 0	All 0	R		These bits store bits [7:0] of the SPI flash memory address.

21.3.21 FSI Write Data Registers HH, HL, LH, and LL (FSIWDRHH, FSIWDRHL, FSIWDRLH, and FSIWDRLL)

FSIWDR stores data to be written to the SPI flash memory. If the host address matches FSIHBAR during an LPC/FW memory write cycle, the FSIWDR value will be updated. FSIHBAR value is not updated by command access.

FSIWDRHH

		Initial	R/W		
Bit	Bit Name	Value	EC	Host	Description
7 to 0	bit 31 to bit 24	All 0	R	_	These bits store bits [31:24] of the SPI flash memory write data

FSIWDRHL

	R/W Initial		R/W		
Bit	Bit Name	Value	EC Host		Description
7 to 0	bit 23 to bit 16	All 0	R	_	These bits store bits [23:16] of the SPI flash memory write data.

FSIWDRLH

		Initial	R/W		
Bit	Bit Name	Value	EC	Host	Description
7 to 0	bit 15 to bit 8	All 0	R	_	These bits store bits [15:8] of the SPI flash memory write data.

FSIWDRLL

		Initial	R/W EC Host		
Bit	Bit Name				Description
7 to 0	bit 7 to bit 0	All 0	R	_	These bits store bits [7:0] of the SPI flash memory write data.

21.4 Operation

21.4.1 LPC/FW Memory Cycles

In LPC/FW memory read and write cycles, data is transferred using LAD3 to LAD0 synchronously with LCLK. The order of data transfer is shown in table 21.4. In a cycle returning synchronization signal from the slave, the slave usually returns B'1010 to notify the host of error occurrence; while the FSI in this LSI always returns B'0000 (Ready) or B'0110 (Long wait).

The FSI becomes busy if the received address matches an address in the host accessible range set in the registers (FSIHBARH, FSIHBARL, FSISR, and CMDHBAR), and outputs a turn-around signal to return to the idle state.

Table 21.4 LPC Memory Read/Write Cycles

State	LPC	Memory Rea	ad Cycles	LPC Memory Write Cycles			
	Content	Driven by	Value (3 to 0)	Content	Driven by	Value (3 to 0)	
1	Start	Host	0000	Start	Host	0000	
2	Cycle type/ direction	Host	0100	Cycle type/ direction	Host	0110	
3	Address 1	Host	bit 31 to bit 28	Address 1	Host	bit 31 to bit 28	
4	Address 2	Host	bit 27 to bit 24	Address 2	Host	bit 27 to bit 24	
5	Address 3	Host	bit 23 to bit 20	Address 3	Host	bit 23 to bit 20	
6	Address 4	Host	bit 19 to bit 16	Address 4	Host	bit 19 to bit 16	
7	Address 5	Host	bit 15 to bit 12	Address 5	Host	bit 15 to bit 12	
8	Address 6	Host	bit 11 to bit 8	Address 6	Host	bit 11 to bit 8	
9	Address 7	Host	bit 7 to bit 4	Address 7	Host	bit 7 to bit 4	
10	Address 8	Host	bit 3 to bit 0	Address 8	Host	bit 3 to bit 0	
11	Turn-around (recovery)	Host	1111	Data 1	Host	bit 3 to bit 0	
12	Turn-around	None	ZZZZ	Data 2	Host	bit 7 to bit 4	
13	Wait*	Slave	0110	Turn-around (recovery)	Host	1111	

State	LPC	Memory Re	ad Cycles	LPC Memory Write Cycles			
Counts	Content	Driven by	Value (3 to 0)	Content	Driven by	Value (3 to 0)	
14	Synchronization	Slave	0000	Turn-around	None	ZZZZ	
15	Data 1	Slave	bit 3 to bit 0	Wait*	Slave	0110	
16	Data 2	Slave	bit 7 to bit 4	Synchronization	Slave	0000	
17	Turn-around (recovery)	Slave	1111	Turn-around (recovery)	Slave	1111	
18	Turn-around	None	ZZZZ	Turn-around	None	ZZZZ	

Note: * The number of wait cycles depends on the system.

Table 21.5 FW Memory Read/Write Cycles (Byte Transfer)

State	FW N	Memory Read	d Cycles	FW Memory Write Cycles			
Counts	Content	Driven by	Value (3 to 0)	Content	Driven by	Value (3 to 0)	
1	Start	Host	1101	Start	Host	1110	
2	Device select	Host	ID3 to ID0	Device select	Host	ID3 to ID0	
3	Address 1	Host	bit 27 to bit 24	Address 1	Host	bit 27 to bit 24	
4	Address 2	Host	bit 23 to bit 20	Address 2	Host	bit 23 to bit 20	
5	Address 3	Host	bit 19 to bit 16	Address 3	Host	bit 19 to bit 16	
6	Address 4	Host	bit 15 to bit 12	Address 4	Host	bit 15 to bit 12	
7	Address 5	Host	bit 11 to bit 8	Address 5	Host	bit 11 to bit 8	
8	Address 6	Host	bit 7 to bit 4	Address 6	Host	bit 7 to bit 4	
9	Address 7	Host	bit 3 to bit 0	Address 7	Host	bit 3 to bit 0	
10	Size	Host	0000	Size	Host	0000	
11	Turn-around (recovery)	Host	1111	Data 1	Host	bit 3 to bit 0	
12	Turn-around	None	ZZZZ	Data 2	Host	bit 7 to bit 4	
13	Wait*	Slave	0110	Turn-around (recovery)	Host	1111	
14	Synchronization	Slave	0000	Turn-around	None	ZZZZ	
15	Data 1	Slave	bit 3 to bit 0	Wait*	Slave	0110	
16	Data 2	Slave	bit 7 to bit 4	Synchronization	Slave	0000	

State Counts	FW Memory Read Cycles			FW Memory Write Cycles		
	Content	Driven by	Value (3 to 0)	Content	Driven by	Value (3 to 0)
17	Turn-around (recovery)	Slave	1111	Turn-around (recovery)	Slave	1111
18	Turn-around	None	ZZZZ	Turn-around	None	ZZZZ

The number of wait cycles depends on the system clock. Note:

The FSI supports byte, word, and longword transfers of FW memory read and write cycles. In word transfer, the least address bit is fixed to B'0; while in longword transfer, the lower 2 bits are fixed to B'00.

SPI Flash Memory Transfer 21.4.2

The SPI flash memory transfer is performed using FSIDO and FSIDI synchronously with FSICK. The initial value of FSICK can be either fixed to high or low through programming.

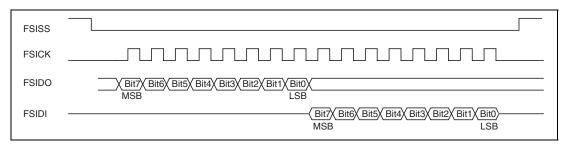


Figure 21.2 Example of SPI Flash Memory Transfer

21.4.3 Flash Memory Instructions

Table 21.6 lists the flash memory instructions (INS).

Table 21.6 List of Instructions (INS)

Instruction Name	Description			
WREN	Sets write-enable			
WRDI	Resets write-enable			
RDSR	Reads status register			
WRSR	Writes status register			
READ	Reads SPI flash memory			
Fast-Read	Fast-reads SPI flash memory			
Byte-Program	Byte-programs SPI flash memory			
Page-Program	Page-programs SPI flash memory			
AAI-Program	Address auto increment program			
Sector-Erase	Sector erasure			
Block-Erase	Block erasure			
Chip/Bulk-Erase	Chip/bulk erasure			
RDID	Reads manufacturing ID and product ID			
EWSR	Enables status register write			
DP (DEEP POWER DOWN)	Deep power-down			
RES	Releases deep power-down			

21.4.4 FSI Memory Cycle (Direct Transfer between LPC and SPI)

The FSI supports direct transfer between the host and SPI flash memory. If the host address input in an LPC/FW memory write cycle matches the host address set in FSIHBARH, FSIHBARL, or FSISR, the FSI memory cycle starts. In an LPC/FW memory write cycle, the FSI supports three types of instructions: Byte/Page-Program instructions and AAI-Program instruction. In an LPC/FW memory read cycle, the FSI supports two types of instructions: Read instruction and Fast-Read instruction. In the case that LPC-SPI direct transfer is selected in Byte-Program, Page-Program, or AAI-Program instruction execution, set FLDCT of SLCR to 1. The FSI reads the data with LPC-SPI direct transfer regardless of the status of FLDCT in Read and Fast-Read instruction execution.

(1) FSI Address Conversion

The host address can be converted into the SPI flash memory address by setting FSIHBARH, FSIHBARL, and FSISR. The host address space ranges from H'0000_0000 to H'FFFF_FFFF. The SPI flash memory address space ranges from H'00_0000 to H'FF_FFFF. Figure 21.3 shows an example of the FSI memory address conversion.

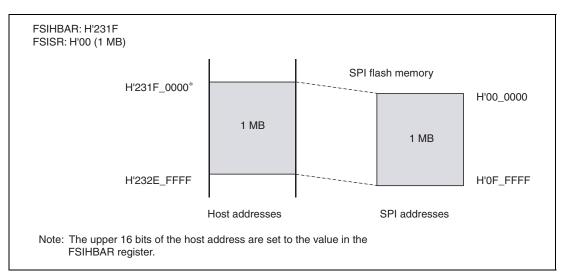


Figure 21.3 FSI Address Conversion Example

As shown in figure 21.3, if an address ranging from H'231F_0000 to H'232E_FFFF is accessed in an LPC/FW memory write cycle, the SPI flash memory is accessed. If a host address to be input is out of the determined range, Sync will not be returned. During an SPI flash memory access, a long wait cycle will be inserted to the LPC bus cycle. In an LPC memory cycle, one-byte transfer is enabled. In an FW memory cycle, a byte, word, and a longword transfer are enabled.

(2) Byte/Page-Program Instruction

If an LPC/FW memory write cycle occurs while the AAIE bit in FSICR1 and the FSIDMYE bit in FSILSTR1 are cleared to 0, and the FLDCT bit in SLCR and the FLWAIT bit in SLCR are set to 1, the SPI flash memory address and write data are stored in FSIAR and FSIWDR, respectively. Then, the SPI flash memory address, the write data, and the Byte/Page-Program instruction which is stored in FSIPPINS in advance are transferred to FSITDR. After SYNC (long wait) has been returned, the TE bit in FSICR2 is set, starting the Byte/Page-Program instruction execution. When the transmission has been completed, SYNC (Ready) and TAR are returned to the host. To execute the Byte-Program instruction, byte transfer access in an LPC memory write cycle or FW memory write cycle should be performed. Figure 21.4 shows an example of data transfer to FSITDR. Figure 21.5 shows the Page-Program instruction execution timing.

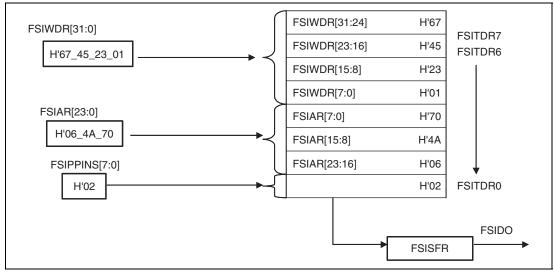


Figure 21.4 Data Transfer to FSITDR (Example)

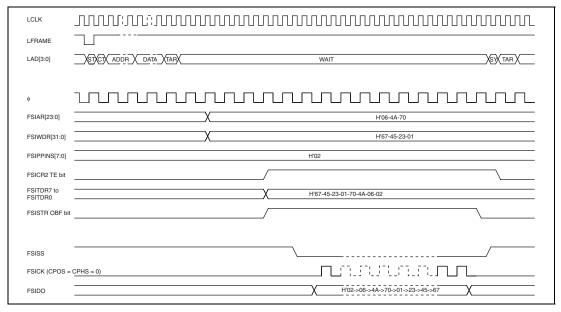


Figure 21.5 Page-Program Instruction Execution Timing

(3) AAI-Program Instruction

If an LPC/FW memory write cycle occurs while the AAIE bit in FSICR1 is set to 1 and the FSIDMYE bit in FSILSTR1 is cleared to 0, and the FLDCT bit in SLCR and the FLWAIT bit in SLCR are set to 1, the flash memory address and write data are stored in FSIAR and FSIWDR, respectively. Then, the flash memory address, write data, and the AAI-Program instruction which is stored in FSI hardware in advance are transferred to FSITDR. After SYNC (long wait) has been returned, the transmit enable signal TE is set, and AAI-Program instruction execution starts. In the first byte, the instruction, address, and data in this order are transmitted to the SPI flash memory. In the second and the following bytes, an instruction and data in this order are transmitted to the SPI flash memory. When the transmission has been completed, SYNC (Ready) and TAR are returned to the host. In the case of access through word or longword transfer in an FW memory write cycle, the AAI-Program instruction is executed in two-byte or four-byte units, respectively. To return to the AAI-Program instruction (first byte), clear the AAIE bit once or perform initialization of the FSI internal sequencer in SRES of FSICR1. Figures 21.6 and 21.7 show AAI-Program execution timings.

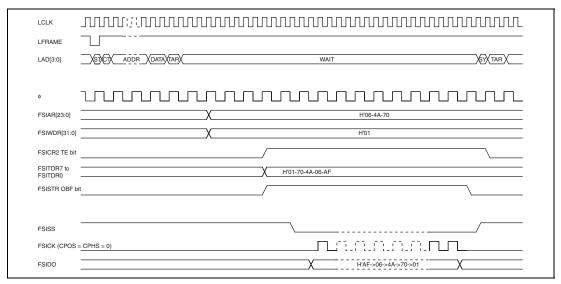


Figure 21.6 AAI-Program Instruction Execution Timing (First Byte)

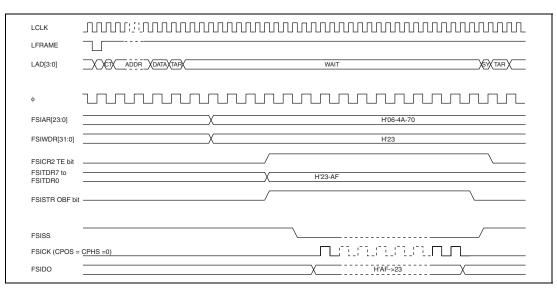


Figure 21.7 AAI-Program Instruction Execution Timing (Second and Following Bytes)

(4) Read Instructions

If an LPC/FW memory read cycle occurs while the FRDE bit in FSICR1 is cleared to 0, the SPI flash memory address is stored in FSIAR. Then, the SPI flash memory address and the instruction which is stored in FSIRDINS in advance are transferred to FSITDR. After SYNC (long wait) has been returned, the RE bit in FSICR2 is set, and Read instruction execution starts. The read data is then received and stored in FSIRDR. When the reception has been completed, SYNC (Ready), read data, and TAR are returned to the host. Figure 21.8 shows an example of data transfer to FSIRDR. Figure 21.9 shows the Read instruction execution timing.

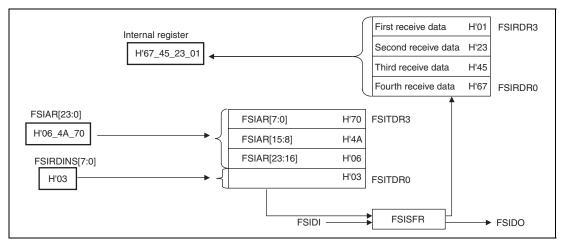


Figure 21.8 Data Transfer to FSIRDR (Example)

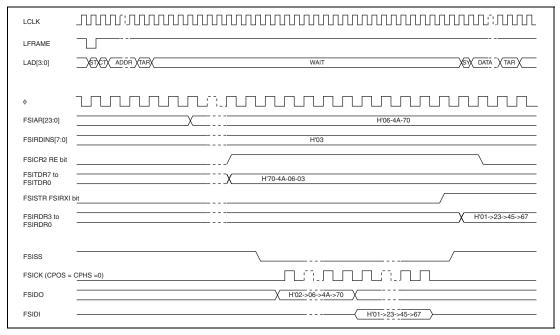


Figure 21.9 Read Instruction Execution Timing

Fast-Read Instruction (5)

If an LPC/FW memory read cycle occurs while the FRDE bit in FSICR1 is set to 1, the host address is stored in FSIAR. Then, the SPI flash memory address and the instruction which is stored in FSIRDINS in advance are transferred to FSITDR. After SYNC (long wait) has been returned, the RE bit in FSICR2 is set, and Fast-Read instruction execution starts. The read data is then received and stored in FSIRDR. When the reception has been completed, SYNC (Ready), read data, and TAR are returned to the host. Figure 21.10 shows the Fast-Read Instruction Execution Timing.

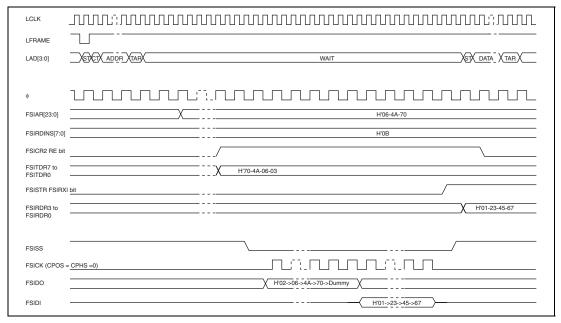


Figure 21.10 Fast-Read Instruction Execution Timing

(6) Direct Block Transfer

In direct block transfer, the equivalent of several Byte-Program instructions is combined in one unit, and the given number of bytes is transferred to the SPI flash memory. This FSI can handle the writing of up to four bytes as a unit according to the setting of the BTTRG1 and BTTRG0 bits in SLCR. This kind of transfer can be used to reduce the number of transfer operations to the SPI flash memory and shorten the time for writing.

If direct block transfer is to be used, ensure that the FLDCT bit in SLCR is set to 1.

(a) Byte-Program Instruction

The LPC host should confirm that the LFBUSY and BBUSY bits in FSILSTR1 are clear (0) before executing a Byte-Program instruction. The FSI should set the BBUSY bit to 1 once the address in SPI flash memory address has been stored in FSIAR and the byte to be written has been stored in FSIWDRLL.

Bytes for second and subsequent Byte-Program instructions are sequentially stored in FSIWDRLH, FSIWDRHL, and FSIWDRHH, in that order, and the FSIAR value is retained.

When the number of bytes specified by the BTTRG1 and BTTRG0 bits has been stored in FSIWDR, the FSI clears the BBUSY bit, activates direct transfer between the LPC and SPI, and then starts transfer to the SPI flash memory.

The LPC host should confirm the completion of transfer by canceling long wait cycles for the LPC bus when FLWAIT = 1, and clearing the LFBUSY flag when FLWAIT = 0.

(b) AAI-Program Instruction

The AAI-Program instruction also supports direct block transfer. The transfer operation is the same as for Byte-Program instructions, except that renewal of the SPI flash memory address is omitted in second and subsequent transfers.

(c) States of Flags during Direct Block Transfer

Table 21.7 lists the states of flags during direct block transfer.

Table 21.7 States of Flags during Direct Block Transfer

	LFBUSY	BBUSY	FSIDWBUSY	FSIDRBUSY
Idle state	0	0	0	0
During buffering	0	1	0	0
During direct transfer between LPC and SPI	1	0	1	0

Reading the Byte-Program instruction, AAI_Program instruction, FSILSTR1, and FSILSTR2 is only enabled during buffering or direct transfer between the LPC and SPI.

Make sure to execute other instructions while the FSI is idle.

21.4.5 FSI Memory Cycle (LPC-SPI Command Transfer)

The FSI supports WREN, WRDI, EWSR, Chip/Bulk-Erase, WRSR, and RDSR instructions by direct command transfer and the others by command transfer.

(1) FSI Command Space

A specific host address space can be used as FSI command space according to the CMDHBAR settings. Figure 21.11 shows an example of FSI command space settings.

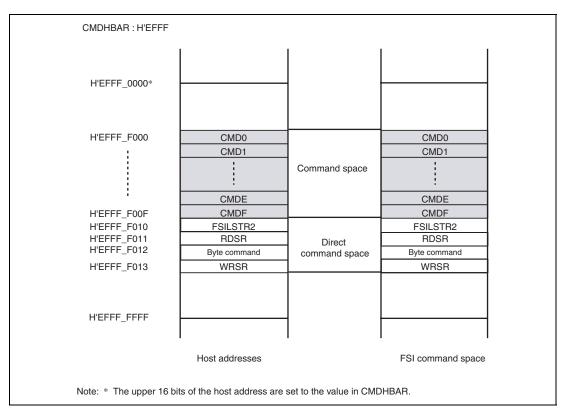


Figure 21.11 FSI Command Space Settings (Example)

As shown in figure 21.11, host addresses from H'EFFF_F000 to H'EFFF_F00F are used as the command space while CMDHBAR is set to H'EFFF. Host addresses from H'EFFF_F010 to H'EFFF_F013 are used as the direct command space. Address H'EFFF_F010 is used for FSILSTR2, address H'EFFF_F011 is used for the RDSR instruction, address H'EFFF_F012 is used for byte commands (WREN, WRDI, EWSR, and Chip/Bulk-Erase instructions), and address H'EFFF_F013 is used for the WRSR instruction.

(2) Direct Command Transfer

Two modes of operation are supported for direct command transfer. The mode is determined by the setting of the FLWAIT bit in SLCR. To use direct command transfer, set the DCE bit in SLCR to 1.

Table 21.8 Operating Mode in Direct Command Transfer

Operating Mode	FLWAIT	Description
Mode 1	0	During direct command transfer, no long wait is inserted to the LPC bus. The LPC host should poll the LFBUSY bit in FSILSTR1 to confirm whether or not a direct command transfer has been completed.
Mode 2	1	During direct command transfer, a long wait is inserted on the LPC bus. The long wait can be canceled by clearing the LFBUSY bit in FSILSTR1 (automatic clearing by hardware).

(a) Direct Command Transfer of Byte Commands (WREN, WRDI, EWSR, and Chip/Bulk-Erase Instructions)

When the address for byte commands is accessed in an LPC/FW memory write cycle (byte transfer) while the DCE bit in SLCR is set to 1, the LFBUSY bit in FSILSTR1 is set to 1 and transfer of the instruction alone to SPI flash memory is started with the LPC write data as the instruction.

When the FLWAIT bit in SLCR is 0, no long wait is inserted on the LPC bus. The LPC host should read FSILSTR1 and detect the completion of command transfer by confirming that the LFBUSY bit has been cleared. Do not attempt to read data from registers other than FSILSTR1 and FSILSTR2 while LFBUSY = 1.

If long waits were being inserted on the LPC bus (the FLWAIT bit in SLCR was 1) and this is canceled during the wait cycle, command transfer is completed.

(b) Direct Command Transfer of WRSR Instructions

When the address for WRSR instructions is accessed in an LPC/FW memory write cycle (byte transfer) while the DCE bit in SLCR is set to 1, the LFBUSY bit in FSILSTR1 is set to 1 and single-byte write transfer to the SPI flash memory is started with WRSRINS as the instruction and the LPC write data as the data.

When the FLWAIT bit in SLCR is 0, no long wait is inserted on the LPC bus. The LPC host should read FSILSTR1 and detect the completion of command transfer by confirming that the LFBUSY bit has been cleared. Do not attempt to read data from registers other than FSILSTR1 and FSILSTR2 while LFBUSY = 1.

If long waits were being inserted on the LPC bus (the FLWAIT bit in SLCR was 1) and this is canceled during the wait cycle, command transfer is completed.

(c) Direct Command Transfer of RDSR Instruction

When the address for RDSR instructions is accessed in an LPC/FW memory read cycle (byte transfer) while the DCE bit in SLCR is set to 1, the LFBUSY bit in FSILSTR1 is set to 1 and single-byte read transfer from the SPI flash memory is started with RDSRINS as the instruction.

When the FLWAIT bit in SLCR is 0, no long wait is inserted on the LPC bus. The LPC host should read FSILSTR1 and detect the completion of command transfer by confirming that the LFBUSY bit has been cleared. Do not attempt to read data from registers other than FSILSTR1 and FSILSTR2 while LFBUSY = 1. LPC read data in response to the first RDSR instruction is dummy data. After transfer of the first command, the SPI flash memory status can be read by a second RDSR instruction. The second RDSR instruction does not start read transfer from the SPI flash memory.

If long waits were being inserted on the LPC bus (the FLWAIT bit in SLCR was 1) and this is canceled during the wait cycle, command transfer is completed. The LPC read data after cancellation of long wait cycles indicates the SPI flash memory status.

(d) States of Flags during Direct Command Transfer

Table 21.9 lists the states of flags during direct command transfer.

Table 21.9 States of Flags during Direct Command Transfer

States of Flags during Transfer

Direct Command Name	LFBUSY	SRDCBUS	Y DCBUSY	FSIDWBUSY	FSIDRBUSY
Byte commands (WREN, WRDI, EWSR, Chip/Bulk-Erase)	1	0	1	1	0
RDSR	1	1	1	0	1
WRSR	1	1	1	1	0

(3) FSI Command Write

If an LPC/FW memory write cycle for the FSI command space occurs, the FSI performs the FSI-FLASH command write operation. Figure 21.12 shows an example of FSI Command write operation.



Figure 21.12 FSI Command Write Operation (Example)

As shown in figure 21.12, if a host address ranging from H'EFFF_F000 to H'EFFF_F00F is accessed in an LPC/FW memory write cycle while CMDHBAR is set to H'EFFF, the write data is stored in FSICMDR, and then the CMDBUSY and FSICMDI flags in FSILSTR1 are set to 1. In this case, an interrupt is requested according to the FSICMDIE state. Sync is not returned if the host address to be input is out of the determined range. In FSI command write, no wait cycle will be inserted to the LPC bus cycle. If the CMDBUSY flag is set to 1, Sync is not returned during the operations other than FSI command read.

(4) FSI Command Read

Figure 21.13 shows an example of FSI command read.

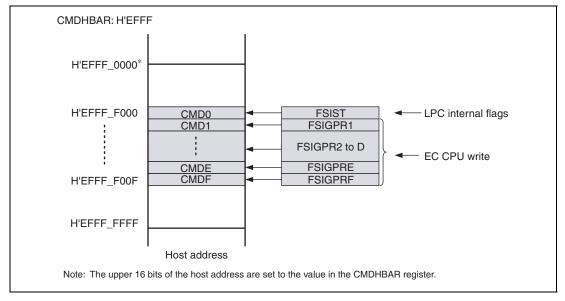


Figure 21.13 FSI Command Read (Example)

As shown in figure 21.13, if a host address ranging from H'EFFF_F000 to H'EFFF_F00F is accessed in an LPC/FW memory read cycle while CMDHBAR is set to H'EFFF, the FSILSTR1 or data in FSIGPR1 to FSIGPRF is returned. Sync is not returned if the host address to be input is out of the determined range. In FSI command read, no wait cycle will be inserted to the LPC bus cycle. Before reading the FSIGPR, ensure that the CMDBUSY bit in FSILSTR1 has been cleared to 0.

(5) FSI Dummy Write

Figure 21.14 shows an example of FSI dummy write.

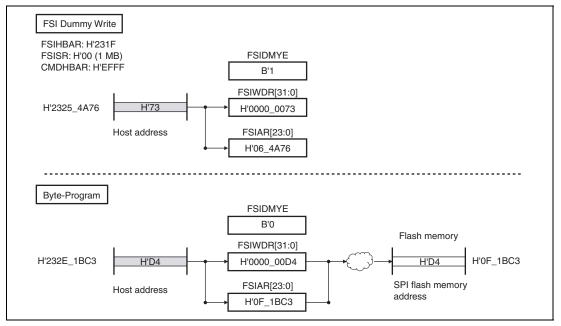


Figure 21.14 FSI Dummy Write (Example)

As shown in figure 21.14, if an LPC/FW memory write cycle occurs while the FSIDMYE bit in FSILSTR1 is 1, the FSI does not access the SPI flash memory but stores the SPI flash memory address and write data in FSIAR and FSIWDR, respectively.

(6) FSI Command Usage Example 1 (SPI Flash Memory Erasure)

The FSI commands enable the execution of several instructions for the SPI flash memory. Figure 21.15 shows an example of executing the SPI flash memory erasure instruction.

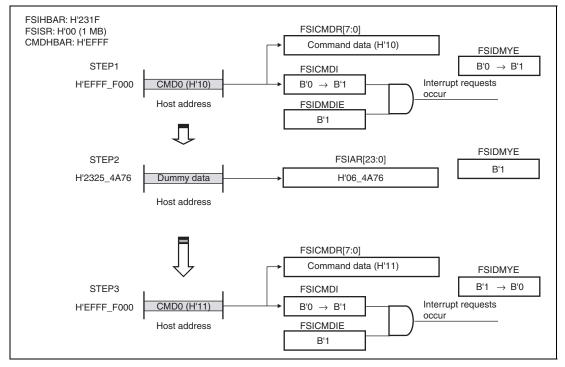


Figure 21.15 SPI Flash Memory Erasure (Example)

In flash memory erasure, the SPI flash memory address is stored in FSIAR and an erasure instruction for the SPI flash memory is executed by an SPI command. The flash memory address storage in FSIAR is performed by writing data to the sector or block address to be erased via the host. To distinguish the SPI flash memory erasure from the SPI flash memory programming, the erasure is performed in the following sequence using the FSIDMYE.

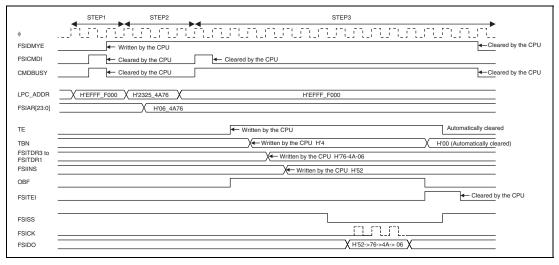


Figure 21.16 Execution Timing of SPI Flash Memory Erasure

Step 1:

- 1. Write an erasure setting command (Host).
- 2. Generate an FSICMDI interrupt request.
- 3. Set the FSIDMYE bit in FSILSTR1 to 1 and clear the FSICMDI and CMDBUSY bits in FSILSTR1 to 0.
- 4. Complete the interrupt processing.
- 5. Check that the FSIDMYE bit in FSILSTR1 is set to 1 and that the CMDBUSY and FSICMDI bits in FSILSTR1 are cleared to 0 (Host).

Step 2:

- 1. Perform a dummy write to the sector or block address to be erased (Host).
- 2. Store the SPI flash memory address and write data in FSIAR and FSIWDR, respectively*.

Note: * Use the data stored in FSIWDR if necessary on the user side.

Step 3:

- 1. Write an erasure setting command (Host).
- 2. Generate an FSICMDI interrupt request.
- 3. Clear the FSICMDI bit in FSILSTR1 to 0.
- 4. Execute the SPI flash memory erasure instruction.

- Set the TE bit in FSICR2 to 1.
- Set the TBN bit in FSIBNR to 4-byte transfer.
- Write the FSI address stored in FSIAR to FSITDR1 to FSITDR3.
- Write the erasure instruction to FSIINS (start the SPI flash memory erasure instruction execution).
- 5. Complete the interrupt processing.
- 6. Generate an FSITEI interrupt request.
- 7. Clear the FSIDMYE and CMDBUSY bits in FSILSTR1 to 0.
- 8. Complete the interrupt processing.
- 9. Check that the FSIDMYE, CMDBUSY, and FSICMDI bits in FSILSTR1 are cleared to 0 (Host).

(7) FSI Command Usage Example 2 (SPI Flash Memory Status Read)

Figure 21.17 shows an example of the execution timing of the SPI flash memory status read instruction.

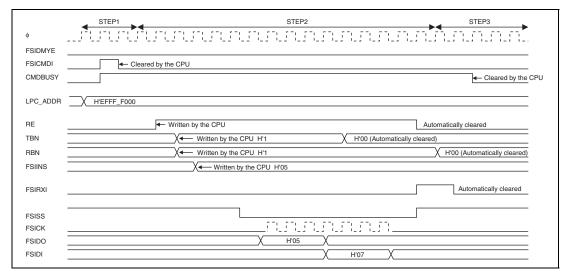


Figure 21.17 Execution Timing of SPI Flash Memory Status Read Instruction

The SPI flash memory status read instruction is executed in the following sequence.

Step 1:

- 1. Write a status read setting command (Host).
- 2. Generate an FSICMDI interrupt request.
- 3. Clear the FSICMDI bit in FSILSTR1 to 0.
- 4. Check that the CMDBUSY bit in FSILSTR1 is set to 1 and that the FSICMDI bit in FSILSTR1 is cleared to 0 (Host).

Step 2:

- 1. Perform the SPI flash memory status read instruction.
 - Set the RE bit in FSICR2 to 1.
 - Set the TBN bit in FSIBNR to 1-byte transfer and set the RBN bit in FSIBNR to 1-byte reception.
 - Write the status read instruction to FSIINS (start the SPI flash memory status read instruction execution).
- 2. Complete the interrupt processing.

Step 3:

- 1. Generate an FSIRXI interrupt request.
- 2. Write read data stored in FSIRDR to SPIGPR.
- 3. Clear the CMDBUSY bit in FSILSTR1 to 0.
- 4. Complete the interrupt processing
- 5. Check that the CMDBUSY and FSICMDI bits in FSILSTR1 are cleared to 0 (Host).
- 6. Read the SPI flash memory status from FSIGPR (Host).

(8) SPI Flash Memory Write Operation Mode

The write operation to the SPI flash memory in LPC/FW memory write cycles can be classified into the following four operation modes, depending on the state of FLDCT and FLWAIT.

Table 21.10 SPI Flash Memory Write Operation in LPC/FW Memory Write Cycles

Operation Mode	FLDCT	FLWAIT	Selected Register	Operation
Mode 1	0	0	FSIWBUSY ← 1 FSIWI ← 1	Control the write operation to the SPI flash memory by the EC CPU. No wait cycle is inserted to the LPC bus. Confirm by FSIWBUSY whether or not a write transfer has been completed.
Mode 2	0	1	FSIWBUSY ← 1 FSIWI ← 1	Control the write operation to the SPI flash memory by the EC CPU. Wait cycles are inserted to the LPC bus. Provision of wait cycles can be canceled by clearing FSIWBUSY.
Mode 3	1	0	LFBUSY ← 1 (Automatically cleared)	Control the write operation to the SPI flash memory by the FSI. No wait cycle is inserted to the LPC bus. Confirm by LFBUSY whether or not a write transfer has been completed.
Mode 4	1	1	LFBUSY ← 1 (Automatically cleared)	Control the write operation to the SPI flash memory by the FSI. Wait cycles are inserted to the LPC bus. Provision of wait cycles can be canceled by clearing LFBUSY.

21.5 Reset Conditions

The FSI supports the LPC shut-down mode. The range of initialization in each mode is shown in table 21.11.

Table 21.11 Range of Initialization of FSI in Each Mode

Register Name		System Reset	LPC Reset	LPC Shutdown	LPC Abort	FSI Reset
FSIHBARH/ FSIHBARL	Bits 7 to 0	Initialized	Retained	Retained	Retained	Retained
FSISR	Bits 7 to 0	Initialized	Retained	Retained	Retained	Retained
CMDHBARH/ CMDHBARL	Bits 7 to 0	Initialized	Retained	Retained	Retained	Retained
FSICMDR	Bits 7 to 0	Initialized	Retained	Retained	Retained	Retained
FSILSTR1	Bits 7, 6, 4, and 3	Initialized	Initialized	Retained	Retained	Retained
	Bits 2 and 1	Initialized	Initialized	Retained	Retained	Initialized
	Bits 5 and 0	Initialized	Retained	Retained	Retained	Retained
FSILSTR2	Bit 7	Initialized	Retained	Retained	Retained	Retained
	Bits 6 to 3	Initialized	Initialized	Retained	Retained	Initialized
	Bits 2 to 0	Initialized	Retained	Retained	Retained	Retained
SPIGPR1 to SPIGPRF	Bits 7 to 0	Initialized	Retained	Retained	Retained	Retained
SLCR	Bits 7 to 0	Initialized	Retained	Retained	Retained	Retained
FSIARH/ FSIARM/ FSIARL	Bits 7 to 0	Initialized	Retained	Retained	Retained	Retained
FSIWDRHH/ FSIWDRHL/ FSIWDRLH/ FSIWDRLL	Bits 7 to 0	Initialized	Retained	Retained	Retained	Retained
LPC internal s	equencer	Initialized	Initialized	Initialized	Initialized	Retained

Register Name		System Reset	LPC Reset	LPC Shutdown	LPC Abort	FSI Reset
FSICR1	Bits 7 to 0	Initialized	Retained	Retained	Retained	Retained
FSICR2	Bits 7 and 6	Initialized	Retained	Retained	Retained	Initialized
	Bits 5 to 0	Initialized	Retained	Retained	Retained	Retained
FSIBNR	Bits 7 to 4	Initialized	Retained	Retained	Retained	Initialized
	Bit 3	Initialized	Retained	Retained	Retained	Retained
	Bits 2 to 0	Initialized	Retained	Retained	Retained	Initialized
FSIINS	Bits 7 to 0	Initialized	Retained	Retained	Retained	Retained
FSIRDINS	Bits 7 to 0	Initialized	Retained	Retained	Retained	Retained
FSIPPINS	Bits 7 to 0	Initialized	Retained	Retained	Retained	Retained
WRSRINS	Bits 7 to 0	Initialized	Retained	Retained	Retained	Retained
RDSRINS	Bits 7 to 0	Initialized	Retained	Retained	Retained	Retained
FSISTR	Bit 7	Initialized	Retained	Retained	Retained	Initialized
	Bits 6 and 5	Initialized	Retained	Retained	Retained	Initialized
	Bits 4 to 0	Initialized	Retained	Retained	Retained	Retained
FSITDR7 to FSITDR0	Bits 7 to 0	Initialized	Retained	Retained	Retained	Retained
FSIRDR	Bits 7 to 0	Initialized	Retained	Retained	Retained	Retained
FSI internal se	equencer	Initialized	Retained	Retained	Retained	Initialized

21.6 Interrupt Sources

The FSI has four interrupt sources for the slave (this LSI): FSITEI, FSIRXI, FSICMDI, and FSIWI. FSITEI is a transmit end interrupt when the slave executes the SPI flash memory write transfer. FSIRXI is a receive end interrupt when the slave executes the SPI flash memory read transfer. FSICMDI is a command receive interrupt in host FSI command write. FSIWI is a write receive interrupt in the case of write from the host to the SPI flash memory. Setting the corresponding interrupt enable bit to 1 enables the relevant interrupt request to be issued.

Table 21.12 FSI Interrupt Sources

Interrupt Name		Interrupt Source	Interrupt Enable Bit
FSII	FSITEI	Transmit end	FSITEIE
	FSIRXI	Receive data full	FSIRXIE
LFSII	FSICMDI	FSI command reception	FSICMDIE
	FSIWI	FSI write reception	FSIWIE

Section 22 Synchronous Serial Communication Unit (SSU)

This LSI has one channel of synchronous serial communication unit (SSU). The SSU has master mode in which this LSI outputs clocks as a master device for synchronous serial communication and slave mode in which clocks are input from an external device for synchronous serial communication. Synchronous serial communication can be performed with devices having different clock polarity and clock phase. Figure 22.1 is a block diagram of the SSU.

22.1 **Features**

- Choice of SSU mode and clock synchronous mode
- Choice of master mode and slave mode
- Choice of standard mode and bidirectional mode
- Synchronous serial communication with devices with different clock polarity and clock phase
- Choice of 8/16/24/32-bit width of transmit/receive data
- Full-duplex communication capability The shift register is incorporated, enabling transmission and reception to be executed simultaneously.
- Consecutive serial communication
- Choice of LSB-first or MSB-first transfer
- Choice of a clock source Seven internal clocks ($\phi/4$, $\phi/8$, $\phi/16$, $\phi/32$, $\phi/64$, $\phi/128$, $\phi/256$) or an external clock
- Five interrupt sources Transmit-end, transmit-data-register-empty, receive-data-full, overrun-error, and conflict error
- Module stop mode can be set

Figure 22.1 shows a block diagram of the SSU.

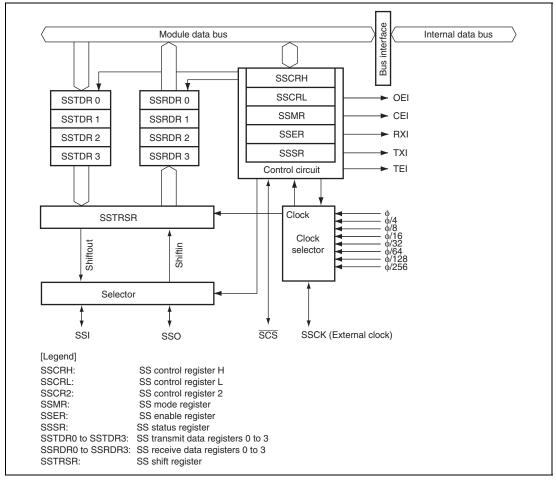


Figure 22.1 Block Diagram of SSU

22.2 Input/Output Pins

Table 22.1 shows the SSU pin configuration.

Table 22.1 Pin Configuration

Symbol	I/O	Function
SSCK	I/O	SSU clock input/output
SSI	I/O	SSU data input/output
SSO	I/O	SSU data input/output
SCS	I/O	SSU chip select input/output

Note: * Because channel numbers are omitted in later descriptions, these are shown SSCK, SSI, SSO, and SCS.

22.3 Register Descriptions

The SSU has the following registers.

- SS control register H (SSCRH)
- SS control register L (SSCRL)
- SS mode register (SSMR)
- SS enable register (SSER)
- SS status register (SSSR)
- SS control register 2 (SSCR2)
- SS transmit data register 0 (SSTDR0)
- SS transmit data register 1 (SSTDR1)
- SS transmit data register 2 (SSTDR2)
- SS transmit data register 3 (SSTDR3)
- SS receive data register 0 (SSRDR0)
- SS receive data register 1 (SSRDR1)
- SS receive data register 2 (SSRDR2)
- SS receive data register 3 (SSRDR3)
- SS shift register (SSTRSR)

22.3.1 SS Control Register H (SSCRH)

SSCRH specifies master/slave device selection, bidirectional mode enable, SSO pin output value selection, SSCK pin selection, and SCS pin selection.

	Initial		
Bit Name	Value	R/W	Description
MSS	0	R/W	Master/Slave Device Select
			Selects that this module is used in master mode or slave mode. When master mode is selected, transfer clocks are output from the SSCK pin. When the CE bit in SSSR is set, this bit is automatically cleared.
			0: Slave mode is selected.
			1: Master mode is selected.
BIDE	0	R/W	Bidirectional Mode Enable
			Selects that both serial data input pin and output pin are used or one of them is used. However, transmission and reception are not performed simultaneously when bidirectional mode is selected. For details, section 22.4.3, Relationship between Data Input/Output Pins and Shift Register.
			Standard mode (two pins are used for data input and output)
			1: Bidirectional mode (one pin is used for data input and output)
_	0	R/W	Reserved
			This bit is always read as 0. The write value should always be 0.
	MSS	Bit Name Value MSS 0 BIDE 0	Bit Name Value R/W MSS 0 R/W BIDE 0 R/W

Bit	Bit Name	Initial Value	R/W	Description
4	SOL	0	R/W	Serial Data Output Value Select
				The serial data output retains its level of the last bit after completion of transmission. The output level before or after transmission can be specified by setting this bit. When specifying the output level, use the MOV instruction after clearing the SOLP bit to 0. Since writing to this bit during data transmission causes malfunctions, this bit should not be changed.
				0: Serial data output is changed to low.
				1: Serial data output is changed to high.
3	SOLP	1	R/W	SOL Bit Write Protect
				When changing the output level of serial data, set the SOL bit to 1 or clear the SOL bit to 0 after clearing the SOLP bit to 0 using the MOV instruction.
				0: Output level can be changed by the SOL bit
				1: Output level cannot be changed by the SOL bit. This bit is always read as 1.
2	SCKS	0	R/W	SSCK Pin Select
				Selects that the SSCK pin functions as a port or a serial clock pin. When the SSCK pin is used as a serial clock pin, this bit must be set to 1.
				0: Functions as an I/O port.
				1: Functions as a serial clock.
1	CSS1	0	R/W	SCS Pin Select
0	CSS0	0	R/W	Select that the \overline{SCS} pin functions as a port or \overline{SCS} input or output. However, when MSS = 0, the \overline{SCS} pin functions as an input pin regardless of the CSS1 and CSS0 settings.
				00: I/O port
				01: Function as SCS input
				 Function as SCS automatic input/output (function as SCS input before and after transfer and output a low level during transfer)
				Function as SCS automatic output (outputs a high level before and after transfer and outputs a low level during transfer)

22.3.2 SS Control Register L (SSCRL)

SSCRL selects operating mode, software reset, and transmit/receive data length.

Bit	Bit Name	Initial Value	R/W	Description
7		0	R/W	Reserved
				This bit is always read as 0. The write value should always be 0.
6	SSUMS	0	R/W	Selects transfer mode from SSU mode and clock synchronous mode.
				0: SSU mode
				1: Clock synchronous mode
5	SRES	0	R/W	Software Reset
				Setting this bit to 1 forcibly resets the SSU internal sequencer. After that, this bit is automatically cleared. The ORER, TEND, TDRE, RDRF, and CE bits in SSSR and the TE and RE bits in SSER are also initialized. Values of other bits for SSU registers are held.
				To stop transfer, set this bit to 1 to reset the SSU internal sequencer.
4 to 2	_	All 0	R/W	Reserved
				These bits are always read as 0. The write value should always be 0.
1	DATS1	0	R/W	Transmit/Receive Data Length Select
0	DATS0	0	R/W	Select serial data length.
				00: 8 bits
				01: 16 bits
				10: 32 bits
				11: 24 bits

22.3.3 SS Mode Register (SSMR)

SSMR selects the MSB first/LSB first, clock polarity, clock phase, and clock rate of synchronous serial communication.

Bit	Bit Name	Initial Value	R/W	Description
7	MLS	0	R/W	MSB First/LSB First Select
				Selects that the serial data is transmitted in MSB first or LSB first.
				0: LSB first
				1: MSB first
6	CPOS	0	R/W	Clock Polarity Select
				Selects the SSCK clock polarity.
				High output in idle mode, and low output in active mode
				 Low output in idle mode, and high output in active mode
5	CPHS	0	R/W	Clock Phase Select (Only for SSU Mode)
				Selects the SSCK clock phase.
				0: Data changes at the first edge.
				1: Data is latched at the first edge.
4, 3		All 0	R/W	Reserved
				These bits are always read as 0. The write value should always be 0.
2	CKS2	0	R/W	Transfer Clock Rate Select
1	CKS1	0	R/W	Select the transfer clock rate when an internal clock is
0	CKS0	0	R/W	selected.
				000: Reserved 100: φ/32
				001: φ/4 101: φ/64
				010: φ/8 110: φ/128
				011: \phi/16

22.3.4 SS Enable Register (SSER)

SSER performs transfer/receive control of synchronous serial communication and setting of interrupt enable.

Bit	Bit Name	Initial Value	R/W	Description
				·
7	TE	0	R/W	Transmit Enable
				When this bit is set to 1, transmission is enabled.
6	RE	0	R/W	Receive Enable
				When this bit is set to 1, reception is enabled.
5, 4	_	All 0	R/W	Reserved
				These bits are always read as 0. The write value should always be 0.
3	TEIE	0	R/W	Transmit End Interrupt Enable
				When this bit is set to 1, a TEI interrupt request is enabled.
2	TIE	0	R/W	Transmit Interrupt Enable
				When this bit is set to 1, a TXI interrupt request is enabled.
1	RIE	0	R/W	Receive Interrupt Enable
				When this bit is set to 1, an RXI interrupt request and an OEI interrupt request are enabled.
0	CEIE	0	R/W	Conflict Error Interrupt Enable
				When this bit is set to 1, a CEI interrupt request is enabled.

22.3.5 SS Status Register (SSSR)

SSSR is a status flag register for interrupts.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	_	0	_	Reserved
				This bit is always read as 0. The write value should always be 0.
6	ORER	0	R/W	Overrun Error
				If the next data is received while RDRF = 1, an overrun error occurs, indicating abnormal termination. SSRDR stores 1-frame receive data before an overrun error occurs and loses data to be received later. While ORER = 1, consecutive serial reception cannot be continued. Serial transmission cannot be continued, either.
				[Setting condition]
				When one byte of the next reception is completed with $RDRF = 1$
				[Clearing condition]
				When writing 0 after reading ORER = 1
				(When the CPU is used to clear this flag by writing 0 while the corresponding interrupt is enabled, be sure to read the flag after writing 0 to it.)
5, 4	_	All 0	R/W	Reserved
				These bits are always read as 0. The write value should always be 0.

Bit	Bit Name	Initial Value	R/W	Description
3	TEND	1	R	Transmit End
				[Setting condition]
				 When the last bit of transmit data is transmitted while the TENDSTS bit in SSCR2 is cleared to 0 and the TDRE bit is set to 1
				 After the last bit of transmit data is transmitted while the TENDSTS bit in SSCR2 is set to 1 and the TDRE bit is set to 1
				[Clearing conditions]
				 When writing 0 after reading TEND = 1
				(When the CPU is used to clear this flag by writing 0 while the corresponding interrupt is enabled, be sure to read the flag after writing 0 to it.)
				When writing data to SSTDR
2	TDRE	1	R/W	Transmit Data Empty
				Indicates whether or not SSTDR contains transmit data.
				[Setting conditions]
				 When the TE bit in SSER is 0
				 When data is transferred from SSTDR to SSTRSR and SSTDR is ready to be written to.
				[Clearing conditions]
				 When writing 0 after reading TDRE = 1
				(When the CPU is used to clear this flag by writing 0 while the corresponding interrupt is enabled, be sure to read the flag after writing 0 to it.)
				 When writing data to SSTDR with TE = 1
1	RDRF	0	R/W	Receive Data Register Full
				Indicates whether or not SSRDR contains receive data.
				[Setting condition]
				 When receive data is transferred from SSTRSR to SSRDR after successful serial data reception
				[Clearing conditions]
				 When writing 0 after reading RDRF = 1
				(When the CPU is used to clear this flag by writing 0 while the corresponding interrupt is enabled, be sure to read the flag after writing 0 to it.)
				When reading receive data from SSRDR

		Initial		
Bit	Bit Name	Value	R/W	Description
0	CE	0	R/W	Conflict/Incomplete Error
				Indicates that a conflict error has occurred when 0 is externally input to the \overline{SCS} pin with SSUMS = 0 (SSU mode) and MSS = 1 (master device).
				If the \overline{SCS} pin level changes to 1 with SSUMS = 0 (SSU mode) and MSS = 0 (slave device), an incomplete error occurs because it is determined that a master device has terminated the transfer. Data reception does not continue while the CE bit is set to 1. Serial transmission also does not continue. Reset the SSU internal sequencer by setting the SRES bit in SSCRL to 1 before resuming transfer after incomplete error.
				[Setting condition]
				 When a low level is input to the SCS pin in master device (the MSS bit in SSCRH is set to 1)
				• When the SCS pin is changed to 1 during transfer in slave device (the MSS bit in SSCRH is cleared to 0)
				[Clearing condition]
				 When writing 0 after reading CE = 1
				(When the CPU is used to clear this flag by writing 0 while the corresponding interrupt is enabled, be sure to read the flag after writing 0 to it.)
				(When the CPU is used to clear this flag by while the corresponding interrupt is enabled

22.3.6 SS Control Register 2 (SSCR2)

SSCR2 is a register that enables/disables the open-drain outputs of the SSO, SSI, SSCK, and \overline{SCS} pins, selects the assert timing of the \overline{SCS} pin, data output timing of the SSO pin, and set timing of the TEND bit.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	SDOS	0	R/W	Serial Data Pin Open Drain Select
				Selects whether the serial data output pin is used as a CMOS or an NMOS open drain output. Pins to output serial data differ according to the register setting. For details, 22.4.3, Relationship between Data Input/Output Pins and Shift Register.
				0: CMOS output
				1: NMOS open drain output
6	SSCKOS	0	R/W	SSCK Pin Open Drain Select
				Selects whether the SSCK pin is used as a CMOS or an NMOS open drain output.
				0: CMOS output
				1: NMOS open drain output
5	SCSOS	0	R/W	SCS Pin Open Drain Select
				Selects whether the $\overline{\text{SCS}}$ pin is used as a CMOS or an NMOS open drain output.
				0: CMOS output
				1: NMOS open drain output
4	TENDSTS	0	R/W	Selects the timing of setting the TEND bit (valid in SSU and master mode).
				Sets the TEND bit when the last bit is being transmitted
				1: Sets the TEND bit after the last bit is transmitted

Bit	Bit Name	Initial Value	R/W	Description
3	SCSATS	0	R/W	Selects the assertion timing of the \overline{SCS} pin (valid in SSU and master mode).
				0: Min. values of $\rm t_{\scriptscriptstyle LEAD}$ and $\rm t_{\scriptscriptstyle LAG}$ are 1/2 \times $\rm t_{\scriptscriptstyle SUcyc}$
				1: Min. values of $\rm t_{\scriptscriptstyle LEAD}$ and $\rm t_{\scriptscriptstyle LAG}$ are 3/2 \times $\rm t_{\scriptscriptstyle SUcyc}$
2	SSODTS	0	R/W	Selects the data output timing of the SSO pin (valid in SSU and master mode)
				0: While BIDE = 0, MSS = 1, and TE = 1 or while BIDE = 1, TE = 1, and RE = 0, the SSO pin outputs data
				1: While BIDE = 0, MSS = 1, and TE = 1 or while BIDE = 1, TE = 1, and RE = 0, the SSO pin outputs data while the SCS pin is driven low
1, 0	_	All 0	R/W	Reserved
				These bits are always read as 0. The write value should always be 0.

22.3.7 SS Transmit Data Registers 0 to 3 (SSTDR0 to SSTDR3)

SSTDR is an 8-bit register that stores transmit data. When 8-bit data length is selected by bits DATS1 and DATS0 in SSCRL, SSTDR0 is valid. When 16-bit data length is selected, SSTDR0 and SSTDR1 are valid. When 24-bit data length is selected, SSTDR0, SSTDR1, and SSTDR2 are valid. When 32-bit data length is selected, SSTDR0 to SSTDR3 are valid. Be sure not to access to invalid SSTDRs.

When the SSU detects that SSTRSR is empty, it transfers the transmit data written in SSTDR to SSTRSR and starts serial transmission. If the next transmit data has already been written to SSTDR during serial transmission, the SSU performs consecutive serial transmission.

Although SSTDR can always be read from or written to by the CPU and DMAC, to achieve reliable serial transmission, write transmit data to SSTDR after confirming that the TDRE bit in SSSR is set to 1.

Table 22.2 Correspondence Between DATS Bit Setting and SSTDR

DATS[1:0] (SSCRL[1:0])

SSTDR	00	01	10	11 (Setting Invalid)	
0	Valid	Valid	Valid	Valid	
1	Invalid	Valid	Valid	Valid	
2	Invalid	Invalid	Valid	Valid	
3	Invalid	Invalid	Valid	Invalid	

22.3.8 SS Receive Data Registers 0 to 3 (SSRDR0 to SSRDR3)

SSRDR is an 8-bit register that stores receive data. When 8-bit data length is selected by bits DATS1 and DATS0 in SSCRL, SSRDR0 is valid. When 16-bit data length is selected, SSRDR0 and SSRDR1 are valid. When 24-bit data length is selected, SSRDR0, SSRDR1, and SSRDR2 are valid. When 32-bit data length is selected, SSRDR0 to SSRDR3 are valid. Be sure not to access to invalid SSRDR.

When the SSU has received 1-byte data, it transfers the received serial data from SSTRSR to SSRDR where it is stored. After this, SSTRSR is ready for reception. Since SSTRSR and SSRDR function as a double buffer in this way, consecutive receive operations can be performed.

Read SSRDR after confirming that the RDRF bit in SSSR is set to 1.

SSRDR is a read-only register, therefore, cannot be written to by the CPU.

Table 22.3 Correspondence Between DATS Bit Setting and SSRDR

	BATO[T.0] (GCOTIL[T.0])						
SSRDR	00	01	10	11 (Setting Invalid)			
0	Valid	Valid	Valid	Valid			
1	Invalid	Valid	Valid	Valid			
2	Invalid	Invalid	Valid	Valid			
3	Invalid	Invalid	Valid	Invalid			

DATS[1:0] (SSCRI [1:0])

22.3.9 SS Shift Register (SSTRSR)

SSTRSR is a shift register that transmits and receives serial data.

When data is transferred from SSTDR to SSTRSR, bit 0 of transmit data is bit 0 in the SSTDR contents (MLS = 0: LSB first communication) and is bit 7 in the SSTDR contents (MLS = 1: MSB first communication). The SSU transfers data from the LSB (bit 0) in SSTRSR to the SSO pin to perform serial data transmission.

In reception, the SSU sets serial data that has been input via the SSI pin in SSTRSR from the LSB (bit 0). When 1-byte data has been received, the SSTRSR contents are automatically transferred to SSRDR. SSTRSR cannot be directly accessed by the CPU.

22.4 Operation

22.4.1 Transfer Clock

A transfer clock can be selected from eight internal clocks and an external clock. When using this module, set the SCKS bit in SSCRH to 1 to select the SSCK pin as a serial clock. When the MSS bit in SSCRH is 1, an internal clock is selected and the SSCK pin is used as an output pin. When transfer is started, the clock with the transfer rate set by bits CKS2 to CKS0 in SSMR is output from the SSCK pin. When MSS = 0, an external clock is selected and the SSCK pin is used as an input pin.

22.4.2 Relationship of Clock Phase, Polarity, and Data

The relationship of clock phase, polarity, and transfer data depends on the combination of the CPOS and CPHS bits in SSMR. Figure 22.2 shows the relationship. When SSUMS = 1, the CPHS setting is invalid although the CPOS setting is valid.

Setting the MLS bit in SSMR selects that MSB or LSB first communication. When MLS = 0, data is transferred from the LSB to the MSB. When MLS = 1, data is transferred from the MSB to the LSB.

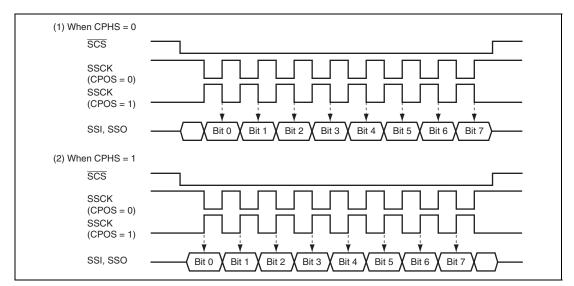


Figure 22.2 Relationship of Clock Phase, Polarity, and Data

22.4.3 Relationship between Data Input/Output Pins and Shift Register

The connection between data input/output pins and the SS shift register (SSTRSR) depends on the combination of the MSS and BIDE bits in SSCRH and the SSUMS bit in SSCRL. Figure 22.3 shows the relationship.

The SSU transmits serial data from the SSO pin and receives serial data from the SSI pin when operating with BIDE = 0 and MSS = 1 (standard, master mode) (see figure 22.3 (1)). The SSU transmits serial data from the SSI pin and receives serial data from the SSO pin when operating with BIDE = 0 and MSS = 0 (standard, slave mode) (see figure 22.3 (2)).

The SSU transmits and receives serial data from the SSO pin regardless of master or slave mode when operating with BIDE = 1 (bidirectional mode) (see figures 22.3 (3) and (4)).

However, even if both the TE and RE bits are set to 1, transmission and reception are not performed simultaneously. Either the TE or RE bit must be selected.

The SSU transmits serial data from the SSO pin and receives serial data from the SSI pin when operating with SSUMS = 1. The SSCK pin outputs the internal clock when MSS = 1 and function as an input pin when MSS = 0 (see figures 22.3 (5) and (6)).

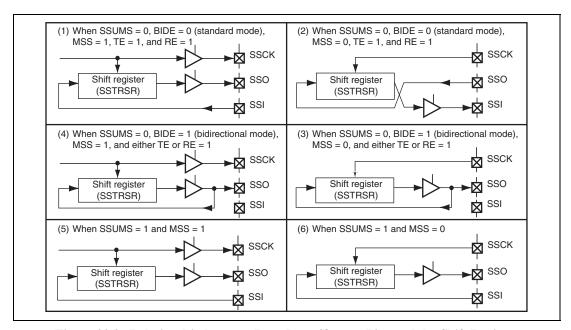


Figure 22.3 Relationship between Data Input/Output Pins and the Shift Register

22.4.4 Communication Modes and Pin Functions

The SSU switches the input/output pin (SSI, SSO, SSCK, and $\overline{\text{SCS}}$) functions according to the communication modes and register settings. When a pin is used as an input pin, set the corresponding bit in the input buffer control register (ICR) to 1. The relationship of communication modes and input/output pin functions are shown in tables 22.4 to 22.6.

Table 22.4 Communication Modes and Pin States of SSI and SSO Pins

Communication		F	Pir	Pin State			
Mode	SSUMS	BIDE	MSS	TE	RE	SSI	SSO
SSU communication	0	0	0	0	1	_	Input
mode				1	0	Output	_
					1	Output	Input
			1	0	1	Input	_
				1	0	_	Output
					1	Input	Output
SSU (bidirectional)	0	1	0	0	1	_	Input
communication mode				1	0	_	Output
			1	0	1	_	Input
				1	0	_	Output
Clock synchronous	1	0	0	0	1	Input	_
communication mode				1	0	_	Output
					1	Input	Output
			1	0	1	Input	_
				1	0		Output
					1	Input	Output

[Legend]

—: Not used as SSU pin (can be used as I/O port)

Table 22.5 Communication Modes and Pin States of SSCK Pin

Communication		Pin State		
Mode	SSUMS	MSS	SCKS	SSCK
SSU communication	0	0	0	_
mode			1	Input
		1	0	_
			1	Output
Clock synchronous	1	0	0	_
communication mode			1	Input
		1	0	_
			1	Output

[Legend]

-: Not used as SSU pin

Table 22.6 Communication Modes and Pin States of SCS Pin

Communication		Pin State			
Mode	SSUMS	MSS	CSS1	CSS0	SCS
SSU communication	0	0	Х	Х	Input
mode		1	0	0	
			0	1	Input
			1	0	Automatic input/output
			1	1	Output
Clock synchronous communication mode	1	х	х	Х	_

[Legend]

x: Don't care

-: Not used as SSU pin

22.4.5 SSU Mode

In SSU mode, data communications are performed via four lines: clock line (SSCK), data input line (SSI or SSO), data output line (SSI or SSO), and chip select line (SCS).

In addition, the SSU supports bidirectional mode in which a single pin functions as data input and data output lines.

(1) Initial Settings in SSU Mode

Figure 22.4 shows an example of the initial settings in SSU mode. Before data transfer, clear both the TE and RE bits in SSER to 0 to set the initial values.

Note: Before changing operating modes and communications formats, clear both the TE and RE bits to 0. Although clearing the TE bit to 0 sets the TDRE bit to 1, clearing the RE bit to 0 does not change the values of the RDRF and ORER bits and SSRDR. Those bits retain the previous values.

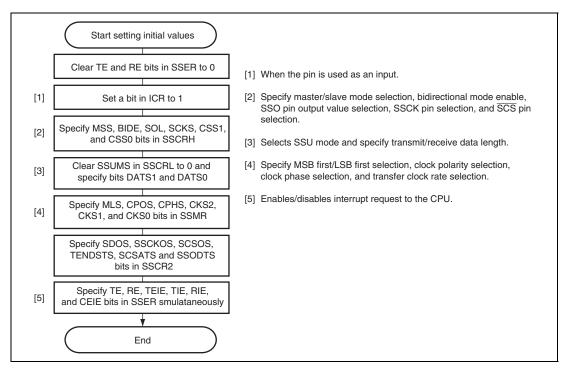


Figure 22.4 Example of Initial Settings in SSU Mode

(2) Data Transmission

Page 738 of 1054

Figure 22.5 shows an example of transmission operation, and figure 22.6 shows a flowchart example of data transmission.

When transmitting data, the SSU operates as shown below.

In master mode, the SSU outputs a transfer clock and data. In slave mode, when a low level signal is input to the \overline{SCS} pin and a transfer clock is input to the SSCK pin, the SSU outputs data in synchronization with the transfer clock.

Writing transmit data to SSTDR after the TE bit is set to 1 clears the TDRE bit in SSSR to 0, and the SSTDR contents are transferred to SSTRSR. After that, the SSU sets the TDRE bit to 1 and starts transmission. At this time, if the TIE bit in SSER is set to 1, a TXI interrupt is generated.

When 1-frame data has been transferred with TDRE = 0, the SSTDR contents are transferred to SSTRSR to start the next frame transmission. When the 8th bit of transmit data has been transferred with TDRE = 1, the TEND bit in SSSR is set to 1 and the state is retained. At this time, if the TEIE bit is set to 1, a TEI interrupt is generated. After transmission, the output level of the SSCK pin is fixed high when CPOS = 0 and low when CPOS = 1.

While the ORER bit in SSSR is set to 1, transmission is not performed. Check that the ORER bit is cleared to 0.

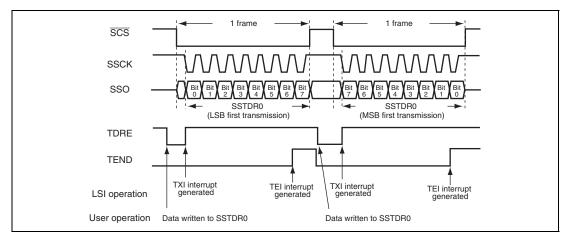


Figure 22.5 (1) Example of Transmission Operation (SSU Mode)
When 8-bit data length is selected (SSTDR0 is valid) with CPOS = 0 and CPHS = 0

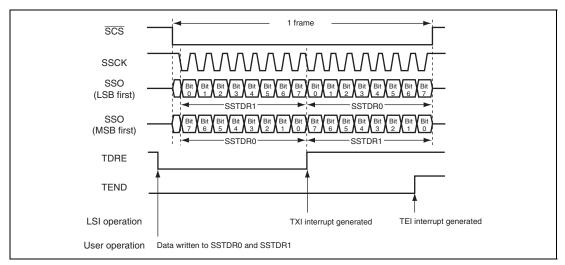


Figure 22.5 (2) Example of Transmission Operation (SSU Mode) When 16-bit data length is selected (SSTDR0 and SSTDR1 are valid) with CPOS = 0 and CPHS = 0

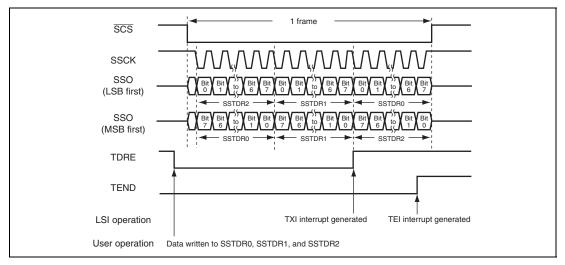


Figure 22.5 (3) Example of Transmission Operation (SSU Mode) When 24-bit data length is selected (SSTDR0, SSTDR1, and SSTDR2 are valid) with CPOS = 0 and CPHS = 0

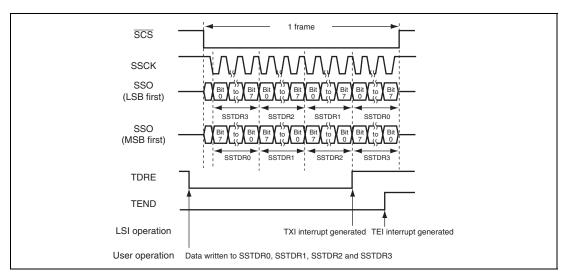


Figure 22.5 (4) Example of Transmission Operation (SSU Mode)
When 32-bit data length is selected (SSTDR0, SSTDR1, SSTDR2 and SSTDR3 are valid)
with CPOS = 0 and CPHS = 0

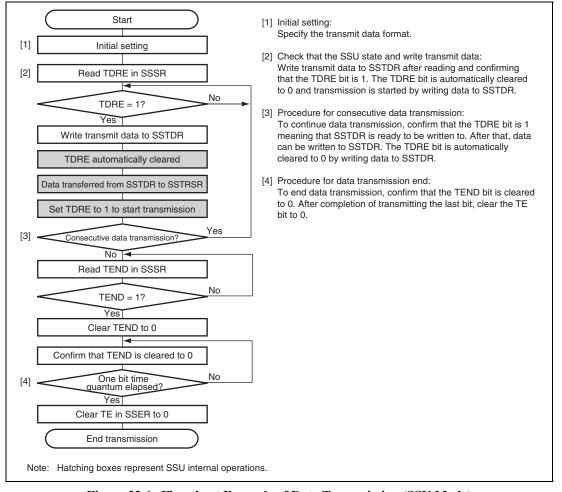


Figure 22.6 Flowchart Example of Data Transmission (SSU Mode)

(3) Data Reception

Figure 22.7 shows an example of reception operation, and figure 22.8 shows a flowchart example of data reception. When receiving data, the SSU operates as shown below.

After setting the RE bit to 1 and dummy-reading SSRDR, the SSU starts data reception.

In master mode, the SSU outputs a transfer clock and receives data. In slave mode, when a low level signal is input to the \overline{SCS} pin and a transfer clock is input to the SSCK pin, the SSU receives data in synchronization with the transfer clock.

When 1-frame data has been received, the RDRF bit in SSSR is set to 1 and the receive data is stored in SSRDR. At this time, if the RIE bit in SSER is set to 1, an RXI interrupt is generated. The RDRF bit is automatically cleared to 0 by reading SSRDR.

When the RDRF bit has been set to 1 at the 8th rising edge of the transfer clock, the ORER bit in SSSR is set to 1. This indicates that an overrun error (OEI) has occurred. At this time, data reception is stopped. While the ORER bit in SSSR is set to 1, reception is not performed. To resume the reception, clear the ORER bit to 0.

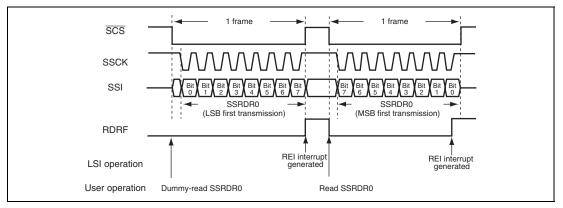


Figure 22.7 (1) Example of Reception Operation (SSU Mode)
When 8-bit data length is selected (SSRDR0 is valid) with CPOS = 0 and CPHS = 0

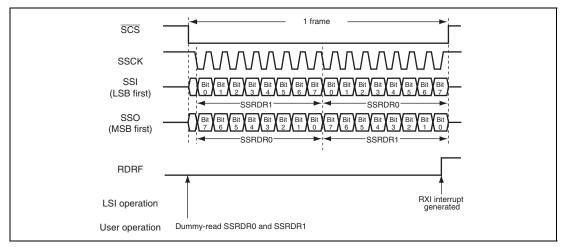


Figure 22.7 (2) Example of Reception Operation (SSU Mode) When 16-bit data length is selected (SSRDR0 and SSRDR1 are valid) with CPOS = 0 and CPHS = 0

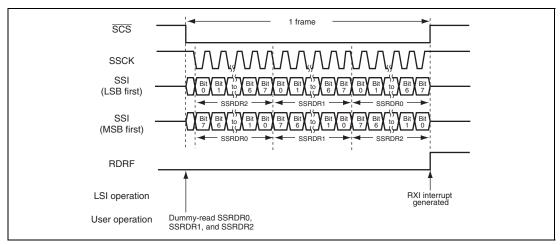


Figure 22.7 (3) Example of Reception Operation (SSU Mode) When 24-bit data length is selected (SSRDR0, SSRDR1, and SSRDR2 are valid) with CPOS = 0 and CPHS = 0

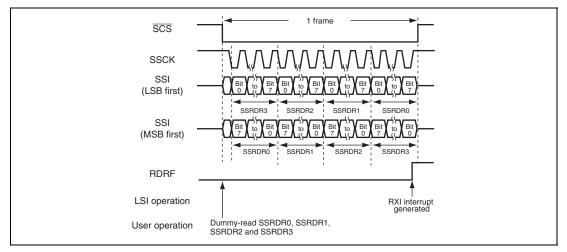


Figure 22.7 (4) Example of Reception Operation (SSU Mode)
When 32-bit data length is selected (SSRDR0, SSRDR1, SSRDR2 and SSRDR3 are valid)
with CPOS = 0 and CPHS = 0

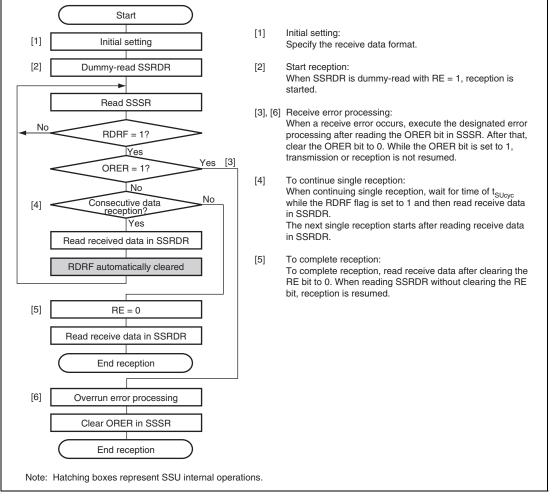


Figure 22.8 Flowchart Example of Data Reception (SSU Mode)

(4) Data Transmission/Reception

Figure 22.9 shows a flowchart example of simultaneous transmission/reception. The data transmission/reception is performed combining the data transmission and data reception as mentioned above. The data transmission/reception is started by writing transmit data to SSTDR with TE = RE = 1.

Before switching transmission mode (TE=1) or reception mode (RE=1) to transmission/reception mode (TE=RE=1), clear the TE and RE bits to 0. When starting the transfer, confirm that the TEND, RDRF, and ORER bits are cleared to 0 before setting the TE or RE bit to 1.

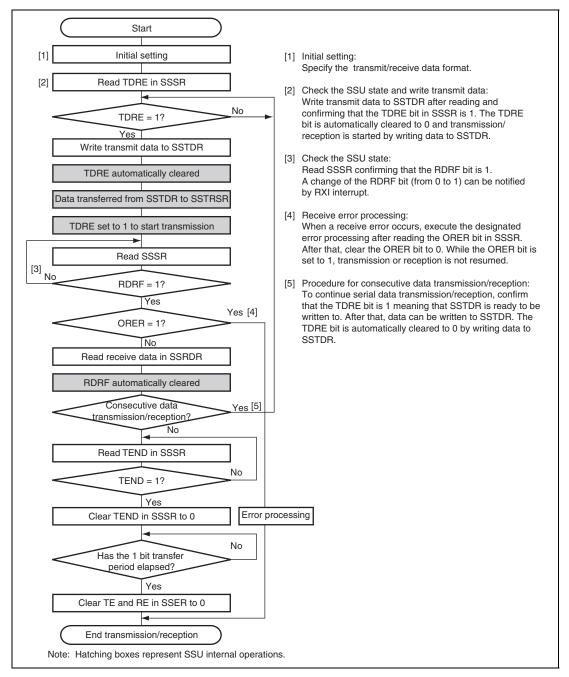


Figure 22.9 Flowchart Example of Simultaneous Transmission/Reception (SSU Mode)

22.4.6 SCS Pin Control and Conflict Error

When bits CSS1 and CSS0 in SSCRH are specified to B'10 and the SSUMS bit in SSCRL is cleared to 0, the \overline{SCS} pin functions as an input (Hi-Z) to detect conflict error. The conflict detection period is from setting the MSS bit in SSCRH to 1 to starting serial transfer and after transfer ends. When a low level signal is input to the \overline{SCS} pin within the period, a conflict error occurs. At this time, the CE bit in SSSR is set to 1 and the MSS bit is cleared to 0.

Note: While the CE bit is set to 1, transmission or reception is not resumed. Clear the CE bit to 0 before resuming the transmission or reception.

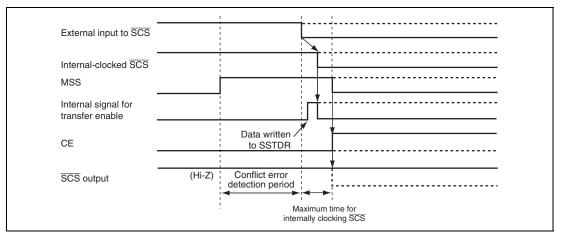


Figure 22.10 Conflict Error Detection Timing (Before Transfer)

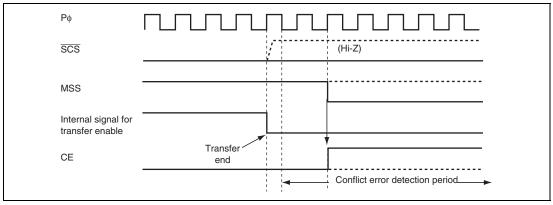


Figure 22.11 Conflict Error Detection Timing (After Transfer End)

22.4.7 Clock Synchronous Communication Mode

In clock synchronous communication mode, data communications are performed via three lines: clock line (SSCK), data input line (SSI), and data output line (SSO).

(1) Initial Settings in Clock Synchronous Communication Mode

Figure 22.12 shows an example of the initial settings in clock synchronous communication mode. Before data transfer, clear both the TE and RE bits in SSER to 0 to set the initial values.

Note: Before changing operating modes and communications formats, clear both the TE and RE bits to 0. Although clearing the TE bit to 0 sets the TDRE bit to 1, clearing the RE bit to 0 does not change the values of the RDRF and ORER bits and SSRDR. Those bits retain the previous values.

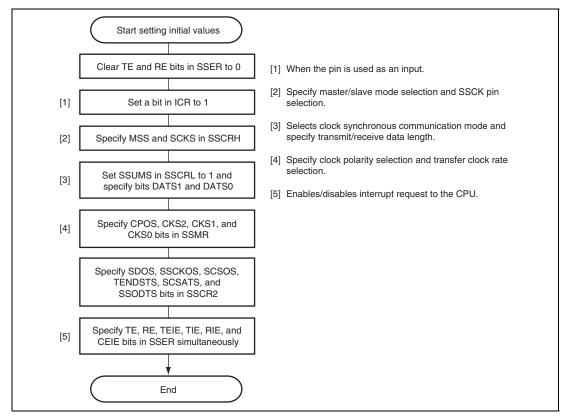


Figure 22.12 Example of Initial Settings in Clock Synchronous Communication Mode

(2) Data Transmission

Figure 22.13 shows an example of transmission operation, and figure 22.14 shows a flowchart example of data transmission. When transmitting data in clock synchronous communication mode, the SSU operates as shown below.

In master mode, the SSU outputs a transfer clock and data. In slave mode, when a transfer clock is input to the SSCK pin, the SSU outputs data in synchronization with the transfer clock.

Writing transmit data to SSTDR after the TE bit is set to 1 clears the TDRE bit in SSSR to 0, and the SSTDR contents are transferred to SSTRSR. After that, the SSU sets the TDRE bit to 1 and starts transmission. At this time, if the TIE bit in SSER is set to 1, a TXI interrupt is generated.

When 1-frame data has been transferred with TDRE = 0, the SSTDR contents are transferred to SSTRSR to start the next frame transmission. When the 8th bit of transmit data has been transferred with TDRE = 1, the TEND bit in SSSR is set to 1 and the state is retained. At this time, if the TEIE bit is set to 1, a TEI interrupt is generated.

While the ORER bit in SSSR is set to 1, transmission is not performed. Check that the ORER bit is cleared to 0.

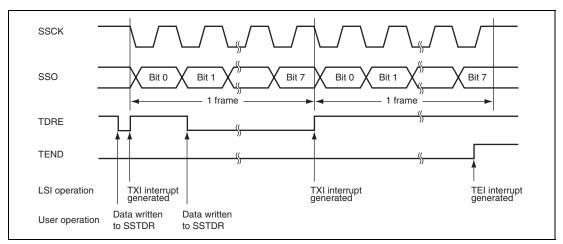


Figure 22.13 Example of Transmission Operation (Clock Synchronous Communication Mode)

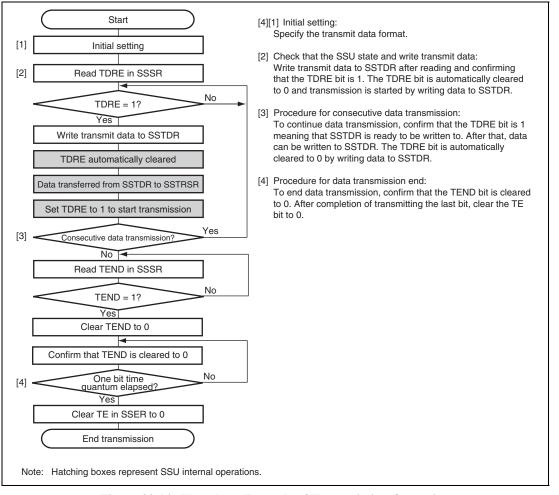


Figure 22.14 Flowchart Example of Transmission Operation (Clock Synchronous Communication Mode)

(3) Data Reception

Figure 22.15 shows an example of reception operation, and figure 22.16 shows a flowchart example of data reception. When receiving data, the SSU operates as shown below.

After setting the RE bit in SSER to 1, the SSU starts data reception.

In master mode, the SSU outputs a transfer clock and receives data. In slave mode, when a transfer clock is input to the SSCK pin, the SSU receives data in synchronization with the transfer clock.

When 1-frame data has been received, the RDRF bit in SSSR is set to 1 and the receive data is stored in SSRDR. At this time, if the RIE bit is set to 1, an RXI interrupt is generated. The RDRF bit is automatically cleared to 0 by reading SSRDR.

When the RDRF bit has been set to 1 at the 8th rising edge of the transfer clock, the ORER bit in SSSR is set to 1. This indicates that an overrun error (OEI) has occurred. At this time, data reception is stopped. While the ORER bit in SSSR is set to 1, reception is not performed. To resume the reception, clear the ORER bit to 0.

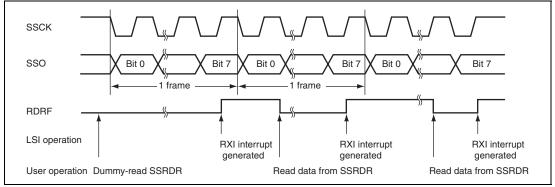


Figure 22.15 Example of Reception Operation (Clock Synchronous Communication Mode)

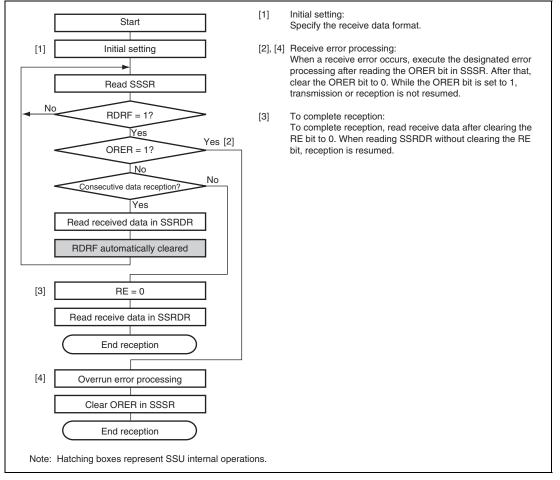


Figure 22.16 Flowchart Example of Data Reception (Clock Synchronous Communication Mode)

(4) Data Transmission/Reception

Figure 22.17 shows a flowchart example of simultaneous transmission/reception. The data transmission/reception is performed combining the data transmission and data reception as mentioned above. The data transmission/reception is started by writing transmit data to SSTDR with TE = RE = 1.

Before switching transmission mode (TE=1) or reception mode (RE=1) to transmission/reception mode (TE=RE=1), clear the TE and RE bits to 0. When starting the transfer, confirm that the TEND, RDRF, and ORER bits are cleared to 0 before setting the TE or RE bits to 1.

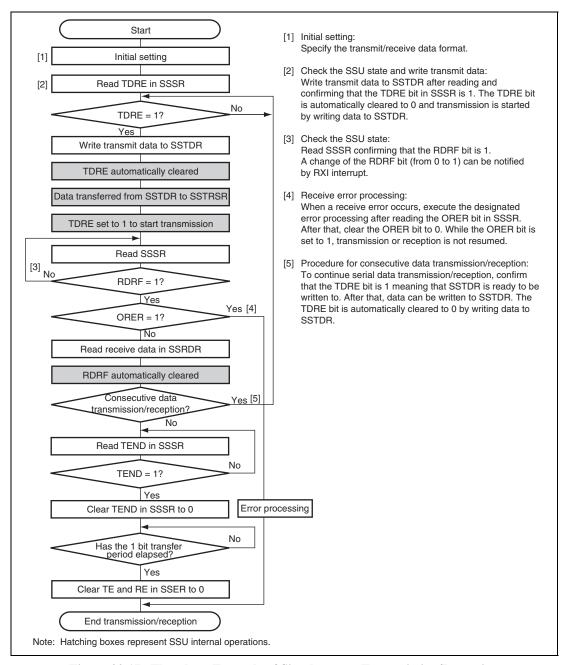


Figure 22.17 Flowchart Example of Simultaneous Transmission/Reception (Clock Synchronous Communication Mode)

22.5 Interrupt Requests

The SSU interrupt requests are an overrun error, a conflict error, a receive data register full, transmit data register empty, and a transmit end interrupts.

Since both an overrun error and a conflict error interrupts are allocated to the SSERI vector address, and both a transmit data register empty and a transmit end interrupts are allocated to the SSTXI vector address, the interrupt source should be decided by their flags. Table 22.7 lists the interrupt sources.

When an interrupt condition shown in table 22.7 is satisfied, an interrupt is requested. Clear the interrupt source by CPU or DMAC data transfer.

Table 22.7 Interrupt Sources

Channel	Abbreviation	Interrupt Source	Symbol	Interrupt Condition	DMAC Activation
0	SSERI0	Overrun error	OEI0	(RIE = 1) • (ORER = 1)	_
		Conflict error	CEI0	(CEIE = 1) • (CE = 1)	_
	SSRXI0	Receive data register full	RXI0	(RIE = 1) • (RDRF = 1)	
	SSTXI0	Transmit data register empty	TXI0	(TIE = 1) • (TDRE = 1)	_
		Transmit end	TEI0	(TEIE = 1) • (TEND = 1)	

22.6 Usage Note

22.6.1 Setting of Module Stop Mode

The SSU can be enabled/disabled by setting the module stop control register setting and is disabled by the initial value. Canceling module stop mode enables to access the SSU register. For details, see section 29, Power-Down Modes.

Section 23 Platform Environment Control Interface (PECI)

This LSI has a platform environment control interface (PECI) for single-line communication with processors. The PECI incorporates a cyclic redundancy check (CRC) calculator to ensure its reliability in data transfer.

23.1 **Features**

- Supports PECI-compliant communication
- Communication via a one-wire bus
- Serves as an originator
- Transfer speed selectable within the range from 2 kbps to 1.6 Mbps (one-bit cycle: 625 ns to 500 µs)
- CRC calculation expressed as a polynomial $C(X) = X^8 + X^2 + X + 1$
- Timing negotiation performed at the beginning of communication
- Supports eleven commands: Ping, GetDIB, GetTemp, RdPkgConfig, WrPkgConfig, RdIAMSR, WrIAMSR, RdPCIConfig, WrPCIConfig, RdPCIConfigLocal, and WrPCIConfigLocal
- 32-byte FIFO used for both transmission and reception (supporting 32-byte GetDIB command)
- Three interrupt sources: Transfer end, WR-FCS (frame check sequence) check error, and RD-FCS check error
- Provides the AWFCS function

Figure 23.1 is a block diagram of the PECI.

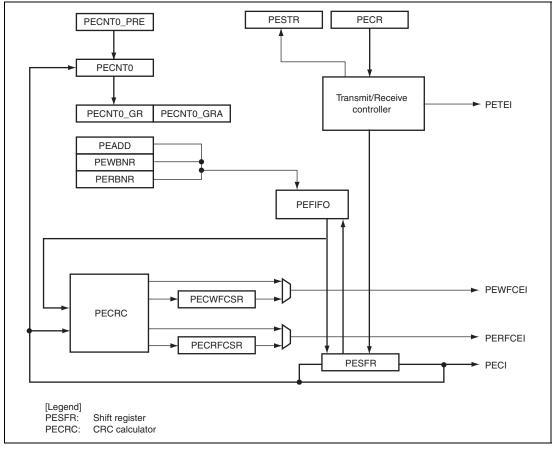


Figure 23.1 Block Diagram of PECI

23.2 Input/Output Pins

Table 23.1 shows the input and output pins of the PECI.

Table 23.1 Pin Configuration

Pin Name	I/O	Description	
PECI	I/O	PECI communication signal	
PEVref	Input	PECI reference voltage	

The following table shows the initial state of the PECI pin when the PECIE bit in the PECI control register (PECR) is set to 1.

Pin Name	Symbol	Initial State of Pin when PECIE = 1
PECI	PECI	Hi-Z state

23.3 Register Description

The register configuration of the PECI is shown below.

- PECI control register (PECR)
- PECI status register (PESTR)
- PECI timing count pre-register (PECNT0_PRE)
- PECI timing count general register (PECNT0_GR)
- PECI timing count address general register (PECNT0_GRA)
- PECI address register (PEADD)
- PECI write byte number register (PEWBNR)
- PECI read byte number register (PERBNR)
- PECI client write frame check sequence register (PECWFCSR)
- PECI client read frame check sequence register (PECRFCSR)
- PECI first-in first-out register (PEFIFO)

Register Name	Abbreviation	R/W	Initial Value	Address	Data Bus Width
PECI control register	PECR	R/W	H'00	H'FBA0	8
PECI status register	PESTR	R/W	H'00	H'FBA1	8
PECI timing count pre-register	PECNT0_PRE	R/W	H'0000	H'FBA2	16
PECI timing count general register	PECNT0_GR	R	H'FFFF	H'FBA4	16
PECI timing count address general register	PECNT0_GRA	R/W	H'FFFF	H'FBA6	16
PECI address register	PEADD	R/W	H'00	H'FBA8	8
PECI write byte number register	PEWBNR	R/W	H'00	H'FBA9	8
PECI read byte number register	PERBNR	R/W	H'00	H'FBAA	8
PECI client write frame check sequence register	PECWFCSR	R	H'00	H'FBAD	8
PECI client read frame check sequence register	PECRFCSR	R	H'00	H'FBAE	8
PECI first-in first-out register	PEFIFO	R/W	H'00	H'FBAF	8

Note: When accessing these registers, bit 7 (MSTPA7) in MSTPCRA should be cleared to 0.

23.3.1 PECI Control Register (PECR)

The PECR control bits are classified into four functionalities: resetting the internal signals of the PECI, enabling/disabling data transfer via the PECI, selecting the PECI functions, and enabling/disabling interrupts to this LSI.

Bit	Bit Name	Initial Value	R/W	Description
7	PESRES	0	R/W	PECI Software Reset
				Controls initialization of the internal sequencer of the PECI.
				0: Normal state
				1: The internal sequencer is cleared.
				Writing 1 to this bit generates a clearing signal for the sequencer in the corresponding module, resulting in the initialization of the PECI's internal state.
				Setting the PESRES bit to 1 defers initiation of the next communication via the PECI until a specified setup time elapses.
6	PECIE	0	R/W	PECI Enable
				0: PECI operation is disabled
				1: PECI operation is enabled
5	ABTE	0	R/W	Abort Enable
				Controls generation of an abort when a frame check error occurs.
				Abort issuance upon a frame check error is disabled
				1: Abort issuance upon a frame check error is enabled
4	AWFCSE	0	R/W	AWFCS Transfer Function Enable
				Controls the AWFCS transfer function.
				0: AWFCS transfer function is disabled.
				1: AWFCS transfer function is enabled.

Bit	Bit Name	Initial Value	R/W	Description
3	STOPE	0	R/W	STOP Issue Enable
				Selects the format for termination of a data transfer via the PECI.
				No message stop period when data transfer via PECI is complete
				Provides a message stop period when data transfer via PECI is complete
2	PEWFCEIE	0	R/W	Write Frame Check (FCS) Error Interrupt Enable
				0: PEWFCEI interrupt request is disabled
				1: PEWFCEI interrupt request is enabled
1	PERFCEIE	0	R/W	Read Frame Check (FCS) Error Interrupt Enable
				0: PERFCEI interrupt request is disabled
				1: PERFCEI interrupt request is enabled
0	PETEIE	0	R/W	Transfer End Interrupt Enable
				0: PETEI interrupt request is disabled
				1: PETEI interrupt request is enabled

23.3.2 PECI Status Register (PESTR)

PESTR is a register that indicates the processing statuses in PECI data transfer.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	PEBUSY	0	R	PECI Busy Flag
				[Setting condition]
				Starting condition for PECI data transfer is issued.
				[Clearing condition]
				 PECI data transfer is completed.
6	WFCSER	0	R/W*1	Write-FCS Error
				This bit is the interrupt source of the PEWFCEI.
				[Setting condition]
				Error occurs in write-FCS check.
				[Clearing condition]
				 Writing 0 to this bit after reading 1 from it.
5	RFCSER	0	R/W*1	Read-FCS Error
				This bit is the interrupt source of the PERFCEI.
				[Setting condition]
				Error occurs in read-FCS check.
				[Clearing condition]
				Writing 0 to this bit after reading 1 from it.

Bit	Bit Name	Initial Value	R/W	Description
4	PETEND	0	R/W*1	PECI Transfer End
				This bit is the interrupt source of the PETEI.
				[Setting condition]
				 PECI data transfer is completed (from address timing negotiation through to message stop).
				[Clearing condition]
				Writing 0 to this bit after reading 1 from it.
3	NEGA	0	R/W*1	Address Timing Negotiation End
				[Setting condition]
				 Address timing negotiation is completed.
				[Clearing condition]
				Writing 0 to this bit after reading 1 from it.
2	NEGM	0	R/W*1	Message Timing Negotiation End
				[Setting condition]
				Message timing negotiation is completed.
				[Clearing condition]
				Writing 0 to this bit after reading 1 from it.
1	RDRF	0	R	Receive Data Read
				[Setting condition]
				All received data is stored in FIFO (FIFO full).
				[Clearing condition]
				The CPU reads all received data (FIFO empty).
0	PECIR	Undefined*2	R	PECI Pin Monitor

Notes: 1. Only 0 can be written to clear the flag.

2. Depends on the state of the PECI pin.

23.3.3 PECI Timing Count Pre-Register (PECNT0_PRE)

PECNT0_PRE specifies the high-level period of the originator bit rate in address/message timing negotiation. When the PECNT0_PRE setting is N, the high-level period of the originator bit rate is (N+1) system clock cycles.

		Initial		
Bit	Bit Name	Value	R/W	Description
P P	PECNTO_ H'0000 PRE15 to PECNTO_ PRE0	H'0000	R/W	Specifies a count value for the high-level period of originator bit rate in address/message timing negotiation.
				When the PECI is used, set this register to a value within the range from H'0001 to H'FFFD.

Relation between the N setting in PECNTO_PRE and bit rate, B:

$$B = \frac{\phi \times 10^6}{(N+2) \times 4}$$

[Legend]

B: Bit rate (bit/s)

N: PECNT0_PRE setting (H'0001 \leq N \leq H'FFFD)

φ: Operating frequency (in MHz).

23.3.4 PECI Timing Count General Register (PECNT0_GR)

PECNTO_GR stores the value for counting a portion of the period corresponding to the transfer bit rate measured in address/message timing negotiation. This period is also used as part of the message stop time.

Bit	Bit Name	Initial Value	R/W	Description
15 to 0	PECNT0_ GR15 to PECNT0_ GR0	H'FFFF	R	Stores the count value for a period of the transfer bit rate measured in address/message timing negotiation.

Relation between the M setting in PECNTO_GR and bit rate, B:

$$B = \frac{\phi \times 10^6}{(M+1) \times 4}$$

[Legend]

B: Bit rate (bit/s)

M: Value stored in PECNT0_GRp: Operating frequency (in MHz).

23.3.5 PECI Timing Count Address General Register (PECNT0_GRA)

PECNT0_GRA specifies a period of the setup time in PECI data transfer. After the reset state is released (after the power is turned on), set this register such that the setup time preceding the start of PECI data transfer will be 1 ms or more (i.e., the set value of PECNT0_GRA should be 0.25 ms or more). After that, the period of the transfer bit rate measured in address timing negotiation of the first PECI data transfer is stored in PECNT0_GRA. The stored value can be used as the setup time for subsequent data transfers.

Measurement of the setup time starts when the PECIE bit in PECR is set to 1. The value of PECNTO GRA should not be modified while PECIE = 1.

Bit	Bit Name	Initial Value	R/W	Description
15 to 0	PECNT0_ GRA15 to PECNT0_ GRA0	H'FFFF	R/W	Specifies or stores a count value for the period of setup time.

23.3.6 PECI Address Register (PEADD)

PEADD specifies a target address (client address for communications). Writing to this register initiates a PECI data transfer. The value of this register should not be modified during PECI data transfer; i.e., while the PEBUSY bit in PESTR is set to 1. Writing to PEADD is ignored while the PECIE bit in PECR is cleared to 0 (PECI data transfer is disabled) or the RDRF bit in PESTR is set to 1.

Bit	Bit Name	Initial Value	R/W	Description
7 to 0	PEADD7 to PEADD0	H'00	R/W	Specifies a target address.

23.3.7 PECI Write Byte Number Register (PEWBNR)

PEWBNR specifies the write length (the number of data bytes to be written to a client). The value of this register should not be modified during PECI data transfer; i.e., while the PEBUSY bit in PESTR is set to 1. The value of PEWBNR will be H'00 when the PECI data transfer cycle ends. Set PEWBNR to a value within the range from H'00 to H'20 and not within the range from H'21 to H'FF.

Bit	Bit Name	Initial Value	R/W	Description
7 to 0	PEWBNR7 to PEWBNR0	H'00	R/W	Specifies the write length.

23.3.8 PECI Read Byte Number Register (PERBNR)

PERBNR specifies the read length (the number of data bytes that are to be read from a client). The value of this register should not be modified during PECI data transfer; i.e., while the PEBUSY bit in PESTR is set to 1.

After the PECI data transfer is completed, the value of PERBNR is decremented by one each time a byte of received data is read from PEFIFO. The value of PERBNR will be H'00 when all received data have been read. An undefined value will be read if PERBNR is read during PECI data transfer (PEBUSY = 1). Set PERBNR to a value within the range from H'00 to H'20 and not within the range from H'21 to H'FF.

Bit	Bit Name	Initial Value	R/W	Description
7 to 0	PERBNR7 to PERBNR0	H'00	R/W	Specifies the read length.

23.3.9 PECI Client Write Frame Check Sequence Register (PECWFCSR)

PECWFCSR is a register that stores the write-FCS received from a client.

Bit	Bit Name	Initial Value	R/W	Description
7 to 0	PECWFCSR7 to PECWFCSR0	H'00	R	Stores write-FCS.

23.3.10 PECI Client Read Frame Check Sequence Register (PECRFCSR)

PECRFCSR is a register that stores the read-FCS received from a client.

Bit	Bit Name	Initial Value	R/W	Description
7 to 0	PECRFCSR7 to PECRFCSR0	H'00	R	Stores read-FCS.

23.3.11 PECI First-In First-Out Register (PEFIFO)

PEFIFO stores the write data (including commands) and read data. PEFIFO uses one address for both transmission and reception, and is composed of 32 bits. The received data should be read from PEFIFO after data transfer via the PECI has been completed; i.e., when the PEBUSY bit in PESTR is cleared to 0. An undefined value will be read if PEFIFO is read during PECI data transfer (PEBUSY = 1).

Bit	Bit Name	Initial Value	R/W	Description
7 to 0	bit7 to bit0	H'00	R/W	Stores write data and read data.

Note: Do not write transmit data to PEFIFO while RDRF = 1. Doing so can rewrite the received data stored in the FIFO.

23.4 Operation

The PECI supports communication via a one-wire bus. A PECI data transfer cycle consists of setup, address timing negotiation, target address, message timing negotiation, message transfer, and stop cycles.

(1) FCS Type

According to the result of comparing the CRC calculation results of communication data, the FCS is classified into two types: Good-FCS and Bad-FCS. The FCS types are shown in table 23.2.

Table 23.2 FCS Types

FCS Type	Relation between CRC Calculation Result and PECWFCSR	Relation between CRC Calculation Result and PECRFCSR
Good-FCS	CRC calculation result = PECWFCSR	CRC calculation result = PECRFCSR
Bad-FCS	CRC calculation result ≠ PECWFCSR	CRC calculation result ≠ PECRFCSR

The AWFCS function is provided for ensuring reliability when a PECI host transmits write data. Upon transmission of write data by a PECI host, CRC calculation is employed to compute AWFCS according to the formula below. The calculated AWFCS value is transmitted to the client immediately following the write data. Then, data transfer subsequently continues after WR-FCS is received from the client.

AWFCS calculation formula:

 $AWFCS[7:0] = \{!CRC_REG[7], CRC_REG[6:0]\}$

[Legend]

CRC_REG: Result of calculation by the CRC calculator

23.4.1 Configuring the PECI

Settings for the PECI should be made in accordance with figure 23.2 after clearing the PECIE bit in PECR to 0. Writing to PEADD initiates the PECI data transfer; so, PEADD should be set immediately before the PECI data transfer is to be started.

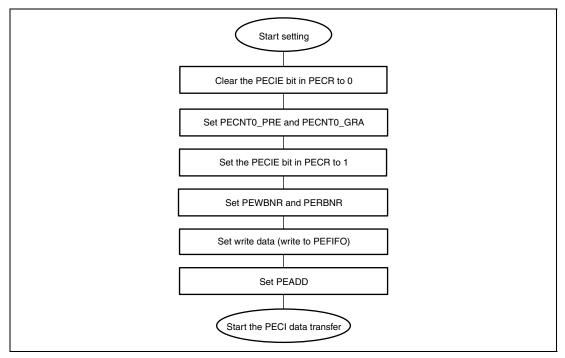


Figure 23.2 Sample Flowchart of Configuring the PECI

23.4.2 Commands

Commands used in PECI communication are listed in table 23.3. Since the PECI uses a 32-byte FIFO to send commands (write data), it can send a maximum of 32-byte command frame.

Table 23.3 List of Commands

Command Name	Code	Description
Ping	n/a	Checks if the client is enabled or disabled.
		 Checks if the client has been removed or its power
		supply has been shut down.
GetDIB	H'F7	Reads client information (device identifier block).
GetTemp	H'01	Reads temperature information from the processor.
RdPkgConfig	H'A1	Reads data from the package configuration space (PCS) of the processor.
WrPkgConfig	H'A5	Writes data to the package configuration space (PCS) of the processor.
RdIAMSR	H'B1	Reads data from model specific registers (MSRs) of the processor.
WrIAMSR	H'B5	Writes data to model specific registers (MSRs) of the processor.
RdPClConfig	H'61	Reads data from the PCI configuration area of the platform.
WrPCIConfig	H'65	Writes data to the PCI configuration area of the platform.
RdPClConfigLocal	H'E1	Reads data from the PCI configuration area of the processor.
WrPClConfigLocal	H'E5	Writes data to the PCI configuration area of the processor.

23.4.3 Abort

Setting the ABTE bit in PECR to 1 enables automatic issuance of aborts when an error is detected in WR-FCS check, RD-FCS check, or other operations. An abort can also be issued by setting the PESRES bit in PECR to 1. After an abort is issued, the next PECI data transfer will not start until the specified setup time has elapsed. The setup time is determined by the STOPE bit in PECR, PECNTO GR, and PECNTO GRA.

Use the PECI software reset bit (PESRES) to generate an abort in the cases other than the detection of any error in WR-FCS check or RD-FCS check.

23.5 Scope of Initialization by Various Resets

The scope of initialization caused by a system reset, PECI software reset controlled by the PESRES bit in PECR, or an abort is shown below.

Feb 14, 2013

Scope of PECI Initialization Table 23.4

	System Reset	PECI Software Reset	Abort
PECR	Initialized	Retained	Retained
PEADD	Initialized	Retained	Retained
PEWBNR	Initialized	Retained	Retained
PERBNR	Initialized	Retained	Retained
PECNT0_PRE	Initialized	Retained	Retained
PECNT0_GRA	Initialized	Retained	Retained
PECNT0_GR	Initialized	PECNT0_GR = PECNT0_GRA when PECIE = 1	STOP/SETUP generated
		Retained when PECIE = 0	
PEFIFO	Initialized	Retained	Retained
PESTR	Initialized	Initialized (except for PECIR)	PEBUSY and RDRF are initialized and all others are retained (except for PECIR)
PECWFCSR	Initialized	Initialized	Retained
PECRFCSR	Initialized	Initialized	Retained
Internal sequencer	Initialized	Initialized	Initialized

23.6 **Interrupt Sources**

The PECI has three interrupt sources for this LSI: PETEI, PEWFCEI, and PERFCEI. Setting the corresponding enable bit to 1 enables the relevant interrupt request to be issued. As the interrupt request is assigned to the same vector address, use the flag to determine the interrupt source.

Table 23.5 Interrupt Sources

Interrupt Name	Interrupt Source Name	Interrupt Source	Flag	Interrupt Enable Bit
PECII	PETEI	PETEND	PECI transfer end	PETEIE
	PEWFCEI		Write-FCS error	PEWFCEIE
	PERFCEI	RFCSER	Read-FCS error	PERFCEIE

Section 24 A/D Converter

This LSI has a successive approximation type 10-bit A/D converter, which allows up to six analog input channels to be selected.

Figure 24.1 shows a block diagram of the A/D converter.

24.1 **Features**

- Input channels: 12 channels
- Conversion cycle: 64 cycles or 40 cycles (A/D conversion clock)
- Two kinds of operating modes
 - Single mode: Single-channel A/D conversion
 - Scan mode: Continuous A/D conversion on 1 to 4 channels, or 1 to 8 channels
- Separate A/D conversion clock specifiable for each unit $(\phi, \phi/2, \phi/4, \text{ or } \phi/8)$
- Eight data registers
 - Results of A/D conversion are held in a 16-bit data register for each channel.
- Sample and hold functionality
- Two types of conversion start
 - Conversion can be started by software or a conversion start trigger by the 16-bit timer pulse unit (TPU) or 8-bit timer (TMR).
- Interrupt source
 - A/D conversion end interrupt (ADI) request can be generated.
- Module stop state specifiable

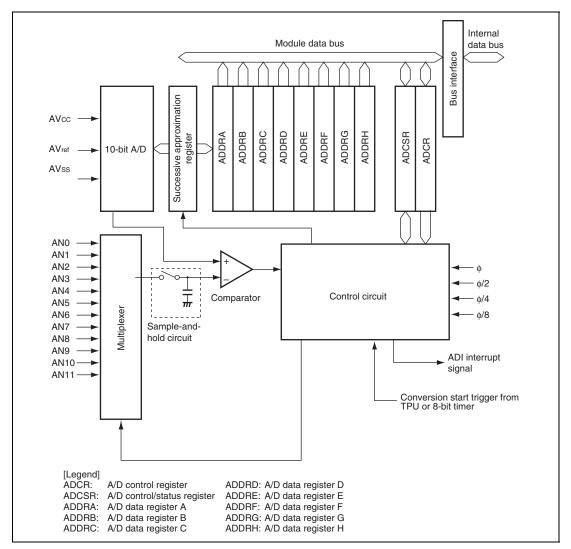


Figure 24.1 Block Diagram of A/D Converter

Page 778 of 1054

24.2 Input/Output Pins

Table 24.1 summarizes the pins used by the A/D converter.

The AVCC and AVSS pins are the power supply pins for the analog block in the A/D converter. The AVref pin is a reference voltage pin for the A/D converter.

The twelve analog input pins are divided into two channel sets: analog input pins 0 to 7 (AN0 to AN7) comprising channel set 0 and analog input pins 8 to 11 (AN8 to AN11) comprising channel set 1.

Table 24.1 Pin Configuration

Pin Name	Symbol	I/O	Function
Analog power supply pin	AVcc	Input	Analog block power supply
Analog ground pin	AVss	Input	Analog block ground
Reference power supply pin	AVref	Input	Reference voltage for A/D converter
Analog input pin 0	AN0	Input	Channel set 0 analog input
Analog input pin 1	AN1	Input	
Analog input pin 2	AN2	Input	
Analog input pin 3	AN3	Input	
Analog input pin 4	AN4	Input	
Analog input pin 5	AN5	Input	
Analog input pin 6	AN6	Input	
Analog input pin 7	AN7	Input	
Analog input pin 8	AN8	Input	Channel set 1 analog input
Analog input pin 9	AN9	Input	
Analog input pin 10	AN10	Input	
Analog input pin 11	AN11	Input	

24.3 Register Descriptions

The A/D converter has the following registers.

Table 24.2 Register Configuration

Register Name	Abbreviation	R/W	Initial Value	Address	Data Bus Width
A/D data register A	ADDRA	R	H'0000	H'FC00	16
A/D data register B	ADDRB	R	H'0000	H'FC02	16
A/D data register C	ADDRC	R	H'0000	H'FC04	16
A/D data register D	ADDRD	R	H'0000	H'FC06	16
A/D data register E	ADDRE	R	H'0000	H'FC08	16
A/D data register F	ADDRF	R	H'0000	H'FC0A	16
A/D data register G	ADDRG	R	H'0000	H'FC0C	16
A/D data register H	ADDRH	R	H'0000	H'FC0E	16
A/D control/status register	ADCSR	R/W	H'00	H'FC10	8
A/D control register	ADCR	R/W	H'00	H'FC11	8

24.3.1 A/D Data Registers A to H (ADDRA to ADDRH)

There are eight 16-bit read-only ADDR registers, ADDRA to ADDRH, used to store the results of A/D conversion. The ADDR registers which store a conversion result for each channel are shown in table 24.3.

The 10-bit conversion data is stored in bits 15 to 6. The lower six bits are always read as 0.

The data bus between the CPU and the A/D converter is sixteen bits wide. The data can be read directly from the CPU. ADDR must not be accessed in 8-bit units and must be accessed in 16-bit units.

Table 24.3 Analog Input Channels and Corresponding ADDR

Analog Ir	nput Channel	A/D Data Register to Store A/D
Channel Set 0 (CH3 = 0)	Channel Set 1 (CH3 = 1)	Conversion Results
AN0	AN8	ADDRA
AN1	AN9	ADDRB
AN2	AN10	ADDRC
AN3	AN11	ADDRD
AN4	_	ADDRE
AN5	_	ADDRF
AN6	_	ADDRG
AN7	_	ADDRH

A/D Control/Status Register (ADCSR) 24.3.2

ADCSR controls A/D converter operation.

Bit	Bit Name	Initial Value	R/W	Description
7	ADF	0	R/(W)*	A/D End Flag
				A status flag that indicates the end of A/D conversion.
				[Setting conditions]
				When A/D conversion ends in single mode
				When A/D conversion ends on all channels
				specified in scan mode
				[Clearing condition]
				When 0 is written after reading ADF = 1
6	ADIE	0	R/W	A/D Interrupt Enable
				Enables ADI interrupt by ADF when this bit is set to 1.
5	ADST	0	R/W	A/D Start
				Clearing this bit to 0 stops A/D conversion, and the A/D converter enters wait state.
				Setting this bit to 1 starts A/D conversion. In single mode, this bit is cleared to 0 automatically when A/D conversion on the specified channel ends. In scan mode, A/D conversion continues sequentially on the specified channels until this bit is cleared to 0 by software or a reset. While the ADSTCLR bit in ADCR is set to 1, the ADST bit is cleared to 0 automatically when A/D conversion on all selected channels ends, and then A/D conversion stops.
				The timing to clear the ADST bit automatically differs from that of ADF setting; the ADST bit is cleared before the ADF bit is set.
4	EXCKS	0	R/W	Clock Extension Select
				Specifies the A/D conversion time in combination with the CKS1 and CKS0 bits in ADCR. Be sure to set these three bits at one time. For details, see the description of the ADCR resisters.

Bit	Bit Name	Initial Value	R/W	Description							
3	CH3	0	R/W	Channel Select 3 to 0							
2	CH2	0	R/W	U 1	ut channels with th	e SCANE and					
1	CH1	0	R/W	SCANS bits in AD	OCR.						
0	CH0	0	R/W	The input channel conversion is halt	I setting must be med (ADST = 0).	ade when					
				When SCANE = 0 and SCANS = X	When SCANE = 1 and SCANS = 0	When SCANE = 1 and SCANS = 1					
				0000: AN0	0000: AN0	0000: AN0					
				0001: AN1	0001: AN0, AN1	0001: AN0, AN1					
				0010: AN2	0010: AN0 to AN2	0010: AN0 to AN2					
				0011: AN3	0011: AN0 to AN3	0011: AN0 to AN3					
				0100: AN4	0100: AN4	0100: AN0 to AN4					
				0101: AN5	0101: AN4, AN5	0101: AN0 to AN5					
				0110: AN6	0110: AN4 to AN6	0110: AN0 to AN6					
				0111: AN7	0111: AN4 to AN7	0111: AN0 to AN7					
				1000: AN8	1000: AN8	1000: AN8					
				1001: AN9	1001: AN8, AN9	1001: AN8, AN9					
				1010: AN10	1010: AN8 to	1010: AN8 to					
				1011: AN11	AN10	AN10					
				11xx: Setting prohibited	1011: AN8 to AN11	1011: AN8 to AN11					
					11xx: Setting prohibited	11xx: Setting prohibited					

[Legend]

X: Don't care

Note: * Only 0 can be written to clear the flag.

A/D Control Register (ADCR) 24.3.3

ADCR enables A/D conversion to be started by an external trigger input.

Bit	Bit Name	Initial Value	R/W	Description
7	TRGS1	0	R/W	Timer Trigger Select 1 and 0
6	TRGS0	0	R/W	These bits enable or disable the start of A/D conversion by a trigger signal.
				00: Disables A/D conversion start by an external trigger
				10: Enables A/D conversion start by a trigger from TPU
				10: Enables A/D conversion start by a trigger from TMR
				11: Setting prohibited
5	SCANE	0	R/W	Scan Mode
4	SCANS	0	R/W	These bits select the A/D conversion operating mode.
				0x: Single mode
				 Scan mode. A/D conversion is performed continuously for channels 1 to 4.
				11: Scan mode. A/D conversion is performed continuously for channels 1 to 8.

Feb 14, 2013

Bit Name	Initial Value	R/W	Description
CKS1	0	R/W	Clock Select 1 and 0
CKS0	0	R/W	These bits select the A/D conversion clock (ADCLK) and specify the A/D conversion time in combination with the EXCKS bit.
			First select the A/D conversion time while ADST = 0 in ADCSR and then set the mode of A/D conversion. Before entering software standby mode or module stop mode, set these bits to B'11.
			Set CKS1 and CKS0 bits appropriately so that the ADCLK frequency is 10 MHz or less.
			EXCKS, CKS1, and CKS0
			000: A/D conversion time = 528 states (max.) at ADCLK = $\phi/8$
			001: A/D conversion time = 268 states (max.) at ADCLK = $\phi/4$
			010: A/D conversion time = 138 states (max.) at ADCLK = $\phi/2$
			011: A/D conversion time = 73 states (max.) at ADCLK = ϕ
			100: A/D conversion time = 336 states (max.) at ADCLK = $\phi/8$
			101: A/D conversion time = 172 states (max.) at ADCLK = $\phi/4$
			110: A/D conversion time = 90 states (max.) at ADCLK = $\phi/2$
			111: A/D conversion time = 49 states (max.) at ADCLK = φ
ADSTCLR	0	R/W	A/D Start Clear
			This bit enables or disables automatic clearing of the ADST bit in scan mode.
			0: The ADST bit is not automatically cleared to 0 in scan mode.
			1: The ADST bit is cleared to 0 upon completion of the A/D conversion for all of the selected channels in scan mode.
_	0	R/W	Reserved
			The initial value should not be changed.
	CKS1 CKS0	Bit Name Value CKS1 0 CKS0 0 ADSTCLR 0	Bit Name Value R/W CKS1 0 R/W CKS0 0 R/W ADSTCLR 0 R/W

[Legend]

x: Don't care

24.4 Operation

The A/D converter has two operating modes: single mode and scan mode. First select the clock for A/D conversion (ADCLK). When changing the operating mode or analog input channel, to prevent incorrect operation, first clear the ADST bit in ADCSR to 0. The ADST bit can be set to 1 at the same time as the operating mode or analog input channel is changed.

24.4.1 Single Mode

Page 786 of 1054

In single mode, A/D conversion is to be performed only once on the analog input of the specified single channel.

- 1. A/D conversion for the selected channel is started when the ADST bit in ADCSR is set to 1 by software, TPU, or TMR.
- 2. When A/D conversion is completed, the A/D conversion result is transferred to the corresponding A/D data register of the channel.
- 3. When A/D conversion is completed, the ADF bit in ADCSR is set to 1. If the ADIE bit is set to 1 at this time, an ADI interrupt request is generated.
- 4. he ADST bit remains at 1 during A/D conversion, and is automatically cleared to 0 when A/D conversion ends. The A/D converter enters wait state. If the ADST bit is cleared to 0 during A/D conversion, A/D conversion stops and the A/D converter enters a wait state.

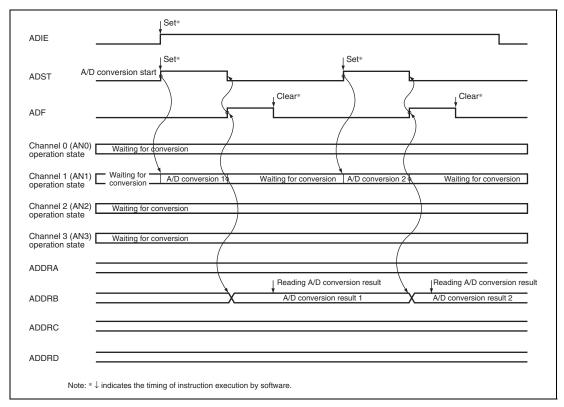


Figure 24.2 Example of A/D Converter Operation (Single Mode, Channel 1 Selected)

24.4.2 Scan Mode

In scan mode, A/D conversion is to be performed sequentially on the analog inputs of the specified channels up to four or eight channels. Two types of scan mode are provided, that is, continuous scan mode where A/D conversion is repeatedly performed and one-cycle scan mode where A/D conversion is performed for the specified channels for one cycle.

(1) Continuous Scan Mode

- 1. When the ADST bit in ADCSR is set to 1 by software, TPU, or TMR, A/D conversion starts on the first channel in the specified channel group. Consecutive A/D conversion on a maximum of four channels (SCANE and SCANS = B'10) or on a maximum of eight channels (SCANE and SCANS = B'11) can be selected. When consecutive A/D conversion is performed on four channels, A/D conversion starts on AN0 when CH3, CH2 = B'00, on AN4 when CH3, CH2 = B'01, or on AN8 when CH3, CH2 = B'10. When consecutive A/D conversion is performed on eight channels, A/D conversion starts on AN0 when CH3 = B'0 or on AN8 when CH3 = B'1.
- 2. When A/D conversion for each channel is completed, the A/D conversion result is sequentially transferred to the corresponding ADDR of each channel.
- 3. When A/D conversion of all selected channels is completed, the ADF bit in ADCSR is set to 1. If the ADIE bit is set to 1 at this time, an ADI interrupt request is generated. A/D conversion of the first channel in the group starts again.
- 4. The ADST bit is not cleared automatically, and steps 2 to 3 are repeated as long as the ADST bit remains set to 1. When the ADST bit is cleared to 0, A/D conversion stops and the A/D converter enters wait state. If the ADST bit is later set to 1, A/D conversion starts again from the first channel in the group.

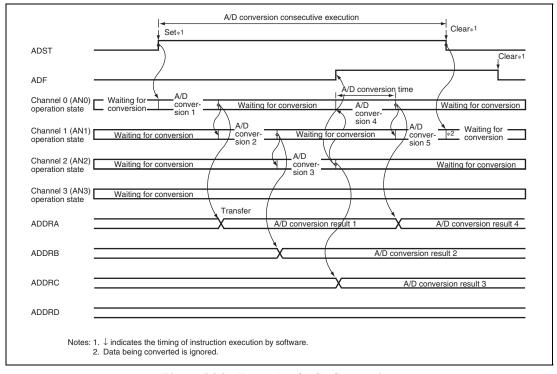


Figure 24.3 Example of A/D Conversion (Continuous Scan Mode, Three Channels (AN0 to AN2) Selected)

(2) One-Cycle Scan Mode

- 1. Set the ADSTCLR bit in ADCR to 1.
- 2. When the ADST bit in ADCSR is set to 1 by software, TPU, or TMR, A/D conversion starts on the first channel in the specified channel group. Consecutive A/D conversion on a maximum of four channels (SCANE and SCANS = B'10) or on a maximum of eight channels (SCANE and SCANS = B'11) can be selected. Four-channel consecutive A/D conversion starts on AN0 when CH3, CH2 = B'00, on AN4 when CH3, CH2 = B'01, or on AN8 when CH3 = B'0 or on AN8 when CH3 = B'1.
- 3. When A/D conversion for each channel is completed, the A/D conversion result is sequentially transferred to the corresponding ADDR of each channel.
- 4. When A/D conversion of all selected channels is completed, the ADF bit in ADCSR is set to 1. If the ADIE bit is set to 1 at this time, an ADI interrupt request is generated.
- The ADST bit is automatically cleared when A/D conversion is completed for all of the channels that have been selected. A/D conversion stops and the A/D converter enters a wait state.

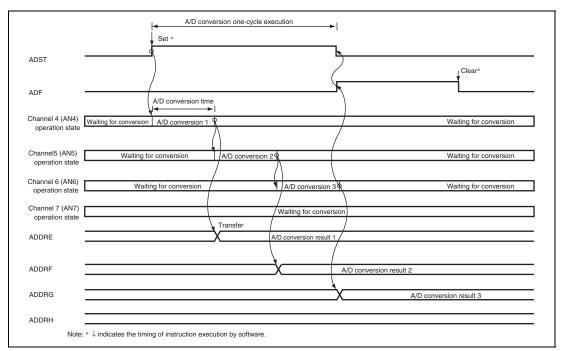


Figure 24.4 Example of A/D Conversion (One-Cycle Scan Mode, Three Channels (AN4 to AN6) Selected)

24.4.3 Input Sampling and A/D Conversion Time

The A/D converter has a built-in sample-and-hold circuit. The A/D converter samples the analog input when the A/D conversion start delay time (t_D) passes after the ADST bit in ADCSR is set to 1, then starts A/D conversion. Figure 24.5 shows the A/D conversion timing. Tables 24.4 and 24.5 show the A/D conversion time.

As shown in figure 24.5, the A/D conversion time (t_{CONV}) includes the A/D conversion start delay time (t_{D}) and the input sampling time (t_{SPL}) . The length of t_{D} varies depending on the timing of the write access to ADCSR. The total conversion time therefore varies within the ranges indicated in tables 24.4 and 24.5.

In scan mode, the values given in tables 24.4 and 24.5 apply to the first conversion time. The values given in table 24.6 apply to the second and subsequent conversions. In either case, bit EXCKS in ADCSR, and bits CKS1 and CKS0 in ADCR should be set so that the conversion time is within the ranges indicated by the A/D conversion characteristics.

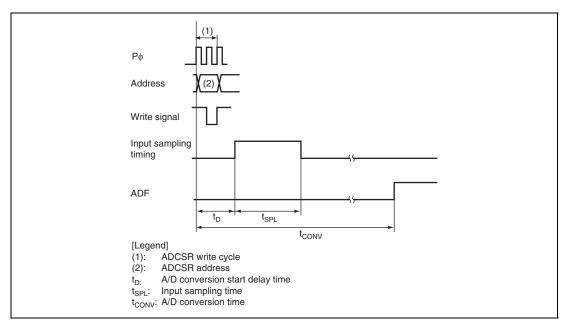


Figure 24.5 A/D Conversion Timing

Table 24.4 A/D Conversion Characteristics (EXCKS = 0)

		CKS1 = 0						CKS1 = 1					
			CKS =	0		CKS =	1		CKS =	0		CKS =	1
Item	Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.
A/D conversion start delay time	t _D	4	_	14	4	_	10	4	_	8	3	_	7
Input sampling time	t _{spl}	_	312	_	_	156	_	_	78	_	_	39	_
A/D conversion time	t _{conv}	518	_	528	262	_	268	134	_	138	69	_	73

Note: Values in the table are the number of states.

Table 24.5 A/D Conversion Characteristics (EXCKS = 1)

			CKS1 = 0					CKS1 = 1						
			CKS = 0)		CKS =	1		CKS = 0)		CKS =	1	
Item	Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	
A/D conversion start delay time	t _D	4	_	14	4	_	10	4	_	8	3	_	7	
Input sampling time	t _{spl}	_	120	_	_	60	_	_	30	_	_	15	_	
A/D conversion time	t _{conv}	326	_	336	166	_	172	86	_	90	45	_	49	

Note: Values in the table are the number of states.

Table 24.6 A/D Conversion Time (Scan Mode)

EXCKS	CKS1	CKS0	Conversion Time (Number of States)	
0	0	0	512 (fixed)	
		1	256 (fixed)	
	1	0	128 (fixed)	
		1	64 (fixed)	
1	0	0	512 (fixed)	
		1	256 (fixed)	
	1	0	128 (fixed)	
		1	64 (fixed)	

24.5 Interrupt Source

The A/D converter generates an A/D conversion end interrupt (ADI) at the end of A/D conversion. Setting the ADIE bit to 1 when the ADF bit in ADCSR is set to 1 after A/D conversion is completed enables ADI interrupt requests.

Table 24.7 A/D Converter Interrupt Source

Name	Interrupt Source	Interrupt Flag
ADI0	A/D conversion end	ADF

24.6 A/D Conversion Accuracy Definitions

This LSI's A/D conversion accuracy definitions are given below.

Resolution

The number of A/D converter digital output codes.

• Quantization error

The deviation inherent in the A/D converter, given by 1/2 LSB (see figure 24.6).

Offset error

The deviation of the analog input voltage value from the ideal A/D conversion characteristic when the digital output changes from the minimum voltage value B'0000000000 (H'000) to B'0000000001 (H'001) (see figure 24.7).

• Full-scale error

The deviation of the analog input voltage value from the ideal A/D conversion characteristic when the digital output changes from B'1111111110 (H'3FE) to B'1111111111 (H'3FF) (see figure 24.7).

• Nonlinearity error

The error with respect to the ideal A/D conversion characteristic between the zero voltage and the full-scale voltage. Does not include the offset error, full-scale error, or quantization error (see figure 24.7).

• Absolute accuracy

The deviation between the digital value and the analog input value. Includes the offset error, full-scale error, quantization error, and nonlinearity error.

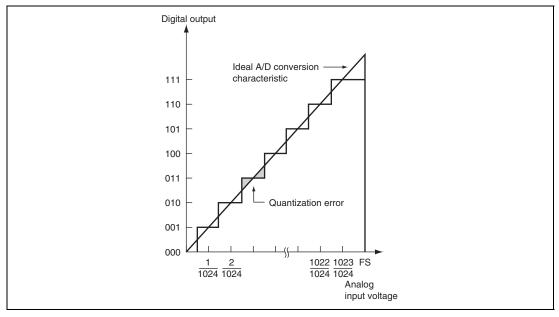


Figure 24.6 A/D Conversion Accuracy Definitions

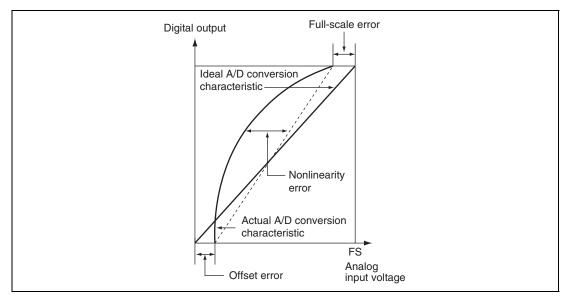


Figure 24.7 A/D Conversion Accuracy Definitions

24.7 Usage Notes

24.7.1 Module Stop Function Setting

Operation of the A/D converter can be disabled or enabled using the module stop control register. The initial setting is for operation of the A/D converter to be halted. Register access is enabled by clearing the module stop state. Set the CKS1 and CKS2 bits to 1 to set ADCLK to φ, and clear the ADST, TRGS1, and TRGS0 bits all to 0 to disable A/D conversion when entering module stop state after operation of the A/D converter. After that, set the module stop control register after executing a dummy read by one word. For details, see section 29, Power-Down Modes.

24.7.2 A/D Input Hold Function in Software Standby Mode

When this LSI enters software standby mode with A/D conversion enabled, the analog inputs are retained, and the analog power supply current is equal to as during A/D conversion. If the analog power supply current needs to be reduced in software standby mode, set the CKS1 and CKS2 bits to 1 to set ADCLK to ϕ , and clear the ADST, TRGS1, and TRGS0 bits all to 0 to disable A/D conversion. After that, enter software standby mode after executing a dummy read by one word.

24.7.3 Restarting the A/D Converter

When the ADST bit has been cleared to 0, A/D converter stops in synchronization with the ADCLK and then enters the standby sate. After the ADST bit has been cleared, the converter may not actually make the transition to the standby state for up to 10 cycles (ϕ), so do not change the channels of the ADCLK, motion mode, or analog input at this time.

When restarting the A/D converter right after the ADST bit has been cleared to 0, read the 16 bytes from ADDRA to ADDRH and then start the A/D converter by setting the ADST bit to 1. If the converter is in single mode or one-cycle scan mode, however, the ADST bit can be set to 1 by clearing the ADF bit to 0 after confirming that the ADF bit had been set to 1 on completion of the previous round of conversion.

24.7.4 Permissible Signal Source Impedance

This LSI's analog input is designed so that the conversion accuracy is guaranteed for an input signal for which the signal source impedance is $5~k\Omega$ or less. This specification is provided to enable the A/D converter's sample-and-hold circuit input capacitance to be charged within the sampling time; if the sensor output impedance exceeds $5~k\Omega$, charging may be insufficient and it may not be possible to guarantee the A/D conversion accuracy. However, if a large capacitance is provided externally for conversion in single mode, the input load will essentially comprise only the internal input resistance of $5~k\Omega$, and the signal source impedance is ignored. However, since a low-pass filter effect is obtained in this case, it may not be possible to follow an analog signal with a large differential coefficient (e.g., $5~mV/\mu s$ or greater) (see figure 24.8). When converting a high-speed analog signal or conversion in scan mode, a low-impedance buffer should be inserted.

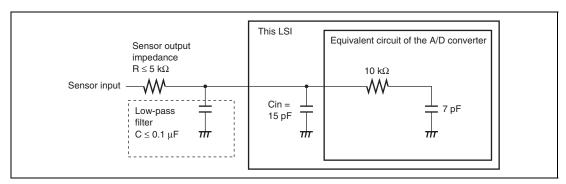


Figure 24.8 Example of Analog Input Circuit

24.7.5 Influences on Absolute Accuracy

Adding capacitance results in coupling with GND, and therefore noise in GND may adversely affect absolute accuracy. Be sure to make the connection to an electrically stable GND such as AVss.

Care is also required to insure that filter circuits do not communicate with digital signals on the mounting board, acting as antennas.

24.7.6 Setting Range of Analog Power Supply and Other Pins

If the conditions shown below are not met, the reliability of the LSI may be adversely affected.

- Analog input voltage range
 The voltage applied to analog input pin ANn during A/D conversion should be in the range AVss ≤ V_{AN} ≤ Vref.
- Relation between AVss and Vss
 As the relationship between AVss and Vss, set AVss = Vss. If the A/D converter is not used, set AVcc = Vcc and AVss = Vss.
- Vref setting range
 The reference voltage at the Vref pin should be set in the range Vref ≤ AVcc.

24.7.7 Notes on Board Design

In board design, digital circuitry and analog circuitry should be as mutually isolated as possible, and layout in which digital circuit signal lines and analog circuit signal lines cross or are in close proximity should be avoided as far as possible. Failure to do so may result in incorrect operation of the analog circuitry due to inductance, adversely affecting A/D conversion values.

Digital circuitry must be isolated from the analog input pins (AN0 to AN11), analog reference power supply (Vref), and analog power supply (AVcc) by the analog ground (AVss). Also, the analog ground (AVss) should be connected at one point to a stable ground (Vss) on the board.

24.7.8 Notes on Noise Countermeasures

A protection circuit connected to prevent damage due to an abnormal voltage such as an excessive surge at the analog input pins (AN0 to AN11) should be connected between AVcc and AVss as shown in figure 24.9. Also, the bypass capacitors connected to AVcc and the filter capacitor connected to the AN0 to AN11 pins must be connected to AVss.

If a filter capacitor is connected, the input currents at the AN0 to AN11 pins are averaged, and so an error may arise. Also, when A/D conversion is performed frequently, as in scan mode, if the current charged and discharged by the capacitance of the sample-and-hold circuit in the A/D converter exceeds the current input via the input impedance (Rin), an error will arise in the analog input pin voltage. Careful consideration is therefore required when deciding the circuit constants.

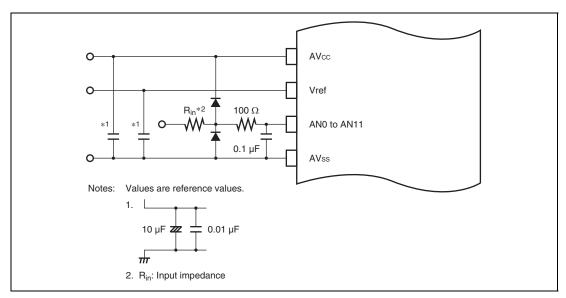


Figure 24.9 Example of Analog Input Protection Circuit

Table 24.8 Analog Pin Specifications

Item	Min.	Max.	Unit
Analog input capacitance	_	15	pF
Permissible signal source impedance	_	5	kΩ

Page 800 of 1054

Section 25 Battery Backup RAM (BBR)

This LSI has on-chip battery backup RAM (BBR).

The BBR consists of CMOS data registers whose contents are retained by the VBAT power.

25.1 **Features**

- 64-byte on-chip data RAM
- Data retained by VBAT power: Data can be retained even while the V_{CC} power is not supplied.

Figure 25.1 shows a block diagram of the BBR.



Figure 25.1 Block Diagram of BBR

25.2 Register Descriptions

Table 25.1 Register Configuration

Register Name	R/W	Initial Value	Address	Data Bus Width
BBR0 to BBR63	R/W*	Undefined	H'FFF800 to H'FFF83F	8
BWPRT	R/W*	H'00	H'FFF841	8

Note: * Data can be read and written during operation at V_{cc} .

25.2.1 BBR Status Register (BBR0 to BBR63)

BBR contains 64 bytes of data registers.

25.2.2 BBR Write Protection Register (BWPRT)

BWPRT is a register that enables or disables writing to BBR registers.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	DWP7	0	R/W	Data Write Protection
6	DWP6	0	R/W	When H'AA is written to BWPRT, writing to the BBR0
5	DWP5	0	R/W	to BBR63 and RSTFR registers is enabled. When a
4	DWP4	0	R/W	value other than H'AA is written to BWPRT, writing to the BBR0 to BBR63 registers is disabled.
3	DWP3	0	R/W	After writing to BBR0 to BBR63 registers, BWPRT must
2	DWP2	0	R/W	be written a value other than H'AA.
1	DWP1	0	R/W	
0	DWP0	0	R/W	

Operation 25.3

The BBR consists of 64 bytes of data registers whose contents are retained by the VBAT power.

The BBR data can be read and written from the CPU while the V_{cc} power is supplied.

When the V_{cc} power supply is stopped after data is written to the BBR, data is retained while the VBAT power is supplied instead of V_{cc} .

When both V_{cc} and VBAT are stopped, the BBR data becomes undefined.

When data is written to BBR0 to BBR63, write H'AA to BWPRT. After writing to BBR0 to BBR63, a value other than H'AA must be written to BWPRT for data protection. Even when a value other than H'AA is written to BWPRT, reading from BBR0 to BBR63 is enabled.

25.4 Usage Notes

25.4.1 Retaining BBR Registers by VBAT Power

The POR signal is issued when the $V_{\rm cc}$ voltage falls. Upon detecting this signal, the BBR switches to data retention by the VBAT power.

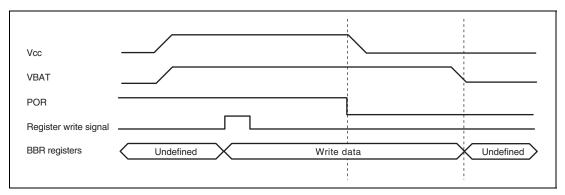


Figure 25.2 Retaining BBR Registers by VBAT Power

25.4.2 Module Stop Mode Setting

BBR operation can be enabled or disabled by the module stop control register. With the initial setting, BBR operation is disabled. Access to BBR registers is enabled when module stop mode is cancelled. For details, see section 29, Power-Down Modes.

25.4.3 Power Supply Setting

While the $V_{\rm cc}$ power is supplied, apply the $V_{\rm cc}$ voltage to the VBAT pin. When the BBR is not used, always apply the $V_{\rm cc}$ voltage to the VBAT pin.

H8S/2113 Group Section 26 RAM

Section 26 RAM

This LSI has 12 Kbytes of on-chip high-speed static RAM. The RAM is connected to the CPU by a 16-bit data bus, enabling one-state access by the CPU for both byte data and word data.

The on-chip RAM can be enabled or disabled by means of the RAME bit in the system control register (SYSCR). For details on SYSCR, see section 3.2.2, System Control Register (SYSCR).

Section 26 RAM H8S/2113 Group

Section 27 Flash Memory

The flash memory has the following features. Figure 27.1 shows a block diagram of the flash memory.

27.1 Features

Size

Product Classification		ROM Size	Address
H8S/2113	R4F2113	128 Kbytes (user mat)	H'000000 to H'01FFFF
		16 Kbytes (user boot mat)	H'000000 to H'003FFF
		8 Kbytes (data flash)	H'020000 to H'021FFF

• Two flash-memory mats according to LSI initiation mode

The on-chip flash memory has two memory spaces in the same address space (hereafter referred to as memory mats). The mode setting at initiation determines which memory mat is initiated first. The mat can be switched by using the bank-switching method after initiation.

- The user memory mat is initiated at a power-on reset in user mode: 128 Kbytes
- The user boot memory mat is initiated at a power-on reset in user boot mode: 16 Kbytes
- Data flash

The chip has 8 Kbytes of data-flash memory.

• Programming/erasing mode

Programming is performed by simultaneous programming of 4 bytes. Erasing is performed in blocks. Even in all erasure, erasing is performed one block at a time.

• Programming/erasing time

Programming times for the user mat: $150 \,\mu s$ (typ.) for simultaneous programming of 4 bytes, $38 \,\mu s$ (typ.) per byte

Programming times for the data flash: $300 \,\mu s$ (typ.) for simultaneous programming of 4 bytes, 75 $\,\mu s$ (typ.) per byte

Erasing time for the user mat and data flash: 200 ms (typ.) per block

• Number of times programming is possible

Programming of the data-flash memory can proceed up to 10,000 times; programming of other blocks can proceed up to 1,000 times.

• Three on-board programming modes

Boot mode: The user mat and data flash can be programmed and erased by using the on-chip SCI. In boot mode, the bit rate between the host and this LSI can be adjusted automatically.

User program mode: The user mat and data flash can be programmed and erased via a desired interface.

User boot mode: A user program for a desired interface can be written and the user mat and data flash can be programmed and erased.

Off-board programming mode

Programmer mode: Using a PROM programmer, the user mat and user boot mat can be programmed/erased.

• Protection function

Protection against accidental programming and accidental erasing

Lock bit protection which is protection against programming/erasing of the flash memory can be set by software.

Access cycle

User mat, user boot mat: One state

Data flash: Two states

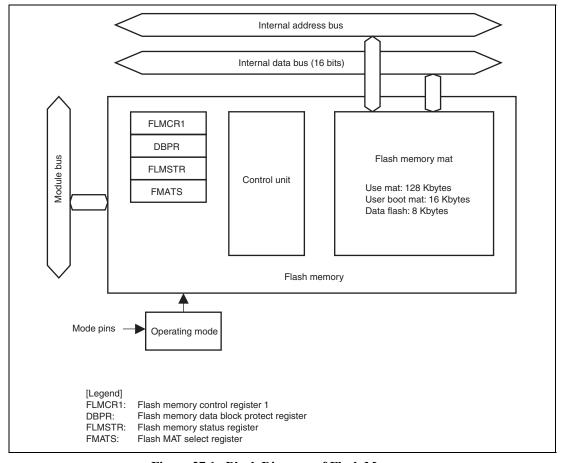


Figure 27.1 Block Diagram of Flash Memory

27.2 Flash Memory Mat Configuration

The flash memory of this chip is configured as a 128-Kbyte user mat, 16-Kbyte user boot mat, and 8-Kbyte data-flash area.

The user mat and user boot mat start at the same address. Therefore, when program execution or data access involves both mats, the mats must be switched by using FMATS.

The user mat and data flash can be read in all modes. However, the user boot mat can be programmed only in boot mode and programmer mode.

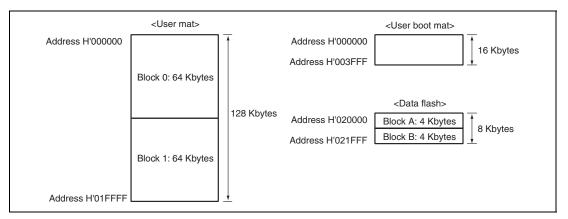


Figure 27.2 Flash Memory Configuration

The size of the user mat is different from that of the user boot mat. An address that exceeds the size of the 16-Kbyte user boot mat should not be accessed. If the attempt is made, data is read as an undefined value.

27.3 Block Structure

Figure 27.3 shows the block structure of the flash memory. In addition to the user mat which stores the operation program of the MCU, the data flash is provided to store data. The heavy-line frames indicate the erase blocks. The thin-line frames indicate the programming units and the values inside the frames indicates the addresses. Erasing is done in erase block units shown in figure 27.3. Programming is done in 2-word or 4-byte units starting from where the lower 4-bit address is H'0, H'4, H'8, or H'C.

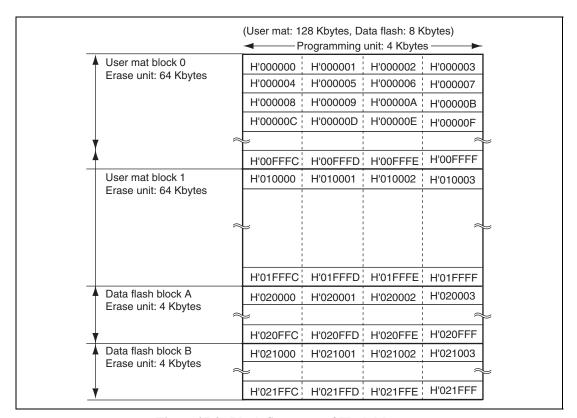


Figure 27.3 Block Structure of Flash Memory

27.4 Register Descriptions

The flash memory has the following registers.

- Flash memory control register 1 (FLMCR1)
- Flash memory data block protect register (DFPR)
- Flash memory status register (FLMSTR)
- Flash mat select register (FMATS)

27.4.1 Flash Memory Control Register 1 (FLMCR1)

FLMCR1 is used to enable or disable programming or erasure of the flash memory, select the mode of programming or erasure, enable or disable the lock bits, and set the programming unit.

Bit	Bit Name	Initial Value	R/W	Description
7, 6	_	0	R	Reserved
				These bits are always read as 0. Writing to these bits has no effect.
5, 4	_	0	R/W	Reserved
				The initial value should not be changed.
3	FMLBD	0	R/W	Flash Memory Lock Bit Disable
				This bit is used to select disabling of the lock bits. Setting the FMLBD bit to 1 allows the programming and erasure of blocks that have lock-bit protection. Refer to table 27.1 for the relation between the value of the FMLBD bit and the effect of lock bits. Issuing commands for programming or erasure in states where programming and erasure are not possible leads to a command-sequence error.
				0: Lock bits are enabled.
				1: Lock bits are disabled.

Bit	Bit Name	Initial Value	R/W	Description
2	FMWUS	1	R/W	When the FMWUS bit is 0, byte instructions can be used to issue software commands. When the FMWUS bit is 1, word instructions can be used to issue software commands. For information on software commands, see 27.7, Software Commands.
				Software commands are issued by instructions that write bytes.
				 Software commands are issued by instructions that write words.
1	_	0	R/W	Reserved
				The initial value should not be changed.
0	FMCMDEN *1*2*3	0	R/W	Flash Memory Software Command Enable
	'-**			Setting this bit to 1 (CPU programming mode) enables the acceptance of commands. When software commands are to be issued for the data flash, make settings as described in section 27.4.2, Flash Memory Data Block Protect Register (DFPR).
				0: Flash memory software commands are disabled.
				1: Flash memory software commands are enabled.

Notes: 1. To set this bit to 1, write 0 and then 1 to it. Ensure that interrupts are not received during this process.

- 2. The value of this bit becomes 0 when the FMRDY bit in FLMSTR changes from 0 to 1.
- 3. Program code that sets the FMCDEN bit to 1 must be executed from RAM.

Table 27.1 Effect of the FMLDB and Lock Bits on Possibility of Programming and Erasure

FMLBD	Lock Bit	Programming and Erasure
1	_	Possible
0	1 (erasure state)	-
	0 (programming state)	Not possible

27.4.2 Flash Memory Data Block Protect Register (DFPR)

DFPR controls programming of the data-flash memory in block units. Release protection of the data-flash memory before programming it.

Bit	Bit Name	Initial Value	R/W	Description
7	_	0	R	Reserved
6	_	0	R	These bits are always read as 0. Writing to these bits has
5	_	0	R	no effect.
4	_	0	R	_
3	_	0	R	_
2	_	0	R	_
1	DBPT1	0	_	Data Flash B E/W Protect*
				0: Data flash B E/W enabled
				1: Data flash B E/W disabled
				To clear this bit to 0, be sure to write 1 and then write 0 in a row. Ensure that interrupts are not received during this process.
0	DBPT0	0	R/W	Data Flash A E/W Protect*
				0: Data flash A E/W enabled
				1: Data flash A E/W disabled
				To clear this bit to 0, be sure to write 1 and then write 0 in a row. Ensure that interrupts are not received during this process.

Note: * The DBPT1 and DBPT0 bits become 1 when the FMCMDEN bit changes from 0 to 1.

Clear the bit corresponding to the mat of the data flash memory to 0 again before programming the data flash memory.

27.4.3 Flash Memory Status Register (FLMSTR)

Bit	Bit Name	Initial Value	R/W	Description
7, 6	_	All 0	_	Reserved
				The initial value should not be changed.
5	FMERSF	0	R	Erase or Blank Check Status Flag
				FMERSF is a read-only bit which indicates the state when an erase or black check command is executed.
				0: Successfully completed
				1: Ended with an error
				[Setting conditions]
				 Although an erase command is executed, data is not erased correctly.
				 When a blank check command is executed, the specified block is not blank
				[Clearing condition]
				When a clear status command is issued
4	FMERSF	0	R	Erase Suspend Flag
				0: In the state other than erase suspend
				1: In the erase suspend state
3	FMPRSF	0	R	Program Status Flag
				0: Successfully completed
				1: Ended with an error
2	_	0	R	Reserved
				This bit is always read as 0. Writing to this bit has no effect.

		Initial		
Bit	Bit Name	Value	R/W	Description
1	FMDATRDY	1	R	Flash Memory Data Flash Ready/Busy Status
				This bit indicates the state of the data flash operation.
				0: Busy
				1: Ready
				[Setting condition]
				When data flash is not being programmed or erased
				[Clearing condition]
				When data flash is being programmed or erased
0	FMRDY	1	R	Flash Memory Ready/Busy Status
				This bit indicates the state of the flash memory operation.
				0: Busy
				1: Ready
				[Setting condition]
				When flash memory is not being programmed or erased
				[Clearing condition]
				When flash memory is being programmed or erased

Note: The value of the FMERSF or FMPRSF bit becomes 0 when a clear status command is executed.

27.4.4 Flash Mat Select Register (FMATS)

FMATS specifies whether the user mat or user boot mat is selected.

Bit	Bit Name	Initial Value	R/W	Description
7	MS7	0/1*	R/W	Mat Select
6	MS6	0	R/W	The user mat is selected when a value other than H'AA
5	MS5	0/1*	R/W	is written, and the user boot mat is selected when H'AA
4	MS4	0	R/W	is written. The mat is switched by writing a value to FMATS. To switch the mat, make sure to follow section
3	MS3	0/1*	R/W	27.11, Switching between User Mat and User Boot Mat.
2	MS2	0	R/W	(The user boot mat cannot be programmed in user program mode even if the user boot mat is selected by
1	MS1	0/1*	R/W	FMATS. The user boot mat must be programmed in
0	MS0	0	R/W	boot mode or programmer mode.)
				[Programmable condition]
				Execution state in the on-chip RAM

Note: * In user boot mode, the initial value is 1. In the other modes, it is 0.

27.5 Mode Transition Diagram

When the mode pins are set in the reset state and reset start is executed, this LSI enters each operating mode as shown in figure 27.4. Although the flash memory can be read in user mode, it cannot be programmed or erased. The flash memory can be programmed or erased in boot mode, user program mode, user boot mode, and programmer mode. The differences between boot mode, user program mode, user boot mode, and programmer mode are shown in table 27.2.

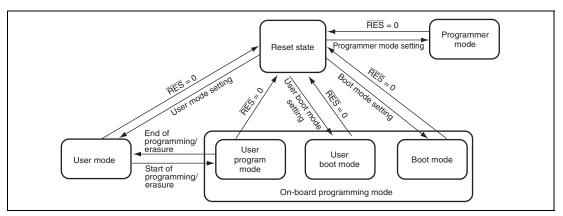


Figure 27.4 Mode Transition of Flash Memory

Table 27.2 Flash Memory Programming Modes

Item	Boot Mode	User Program Mode	User Boot Mode	Programmer Mode
Overview of function	User mat is programmed using an on-chip SCI interface.	User mat is protein the CPU executor commands.	User mat is programmed using a dedicated parallel programmer.	
	Standard serial I/O mode 1: Clocked synchronous serial I/O	EW0 mode: Areas other than the flash memory can be programmed		
	Standard serial I/O mode 2: Asynchronous serial I/O			
Programming/ erasing environment	On-board programming	On-board programming	On-board programming	PROM programmer
Programmable/	User mat	User mat	User mat	User mat
erasable mat	 Data flash 	 Data flash 	• Data	 User boot mat
	 User boot mat 		flash	
All erasure	O (Automatic)	0	0	O (Automatic)
Block division erasure	O*1	0	0	X
Program data transfer	From host via SCI	Via any device	Via any device	Via programmer
Reset initiation mat	Embedded program storage mat	User mat	User boot mat* ²	_
Transition to user mode	Changing mode setting and reset	Changing FMCMDEN bit setting	Changing mode setting and reset	_

Notes: 1. All erasure is performed. After that, the specified block can be erased.

 In this LSI, user program mode is defined as the period from the start of the specified programming and erasure procedure in user mode to completion of the procedure. For details on the programming and erasure procedure and erasure, see section 27.6.1, User Program Mode.

27.6 On-Board Programming Mode

When the mode pins (MD1, and MD2) are set to on-board programming mode and the reset start is executed, a transition is made to on-board programming mode in which the on-chip flash memory can be programmed/erased. On-board programming mode has three operating modes: boot mode, user boot mode, and user program mode.

Table 27.3 shows the pin settings for the several operating modes. For details on the state transition of flash memory corresponding to the operating modes, see figure 27.4.

Table 27.3 On-Board Programming Mode Settings

Mode Setting	MD2	MD1	NMI
Boot mode	1	0	1
User program mode	0	1	0/1
User boot mode	1	0	0

27.6.1 User Program Mode

In the user program mode, the flash memory can be programmed by the CPU through execution of software commands. In this mode, the user mat and data flash can be programmed without using a ROM programmer with the microcomputer mounted on a system board.

The programming and block erase commands should be executed only in each block area of the user program.

The user program mode provides the erase/write 0 mode (EW0 mode). Table 27.4 gives an overview of the EW0 mode specifications.

Table 27.4 EW0 Mode Specifications

Item	Description
Operating mode	Single-chip mode
Area for storing the programming control program	User mat
Area for executing the programming control program	The programming control program should be transferred to an area outside the flash memory (such as RAM) before execution* ²
Programmable area	User mat and data flash
Limitations on software commands	None
Mode after programming or erasure	Read status register mode
CPU state during automatic programming or erasure	Operating* ¹
Flash memory status detection	Using a program to read the FMERSF, FMERSE, and FMEBSF bits in FLMSTR

Notes: 1. Make sure that no interrupts are generated.

2. In the user program mode, the programming control program should be executed in the on-chip RAM or an external area.

27.6.2 EW0 Mode

When the FMCMDEN bit in FLMCR1 is set to 1 after the programming control program has been transferred to RAM and execution has branched to the program, the flash memory will be in the EW0 mode. Setting the FMCMDEN bit in FLMCR1 to 1 causes the flash memory to shift to the user programming mode, in which commands can be accepted. Figure 27.5 shows how to shift the flash memory into and out of the EW0 mode.

Programming and erasure are controlled by software commands. The state of the flash memory after programming or erasure can be checked by reading FLMSTR or the status register.

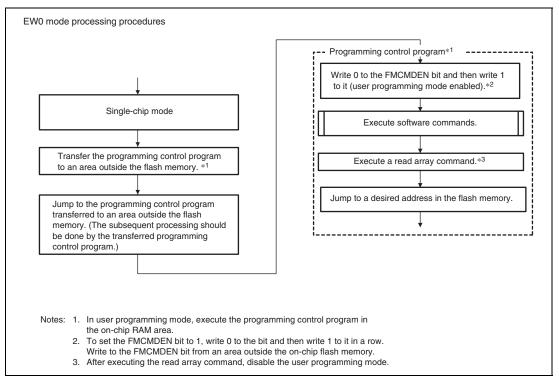


Figure 27.5 Setting and Clearing EW0 Mode

27.7 Software Commands

Table 27.5 lists the software commands for word instructions. Table 27.6 lists the software commands for byte instructions. Whether to use a word instruction or byte instruction is specified by the FMWUS bit in FLMCR1.

Table 27.5 List of Software Commands (Word Instructions: FMWUS = 1)

Software	First Bus Cycle			Second Bus Cycle			Third Bus Cycle		
Command	Mode	Address	Data	Mode	Address	Data	Mode	Address	Data
Erase	Write	х	H'2020	Write	ВА	H'D0D0			
Program	Write	WA	H'4141	Write	WA	WD1	Write	WA	WD2
Blank check	Write	х	H'525	Write	ВА	H'D0D0			
Lock bit program	Write	X	H'7777	Write	WA0	H'D0D0			
Read array	Write	Х	H'FFFF						
Clear status	Write	х	H'5050						
Lock bit read	Write	х	H'7171	Read	ВА	H'xxxx		•	

[Legend]

x: Any address in the user mat or data flash

xx: Any 8-bit data

BA: Any address in the block

WA: Address for programming (The lower 2-bit address is ignored. Specify the same address

for programming for respective command cycles.)

WDn: Data for programming (16 bits)

Table 27.6 List of Software Commands (Byte Instructions: FMWUS = 0)

Software	First Bus Cycle			Second Bus Cycle			Third Bus Cycle		
Command	Mode	Address	Data	Mode	Address	Data	Mode	Address	Data
Erase	Write	х	H'20	Write	ВА	H'D0			
Program	Write	WA	H'41	Write	WA	WD1	Write	WA	WD2 to WD4
Blank check	Write	х	H'25	Write	BA	H'D0			
Lock bit program	Write	Х	H'77	Write	ВА	H'D0			
Read array	Write	х	H'FF						
Clear status	Write	х	H'50						
Lock bit read	Write	Х	H'71	Read	ВА	H'xx			

[Legend]

x: Any address in the user mat or data flash

xx: Any 8-bit data

BA: Any address in the block

WA: Address for programming (The lower 2-bit address is ignored. Specify the same address

for programming for respective command cycles.)

WDn: Data for programming (8 bits)

27.7.1 Read Array

This command places the flash memory in a mode that allows reading of flash memory data.

Write H'FF in the first bus cycle to shift the flash memory into the read array mode. Read access to the target addresses in subsequent bus cycles will obtain the data of the given addresses.

As the flash memory stays in the read array mode until another command is issued, multiple addresses can be read in sequence.

27.7.2 Lock Bit Read Command

This command places the flash memory in a mode that allows reading of its lock bits.

Writing H'71 in the first bus cycle to any location within the desired block initiates reading of the lock bit for the given block.

When the address of the specified block (block address, BA) is read after the transition to the lock-bit reading mode, bit 14 of the value read will indicate the value of the lock bit. Do not issue this command by executing program code in ROM.

27.7.3 Clear Status Register

This command clears the status register.

Write H'50 in the first bus cycle, and the FMERSF and FMPRSF bits in FLMSTR are cleared to 0.

27.7.4 Program

This command writes data to the flash memory in 4-byte units.

The command and data size can be specified through the FMWUS bit in FLMCR1. When the FMWUS bit is 0, data is written through byte instructions. Write H'41 in the first bus cycle and write data to the target addresses in the second to fifth bus cycles; the flash memory starts automatic programming and verification of data*.

When the FMWUS bit is 1, data is written through word instructions. Write H'4141 in the first bus cycle and write data to the target addresses in the second and third bus cycles; the flash memory starts automatic programming and verification of data*.

Completion of programming can be checked through the FMRDY bit in FLMSTR. The FMRDY bit is 0 during programming and becomes 1 when programming is completed. After programming is completed, the result can be checked through the FMPRSF bit in FMRSTR (see section 27.8, Full Status Check). Figure 27.6 shows a flowchart of the program command processing.

Do not write additional data to the address that has been programmed.

When the lock bit for the specified block is 0 (locked) and the FMLBD bit is 0 (lock bit enabled), the program command is not accepted for the block.

Note: * The lower two bits of the write address are ignored.

H8S/2113 Group

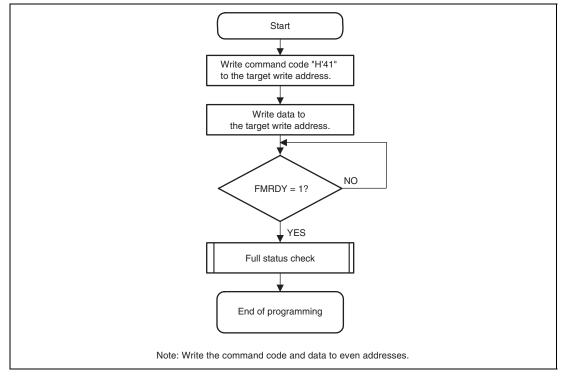


Figure 27.6 Flowchart of Program Command Processing

27.7.5 Block Erase

Page 828 of 1054

Write H'20 in the first bus cycle and H'D0 to any location in the target block in the second bus cycle; the flash memory starts automatic erasure and verification of erased status in the specified block.

Completion of erasure can be checked through the FMRDY bit in FLMSTR. The FMRDY bit is 0 during erasure and becomes 1 when erasure is completed.

After erasure is completed, the result can be checked through the FMEBSF bit in FMRSTR (see section 27.8, Full Status Check).

When the lock bit for the specified block is 0 (locked) and the FMLBD bit is 0 (lock bit enabled), the erase command is not accepted for the block.

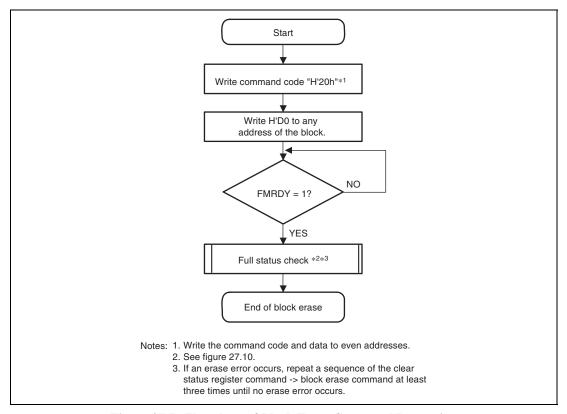


Figure 27.7 Flowchart of Block Erase Command Processing

27.7.6 Block Blank Check

Write H'25 in the first bus cycle and H'D0 to any location in the target block in the second bus cycle; the flash memory starts blank check in the specified block.

Completion of blank check can be checked through the FMRDY bit in FLMSTR. The FMRDY bit is 0 during blank check and becomes 1 when blank check is completed.

After blank check is completed, the result can be checked through the FMEBSF bit in FMRSTR (see section 27.8, Full Status Check). The FMRDY bit in FLMSTR becomes 0 as soon as blank check starts and returns to 0 as soon as blank check is completed.

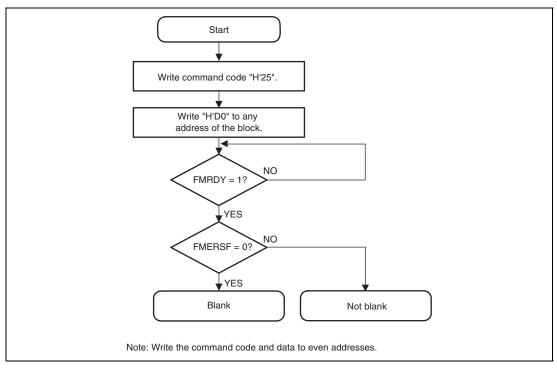


Figure 27.8 Flowchart of Block Blank Check Command Processing

27.7.7 Program Lock Bit

Writing H'77 in the first bus cycle and H'D0 to any location within the desired block in the second bus cycle of the command initiates programming of the lock bit for the given block.

The FMRDY bit in the FLMSTR can be used to check for completion of lock-bit programming: the value of the bit is 0 while programming is in progress and 1 when programming is completed.

After lock-bit programming is completed, the FMPRSF bit in the FLMSTR indicates the result of programming (see 27.8, Full Status Check).

Figure 27.9 shows the flow of lock-bit programming. The flowchart does not show the transitions of the FMRDY bit in the FLMSTR, which becomes 0 with the start of programming and 1 with completion of programming.

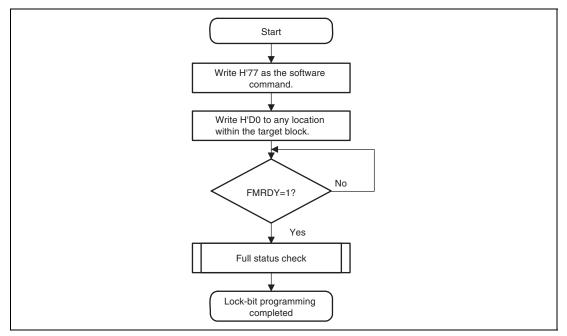


Figure 27.9 Flowchart of Lock-Bit Programming

27.7.8 Sequencer Status (FMRDY Bit)

The sequencer status bit indicates the state of flash memory operation. Its value is 0 during execution of a program, block erase, or block blank check, and 1 in other cases.

27.7.9 Erase Status (FMEBSF Bit)

See section 27.8, Full Status Check.

27.7.10 Programming Status (FMPRSF Bit)

See section 27.8, Full Status Check.

27.8 Full Status Check

After issuing a command other than ready array, lock bit read, or clear status, read the status bits (full status check) to check whether the command has generated an error.

When an error occurs, the FMEBSF or FMPRSF bit in FLMSTR becomes 1 to indicate occurrence of the error.

Table 27.7 shows the errors and FLMSTR status and figure 27.10 shows a flowchart of full status check processing and corrective actions for each error.

Table 27.7 Errors and FLMSTR Status

State of FLMSTR

FMEBSF	FMPRSF	Error	Error Conditions	
0	0	Successful completion		
0 1		Programming error When a program command is issued but programming is not done correctly		
		Lock bit programming error	When a lock bit program command is issued but programming is not done correctly	
1 0		Erase error	When an erase command is issued but the block is not erased correctly	
		Blank check error	When a blank check command is issued and the checked block is not blank	
1	1	Command sequence error	 When a command is not written correctly When an invalid value (a value other than H'D0 or H'FF) is written in the last cycle of a 2-cycle command 	

H8S/2113 Group

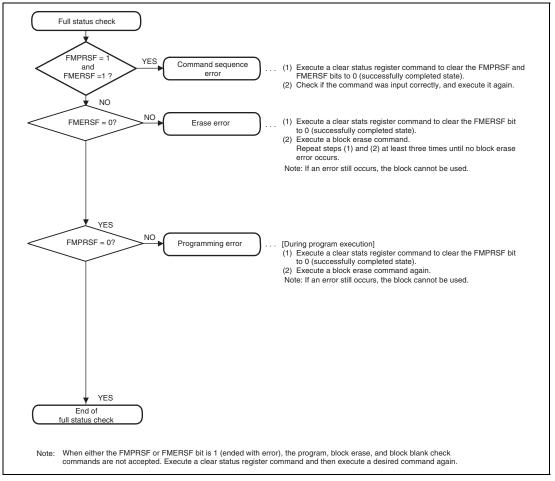


Figure 27.10 Flowchart of Full Status Check Processing and Corrective Actions for Each Error

27.9 Notes on User Program Mode

27.9.1 Prohibited Interrupts (EW0 Mode)

- The NMI and watchdog timer interrupts can be used because FLMCR1 is forcibly initialized
 when an interrupt is generated; specify the destination address of each interrupt routine in the
 fixed vector table. Flash memory programming is terminated when an NMI interrupt or a
 watchdog timer interrupt occurs. In this case, re-execute the programming program after the
 interrupt routine is completed.
- The address-match interrupt cannot be used because the interrupt processing accesses data in the flash memory.

27.9.2 Access Method

To set the FMCMDEN bit to 1, be sure to write 0 to the bit and then write 1 in a row. Make sure that no interrupt is generated between writing 0 and 1.

27.9.3 Programming (EW0 Mode)

If the power-supply voltage falls during programming of the block that stores the programming control program, the programming control program cannot be correctly modified and the flash memory may not be programmed after that. In this case, use the on-board programming mode or programmer mode instead.

27.9.4 Writing Commands or Data

The address to write a command code or data should be a multiple of four (0, 4, 8, C, ...).

27.9.5 Software Standby Mode

Before entering the stop mode, set the FMCMDEN bit to 0 (CPU programming mode disabled), disable the DMA transfer, and then make a transition to the software standby mode.

27.10 Boot Mode

Boot mode executes programming/erasing of the user mat and the user boot mat by means of the control command and program data transmitted from the externally connected host via the on-chip SCI.

In boot mode, the tool for transmitting the control command and program data, and the program data must be prepared in the host. The serial communication mode is set to asynchronous mode. The system configuration in boot mode is shown in figure 27.11. Interrupts are ignored in boot mode. Configure the user system so that interrupts do not occur.

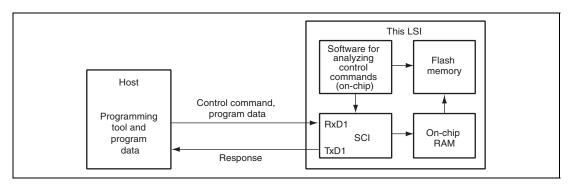


Figure 27.11 System Configuration in Boot Mode

Serial Interface Setting by Host:

Page 836 of 1054

The SCI is set to asynchronous mode, and the serial transmit/receive format is set to 8-bit data, one stop bit, and no parity.

When a transition to boot mode is made, the boot program embedded in this LSI is initiated.

When the boot program is initiated, this LSI measures the low period of asynchronous serial communication data (H'00) transmitted consecutively by the host, calculates the bit rate, and adjusts the bit rate of the SCI to match that of the host.

When bit rate adjustment is completed, this LSI transmits 1 byte of H'00 to the host as the bit adjustment end sign. When the host receives this bit adjustment end sign normally, it transmits 1 byte of H'55 to this LSI. When reception is not executed normally, initiate boot mode again. The bit rate may not be adjusted within the allowable range depending on the combination of the bit rate of the host and the system clock frequency of this LSI. Therefore, the transfer bit rate of the host and the system clock frequency of this LSI must be as shown in table 27.8.

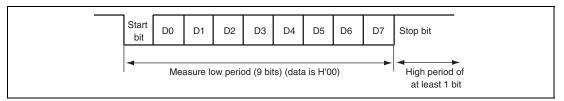


Figure 27.12 Automatic-Bit-Rate Adjustment Operation

Table 27.8 System Clock Frequency for Automatic-Bit-Rate Adjustment

Bit Rate of Host	System Clock Frequency of This LSI			
9,600 bps	8 to 20 MHz			
19,200 bps	8 to 20 MHz			

27.10.1 User Boot Mode

This LSI has user boot mode that is initiated with different mode pin settings than those in boot mode or user program mode. User boot mode is a user-arbitrary boot mode, unlike boot mode that uses the on-chip SCI.

Only the user mat and data flash can be programmed/erased in user boot mode. Programming/erasing of the user boot mat is only enabled in boot mode or programmer mode.

(1) User Boot Mode Initiation

For the mode pin settings to start up user boot mode, see table 27.3.

When the reset start is executed in user boot mode, the built-in check routine runs. The user mat, data flash, and user boot mat states are checked by this check routine.

While the check routine is running, NMI and all other interrupts cannot be accepted.

Next, processing starts from the execution start address of the reset vector in the user boot mat. At this point, H'AA is set to FMATS because the execution target mat is the user boot mat.

(2) User Mat Programming in User Boot Mode

For programming the user mat in user boot mode, the user-boot-mat selection state must be switched to the user-mat selection state by setting FMATS. However, switching back from the user-mat selection state to the user-boot-mat selection state after programming completes is impossible.

Figure 27.13 shows the procedure for programming the user mat in user boot mode.

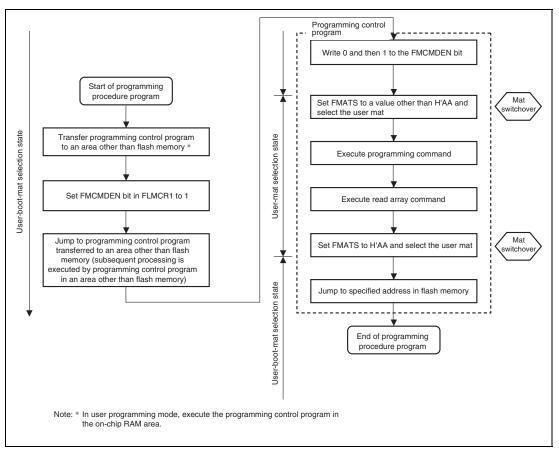


Figure 27.13 Procedure for Programming the User Mat in User Boot Mode

As shown in figure 27.13, the difference between the programming procedures in user program mode and user boot mode is whether or not the mat is switched.

In user boot mode, the user boot mat is seen in the flash memory space and the user mat is hidden behind this. For programming of the user mat, the user mat is switched in over the user boot mat. The user boot mat is hidden while the user mat is being programmed, so the program that handles the programming procedure must be executed in an area other than flash memory. Re-selecting the user boot mat after programming of the user mat has been completed is not possible.

Mat switching is accomplished by writing specific values to FMATS. Note, however, that access to either mat is not possible until switching of the mats is completed. Furthermore, the state is not definite, so if an interrupt is generated, the mat from which the interrupt vector will be and so on is not settled. Switch the mats in accord with the description in section 27.11, Switching between User Mat and User Boot Mat.

Except for the mat switching, the programming procedure is the same as that in user program mode.

(3) User Mat Erasing in User Boot Mode

For erasing the user mat in user boot mode, additional processing made by setting the FMMS bit in FLMMATS is required: switching from the user boot ROM to the user mat, and switching back to the user boot ROM after erasing completes.

Figure 27.14 shows the procedure for erasing the user mat in user boot mode.

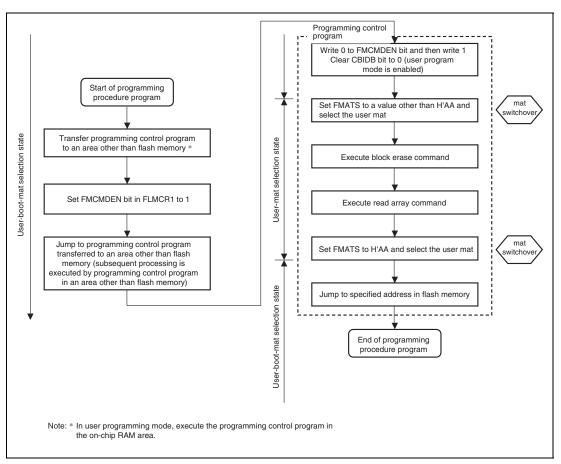


Figure 27.14 Procedure for Erasing User Mat in User Boot Mode

The difference between the erasing procedures in user program mode and user boot mode is the memory mat switching, as shown in figure 27.14.

Mat switching is accomplished by writing specific values to FMATS. Note, however, that access to either mat is not possible until switching of the mats is completed. Furthermore, the state is not definite, so if an interrupt is generated, the mat from which the interrupt vector will be and so on is not settled. Switch the mats in accord with the description in section 27.11, Switching between User Mat and User Boot Mat.

Except for the mat switching, the erasing procedure is the same as that in user program mode.

27.11 Switching between User Mat and User Boot Mat

It is possible to switch between the user mat and user boot mat. However, the following procedure is required because both of these mats are allocated to address 0.

(Switching to the user boot mat disables programming and erasing. Programming of the user boot mat should take place in boot mode or programmer mode.)

- 1. Mat switching by FMATS should always be executed from the on-chip RAM.
- To ensure that switching has finished and access is made to the newly switched mat, execute four NOP instructions in the same on-chip RAM immediately after writing to FMATS (this prevents accessing the flash memory during mat switching).
- 3. If an interrupt has occurred during switching, there is no guarantee of which memory mat is being accessed.
 - Always mask the maskable interrupts before switching between mats. In addition, configure the system so that NMI interrupts do not occur during mat switching.
- After the mats have been switched, take care because the interrupt vector table will also have been switched.
- 5. Memory sizes of the user mat and user boot mat are different. Do not access a user boot mat in a space of 16 Kbytes or more. If access goes beyond the 16-Kbyte space, the values read are undefined.

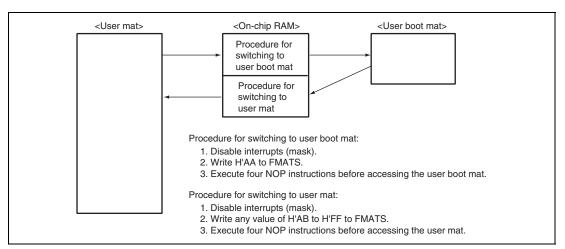


Figure 27.15 Switching between User Mat and User Boot Mat

27.12 Protection

There are two types of protection against the flash memory reading, programming, and erasure: software protection and lock bit protection.

27.13 Software Protection

Clearing the FMCMDEN bit in the flash memory control register (FLMCR1) by software specifies software command-disabled state. While this bit is cleared, no software commands are executed.

Through the setting in the flash memory data protect register (DFPR), the data flash can be protected in block units. When the DFPR1 and DFPR0 bits in DFPR are set to 1, the entire data flash is protected.

27.14 Lock Bit Protection

Each flash memory block has a nonvolatile lock bit. The lock bit functions when the FMLBD bit is 0 (lock bit enabled). Programming and erasure in each block can be prohibited (locked) through the lock bit setting to protect the block against accidental programming or erasure. The block status changes according to the lock bit as follows.

Lock bit is 0: Locked state (the block cannot be programmed or erased)

Lock bit is 1: Unlocked state (the block can be programmed and erased)

The lock bit becomes 0 (locked) when a lock bit program command is executed; it becomes 1 (unlocked) when the block is erased. The lock bit cannot be set to 1 through command execution.

The lock bit can be read by issuing a read lock bit data command.

Setting the FMLBD bit to 1 disables the lock bit function and places all blocks in unlocked state (although each lock bit value does not change). Clearing the FMLBD bit to 1 enables the lock bit function (each lock bit retains its previous value).

Issuing a block erase command while the FMLBD bit is 1 erases the specified block regardless of the lock bit value. After the block is erased, the lock bit becomes 1.

For details of each command, refer to section 27.7, Software Commands.

27.15 Programmer Mode

Along with its on-board programming mode, this LSI also has a programmer mode as a further mode for the writing and erasing of programs and data. In programmer mode, a general-purpose PROM programmer that supports the 128-Kbyte device type can be used to write programs to the on-chip ROM.

The user mat and user boot mat can be programmed and erased in programmer mode.

27.16 Standard Serial Communication Interface Specifications for Boot Mode

The boot program initiated in boot mode performs serial communication using the host and onchip SCI. The serial communication interface specifications are shown below.

The boot program has three states.

1. Bit-rate-adjustment state

In this state, the boot program adjusts the bit rate to achieve serial communication with the host. Initiating boot mode enables starting of the boot program and entry to the bit-rate-adjustment state. The program receives the command from the host to adjust the bit rate. After adjusting the bit rate, the program enters the inquiry/selection state.

2. Inquiry/selection state

In this state, the boot program responds to inquiry commands from the host. The device name, clock mode, and bit rate are selected. After selection of these settings, the program is made to enter the programming/erasing state by the command for a transition to the programming/erasing state. The program transfers the libraries required for erasure to the on-chip RAM and erases the user mat, data flash, and user boot mat before the transition.

3. Programming/erasing state

Programming and erasure by the boot program take place in this state. The boot program is made to transfer the programming/erasing programs to the on-chip RAM by commands from the host. Sum checks and blank checks are executed by sending these commands from the host.

These boot program states are shown in figure 27.16.

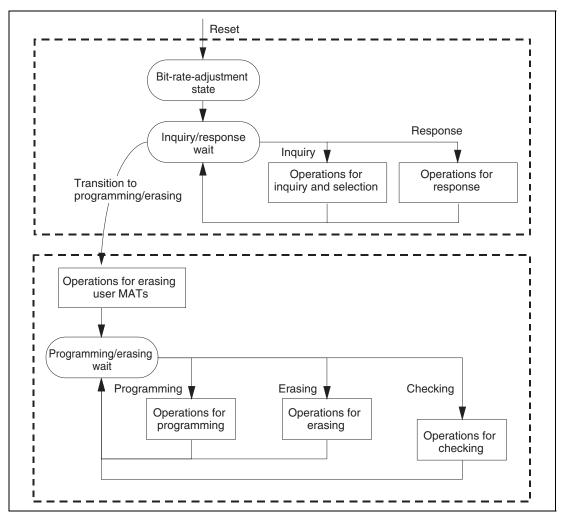


Figure 27.16 Boot Program States

(1) Bit-Rate-Adjustment State

The bit rate is calculated by measuring the period of transfer of a low-level byte (H'00) from the host. The bit rate can be changed by the command for a new bit rate selection. After the bit rate has been adjusted, the boot program enters the inquiry and selection state. The bit-rate-adjustment sequence is shown in figure 27.17.

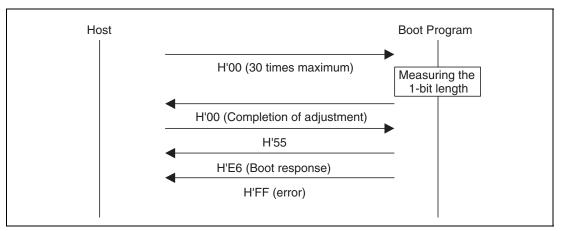


Figure 27.17 Bit-Rate-Adjustment Sequence

(2) Communications Protocol

After adjustment of the bit rate, the protocol for serial communications between the host and the boot program is as shown below.

1. One-byte commands and one-byte responses

These one-byte commands and one-byte responses consist of the inquiries and the ACK for successful completion.

2. n-byte commands or n-byte responses

These commands and responses are comprised of n bytes of data. These are selections and responses to inquiries.

The program data size is not included under this heading because it is determined in another command.

3. Error response

The error response is a response to inquiries. It consists of an error response and an error code and comes two bytes.

4. Programming of 128 bytes

The size is not specified in commands. The size of n is indicated in response to the programming unit inquiry.

5. Memory read response

This response consists of four bytes of data.

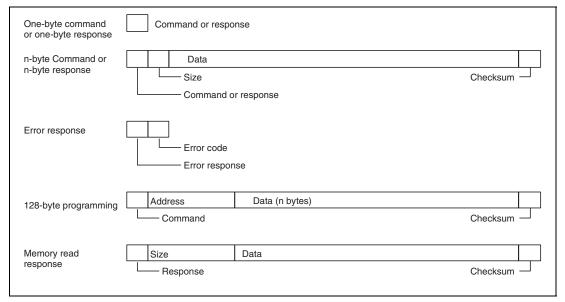


Figure 27.18 Communication Protocol Format

- Command (one byte): Commands including inquiries, selection, programming, erasing, and checking
- Response (one byte): Response to an inquiry
- Size (one byte): The amount of data for transmission excluding the command, amount of data, and checksum
- Data (n bytes): Detailed data of a command or response
- Checksum (one byte): The checksum is calculated so that the total of all values from the command byte to the SUM byte becomes H'00.
- Error response (one byte): Error response to a command
- Error code (one byte): Type of the error
- Address (four bytes): Address for programming
- Data (n bytes): Data to be programmed (the size is indicated in the response to the programming unit inquiry.)
- Data Size (four bytes): Four-byte response to a memory read

(3) Inquiry and Selection States

The boot program returns information from the flash memory in response to the host's inquiry commands and sets the device code, clock mode, and bit rate in response to the host's selection command.

Table 27.9 lists the inquiry and selection commands.

Table 27.9 Inquiry and Selection Commands

Command	Command Name	Description
H'20	Supported device inquiry	Inquiry regarding device codes
H'10	Device selection	Selection of device code
H'21	Clock mode inquiry	Inquiry regarding numbers of clock modes and values of each mode
H'11	Clock mode selection	Indication of the selected clock mode
H'22	Division ratio inquiry	Inquiry regarding the number of frequency-divided clock types, the number of division ratios and the values of each division
H'23	Operating clock frequency inquiry	Inquiry regarding the maximum and minimum values of the main clock and peripheral clocks
H'24	User boot mat information inquiry	Inquiry regarding the a number of user mats and the start and last addresses of each mat
H'25	User mat information inquiry	Inquiry regarding the a number of user mats and the start and last addresses of each mat
H'26	Block for erasing information Inquiry	Inquiry regarding the number of blocks and the start and last addresses of each block
H'27	Programming unit inquiry	Inquiry regarding the unit of program data
H'2A	Data flash inquiry	Checks whether or not data flash is present
H'2B	Data flash information inquiry	Inquiry regarding the number of data flash areas and the start and last addresses of each data flash area
H'3F	New bit rate selection	Selection of new bit rate
H'40	Transition to programming/erasing state	Erasing of user mat, and entry to programming/ erasing state
H'4F	Boot program status inquiry	Inquiry into the operated status of the boot program

The selection commands, which are device selection (H'10), clock mode selection (H'11), and new bit rate selection (H'3F), should be sent from the host in that order. When two or more selection commands are sent at once, the last command will be valid.

All of these commands, except for the boot program status inquiry command (H'4F), will be valid until the boot program receives the programming/erasing transition (H'40). The host can choose the needed commands and make inquiries while the above commands are being transmitted. H'4F is valid even after the boot program has received H'40.

(a) Supported Device Inquiry

The boot program will return the device codes of supported devices and the product code in response to the supported device inquiry.

Command H'20

• Command, H'20, (one byte): Inquiry regarding supported devices

Response	H'30	Size	Number of devices	
Number of characters		Device	code	Product name
	SUM			

- Response, H'30, (one byte): Response to the supported device inquiry
- Size (one byte): Number of bytes to be transmitted, excluding the command, size, and checksum, that is, the total amount of data contributes by the number of devices, characters, device codes and product names
- Number of devices (one byte): The number of device types supported by the boot program
- Number of characters (one byte): The number of characters in the device codes and boot program's product name
- Device code (four bytes): ASCII code of the supporting product
- Product name (n bytes): Type name of the boot program in ASCII-coded characters
- SUM (one byte): Checksum
 The checksum is calculated so that the total number of all values from the command byte to the SUM byte becomes H'00.

(b) Device Selection

The boot program will set the supported device to the specified device code. The program will return the selected device code in response to the inquiry after this setting has been made.

Command H'10 Size Device code SUM

- Command, H'10, (one byte): Device selection
- Size (one byte): Amount of device-code data This is fixed at 4
- Device code (four bytes): Device code (ASCII code) returned in response to the supported device inquiry
- SUM (one byte): Checksum

Response H'06

• Response, H'06, (one byte): Response to the device selection command ACK will be returned when the device code matches

Error response H'90 ERROR

• Error response, H'90, (one byte): Error response to the device selection command

ERROR : (one byte): Error code

H'11: Checksum error

H'21: Device code error, that is, the device code does not match

(c) Clock Mode Inquiry

The boot program will return the supported clock modes in response to the clock mode inquiry.

Command H'21

• Command, H'21, (one byte): Inquiry regarding clock mode

Response H'31 Size Number of modes Mode ... SUM

- Response, H'31, (one byte): Response to the clock-mode inquiry
- Size (one byte): Amount of data that represents the number of modes and modes
- Number of clock modes (one byte): The number of supported clock modes H'00 indicates no clock mode or the device allows reading the clock mode.
- Mode (one byte): Values of the supported clock modes (i.e. H'01 means clock mode 1.)
- SUM (one byte): Checksum

(d) Clock Mode Selection

The boot program will set the specified clock mode. The program will return the selected clock-mode information after this setting has been made.

The clock-mode selection command should be sent after the device-selection commands.

Command	H'11	Size	Mode	SUM

- Command, H'11, (one byte): Selection of clock mode
- Size (one byte): Amount of data that represents the modes
- Mode (one byte): A clock mode returned in reply to the supported clock mode inquiry.
- SUM (one byte): Checksum

Response H'06

 Response, H'06, (one byte): Response to the clock mode selection command ACK will be returned when the clock mode matches.

Error Response H'91 ERROR

- Error response, H'91, (one byte): Error response to the clock mode selection command
- ERROR: (one byte): Error code

H'11: Checksum error

H'22: Clock mode error, that is, the clock mode does not match.

Even if the clock mode numbers are H'00 and H'01 by a clock mode inquiry, the clock mode must be selected using these respective values.

(e) Division Ratio Inquiry

The boot program will return the supported division ratios in response to the inquiry.

Command H'22

• Command, H'22, (one byte): Inquiry regarding division ratio

H'32	Size	Number of types			
Number of division ratios	Division ratio				
SUM					

- Response, H'32, (one byte): Response to the division ratio inquiry
- Size (one byte): The total amount of data that represents the number of types, the number of division ratios, and the division ratios

- Number of types (one byte): The number of supported divided clock types (e.g. when there are two divided clock types, which are the main and peripheral clocks, the number of types will be H'02.)
- Number of division ratios (one byte): The number of division ratios for each type (e.g. the number of division ratios to which the main clock can be set and the peripheral clock can be set.)
- Division ratio (one byte)

Division ratio: The inverse of the division ratio, i.e. a negative number (e.g. when the clock is divided by two, the value of division ratio will be H'FE. H'FE = D'-2)

The number of division ratios returned is the same as the number of division ratios and as many groups of data are returned as there are types.

• SUM (one byte): Checksum

(f) Operating Clock Frequency Inquiry

The boot program will return the number of operating clock frequencies, and the maximum and minimum values.

Command H'23

• Command, H'23, (one byte): Inquiry regarding operating clock frequencies

H'33	Size	Number of operating clock frequencies	
Minimum valu clock frequen		Maximum value of operati frequency	ng clock
•••			
SUM			

- Response, H'33, (one byte): Response to operating clock frequency inquiry
- Size (one byte): The number of bytes that represents the minimum values, maximum values, and the number of frequencies.
- Number of operating clock frequencies (one byte): The number of supported operating clock frequency types (e.g. when there are two operating clock frequency types, which are the main and peripheral clocks, the number of types will be H'02.)
- Minimum value of operating clock frequency (two bytes): The minimum value of the divided clock frequency.

The minimum and maximum values of the operating clock frequency represent the values in MHz, valid to the hundredths place of MHz, and multiplied by 100. (e.g. when the value is 17.00 MHz, it will be 2000, which is H'07D0.)

- Maximum value (two bytes): Maximum value among the divided clock frequencies.
 There are as many pairs of minimum and maximum values as there are operating clock frequencies.
- SUM (one byte): Checksum

(g) User Boot Mat Information Inquiry

The boot program will return the number of user boot mats and their addresses.

Command H'24

• Command, H'24, (one byte): Inquiry regarding user boot mat information

Response

H'34	Size	Number of areas	
Start ac	dress are	a	Last address area
SUM			

- Response, H'34, (one byte): Response to the user boot mat information inquiry
- Size (one byte): The number of bytes that represents the number of areas, area-start address and area-last address
- Number of areas (one byte): The number of consecutive user boot mat areas When the user boot mat areas are consecutive, the number of areas is H'01.
- Area-start address (four bytes): Start address of the area
- Area-last address (four bytes): Last address of the area
 There are as many groups of data representing the start and last addresses as there are areas.
- SUM (one byte): Checksum

(h) User Mat Information Inquiry

The boot program will return the number of user mats and their addresses.

Command

H'25

• Command, H'25, (one byte): Inquiry regarding user mat information

H'35	Size	Number of areas	
Start ac	ddress are	ea	Last address area
SUM			

- Response, H'35, (one byte): Response to the user mat information inquiry
- Size (one byte): The total number of bytes that represents the number of areas, area-start address and area-last address

- Number of areas (one byte): The number of consecutive user mat areas When the user mat areas are consecutive, the number of areas is H'01.
- Area-start address (four bytes): Start address of the area
- Area-last address (four bytes): Last address of the area

 There are as many groups of data representing the start and last addresses as there are areas.
- SUM (one byte): Checksum

(i) Erased Block Information Inquiry

The boot program will return the number of erased blocks and their addresses.

Command H'26

• Command, H'26, (two bytes): Inquiry regarding erased block information

Response	H'36	36 Size Number of blocks			
	Block start address				Block last address
	SUM				

- Response, H'36, (one byte): Response to the number of erased blocks and addresses
- Size (two bytes): The number of bytes that represents the number of blocks, block-start addresses, and block-last addresses.
- Number of blocks (one byte): The number of erased blocks
- Block start address (four bytes): Start address of a block
- Block last Address (four bytes): Last address of a block
 There are as many groups of data representing the start and last addresses as there are areas.
- SUM (one byte): Checksum

(j) Programming Unit Inquiry

The boot program will return the programming unit used to program data.

Command H'27

• Command, H'27, (one byte): Inquiry regarding programming unit

Response H'37 Size Programming unit SUM

- Response, H'37, (one byte): Response to programming unit inquiry
- Size (one byte): The number of bytes that indicate the programming unit, which is fixed to 2
- Programming unit (two bytes): A unit for programming
 This is the unit for reception of programming.
- SUM (one byte): Checksum

(k) Data Flash Inquiry

In response to a data flash inquiry command, the boot program returns an indicator of whether or not data-flash memory is present.

Command H'2A

• Command H'2A (1 byte): Data flash inquiry

Response H'3A Size Presence SUM

- Response H'3A (1 byte): Response to a data flash inquiry command
- Size (1 byte): The number of characters in the presence field (fixed to 1)
- Presence (1 byte): Presence of data flash, and lock bit information
 - Bit 0: Presence of data flash (1: data flash is present, 0: data flash is not present)
 - Bit 1: Presence of a lock bit (1: a lock bit is present, 0: a lock bit is not present)
 - Bit 4: Presence of a lock bit for the programmable ROM

(1: a lock bit is present, 0: a lock bit is not present)

Bit 5: Address size for the lock bit (1: 32 bits, 0: 24 bits)

• SUM (1 byte): Checksum value that makes the sum of the bytes from the command to the SUM byte become H'00.

(l) Data Flash Information Inquiry

The boot program will return the number of data flash areas and their addresses in response to the data flash information inquiry.

Command H'2B

• Command, H'2B, (1 byte): Inquiry regarding data flash information

Response H'3B Size Number of areas

Area-start address Area-last address

SUM

- Response, H'3B, (1 byte): Response to the data flash information inquiry
- Size (1 byte): The number of bytes that represents the number of areas, area-start address, and area-last address
- Number of areas (1 byte): The number of consecutive data flash areas When the data flash areas are consecutive, the number of areas returned is H'01. When these areas are not present, the number of areas returned is H'00.
- Area-start address (4 bytes): Start address of the area. When the data flash is not present, this
 address is not required.

- Area-last address (4 bytes): Last address of the area. When the data flash is not present, this
 address is not required.
 - There are as many groups of data representing the start and last addresses as there are areas.
- SUM (1 byte): Checksum value that makes the sum of the bytes from the command to the SUM byte become H'00.

(m) New Bit-Rate Selection

The boot program will set a new bit rate and return the new bit rate.

This selection should be sent after sending the clock mode selection command.

Command	H'3F	Size	Bit rate	Input frequency
	Number of division ratios	Division ratio 1	Division ratio 2	
	SUM		_	

- Command, H'3F, (one byte): Selection of new bit rate
- Size (one byte): The total number of bytes that represents the bit rate, input frequency, number of division ratios, and division ratio
- Bit rate (two bytes): New bit rate
 - One hundredth of the value (e.g. when the value is 19200 bps, it will be 192, which is H'00C0.)
- Input frequency (two bytes): Frequency of the clock input to the boot program

 This is valid to the hundredths place and represents the value in MHz multiplied by 100. (E.g. when the value is 20.00 MHz, it will be 2000, which is H'07D0.)
- Number of division ratios (one byte): The number of division ratios to which the device can be set.
 - There are usually two division ratios, which are the main and peripheral module operating frequencies.
- Division ratio 1 (one byte): The value of division ratios for the main operating frequency Division ratio: The inverse of the division ratio, as a negative number (e.g. when the clock frequency is divided by two, the value of division ratio will be H'FE. H'FE = D'-2)
- Division ratio 2 (one byte): The value of division ratios for the peripheral frequency (Division ratio: The inverse of the division ratio, as a negative number (E.g. when the clock is divided by two, the value of division ratio will be H'FE. H'FE = D'-2)
- SUM (one byte): Checksum

Response H'06

• Response, H'06, (one byte): Response to selection of a new bit rate When it is possible to set the bit rate, the response will be ACK.

Error Response H'BF ERROR

• Error response, H'BF, (one byte): Error response to selection of new bit rate

• ERROR: (one byte): Error code

H'11: Sum checking error

H'24: Bit-rate selection error

The rate is not available.

H'25: Error in input frequency

This input frequency is not within the specified range.

H'26: Division ratio error

The ratio does not match an available ratio.

H'27: Operating frequency error

The frequency is not within the specified range.

(4) Receive Data Check

The methods for checking of receive data are listed below.

1. Input frequency

The received value of the input frequency is checked to ensure that it is within the range of minimum to maximum frequencies which matches the clock modes of the specified device. When the value is out of this range, an input-frequency error is generated.

2. Division ratio

The received value of the division ratio is checked to ensure that it matches the clock modes of the specified device. When the value is out of this range, a division ratio error is generated.

3. Operating frequency error

Operating frequency is calculated from the received value of the input frequency and the division ratio. The input frequency is input to the LSI and the LSI is operated at the operating frequency. The expression is given below.

Operating frequency = Input frequency ÷ Division ratio

The calculated operating frequency should be checked to ensure that it is within the range of minimum to maximum frequencies which are available with the clock modes of the specified device. When it is out of this range, an operating frequency error is generated.

4. Bit rate

To facilitate error checking, the value (n) of clock select (CKS) in the serial mode register (SMR), and the value (N) in the bit rate register (BRR), which are found from the peripheral operating clock frequency (ϕ) and bit rate (B), are used to calculate the error rate to ensure that it is less than 4%. If the error is more than 4%, a bit rate error is generated. The error is calculated using the following expression:

Error (%) = {[
$$\frac{\phi \times 10^6}{(N+1) \times B \times 64 \times 2^{(2 \times n - 1)}}$$
] - 1} × 100

When the new bit rate is selectable, the rate will be set in the register after sending ACK in response. The host will send an ACK with the new bit rate for confirmation and the boot program will response with that rate.

Confirmation H'06

• Confirmation, H'06, (one byte): Confirmation of a new bit rate

Response H'06

Response, H'06, (one byte): Response to confirmation of a new bit rate

The sequence of new bit-rate selection is shown in figure 27.19.

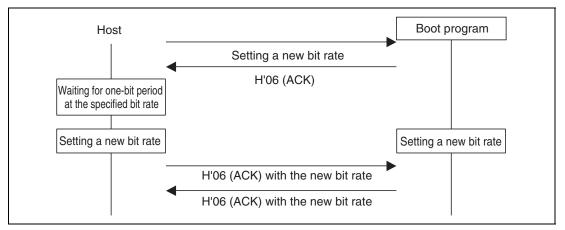


Figure 27.19 New Bit-Rate Selection Sequence

(5) Transition to Programming/Erasing State

The boot program will transfer the erasing program and erase the data in the user mats first, then the data in the user boot mats. On completion of this erasure, ACK will be returned and the program will enter the programming/erasing state.

The host should select the device code, clock mode, and new bit rate with device selection, clock-mode selection, and new bit-rate selection commands, and then send the command for the transition to programming/erasing state. These procedures should be carried out before sending of the programming selection command or program data.

Command H'40

• Command, H'40, (one byte): Transition to programming/erasing state

Response H'06

• Response, H'06, (one byte): Response to transition to programming/erasing state

The boot program will send ACK when the user mats and the user boot mats have been erased
by the transferred erasing program.

Error Response H'C0 H'51

- Error response, H'C0, (one byte): Error response to the bland check of the user boot mats
- Error code, H'51, (one byte): Erasing error
 An error occurred and erasure was not completed.

(6) Command Error

A command error will occur when a command is undefined, the order of commands is incorrect, or a command is unacceptable. Issuing a clock-mode selection command before a device selection or an inquiry command after the transition to programming/erasing state command, are examples.

Error Response H'80 H'xx

- Error response, H'80, (one byte): Command error
- Command, H'xx, (one byte): Received command

(7) Command Order

The order for commands in the inquiry selection state is shown below.

- 1. A supported device inquiry (H'20) should be made to inquire about the supported devices.
- 2. The device should be selected from among those described by the returned information and set with a device-selection (H'10) command.
- 3. A clock-mode inquiry (H'21) should be made to inquire about the supported clock modes.
- 4. The clock mode should be selected from among those described by the returned information and set.
- 5. After selection of the device and clock mode, inquiries for other required information should be made, such as the division-ratio inquiry (H'22) or operating frequency inquiry (H'23), which are needed for a new bit-rate selection.
- 6. A new bit rate should be selected with the new bit-rate selection (H'3F) command, according to the returned information on division ratios and operating frequencies.
- 7. After selection of the device and clock mode, the information of the user boot mat and the user mat should be made to inquire about the user boot mats information inquiry (H'24), user mats information inquiry (H'25), erased block information inquiry (H'26), and programming unit inquiry (H'27).
- 8. After making inquiries and selecting a new bit rate, issue the transition to programming/erasing state command (H'40). The boot program will then enter the programming/erasing state.

(8) Programming/Erasing State

A programming selection command makes the boot program select the programming method, a 128-byte programming command makes it program the memory with data, and an erasing selection command and block erasing command make it erase the block. Table 27.10 lists the programming/erasing commands.

Table 27.10 Programming/Erasing Commands

Command	Command Name	Description
H'42	User boot mat programming selection	Transfers the user boot mat programming program
H'43	User mat programming selection	Transfers the user mat programming program
H'50	128-byte programming	Programs 128 bytes of data
H'48	Erasing selection	Transfers the erasing program
H'58	Block erasure	Erases a block of data
H'52	Memory read	Reads the contents of memory
H'4A	User boot mat sum check	Checks the checksum of the user boot mat
H'4B	User mat sum check	Checks the checksum of the user mat
H'61	Data flash sum check	Checks the checksum of the data flash
H'4C	User boot mat blank check	Checks the blank data of the user boot mat
H'4D	User mat blank check	Checks the blank data of the user mat
H'62	Data flash blank check	Checks the blank data of the data flash
H'4F	Boot program status inquiry	Inquires into the boot program's status

1. Programming

Programming is executed by the programming selection and 128-byte programming commands.

Firstly, the host should send the programming selection command.

After issuing the programming selection command, the host should send the 128-byte programming command. The 128-byte programming command that follows the selection command represents the data programmed according to the method specified by the selection command. When more than 128-byte data is programmed, 128-byte commands should repeatedly be executed. Sending a 128-byte programming command with H'FFFFFFF as the address will stop the programming. On completion of programming, the boot program will wait for selection of programming or erasing.

Where the sequence of programming operations that is executed includes programming with another method or of another mat, the procedure must be repeated from the programming selection command.

The sequence for the programming selection and 128-byte programming commands is shown in figure 27.20.

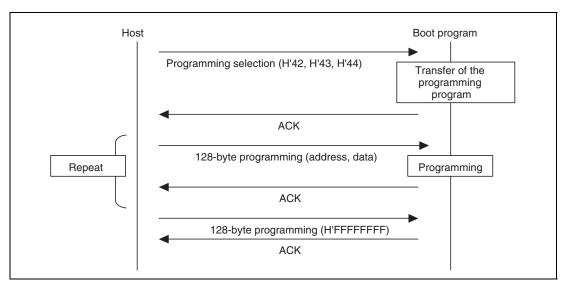


Figure 27.20 Programming Sequence

2. Erasure

Erasure is executed by the erasure selection and block erasure commands.

Firstly, erasure is selected by the erasure selection command and the boot program then erases the specified block. The command should be repeatedly executed if two or more blocks are to be erased. Sending a block erasure command from the host with the block number H'FF will stop the erasure operating. On completion of erasing, the boot program will wait for selection of programming or erasing.

The sequence for the erasure selection and block erasure commands is shown in figure 27.21.

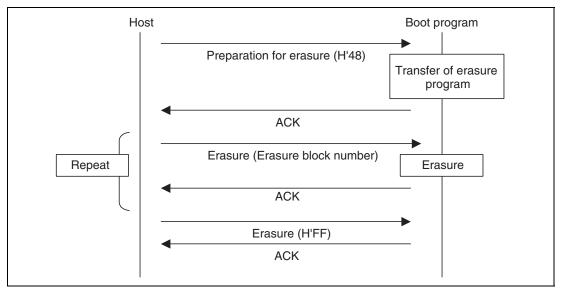


Figure 27.21 Erasure Sequence

3. Programming/Erasing State Information

(a) User Boot Mat Programming Selection

The boot program will transfer a program for user boot mat programming selection. The data is programmed to the user boot mats by the transferred program for programming.

Command H'42

• Command, H'42, (one byte): User boot mat programming selection

Response H'06

Response, H'06, (one byte): Response to user boot mat programming selection
 When the programming program has been transferred, the boot program will return ACK.

(b) User Mat Programming Selection

The boot program will transfer a program for user mat programming selection. The data is programmed to the user mats by the transferred program for programming.

Command H'43

- Command, H'43, (one byte): User-program programming selection Response H'06
- Response, H'06, (one byte): Response to user-program programming selection
 When the programming program has been transferred, the boot program will return ACK.

(c) 128-Byte Programming

The boot program will use the programming program transferred by the programming selection to program the user mats in response to 128-byte programming.

Command

H'50	Address					
Data						
SUM						

- Command, H'50, (one byte): 128-byte programming
- Programming Address (four bytes): Start address for programming Multiple of the size specified in response to the programming unit inquiry (i.e. H'00, H'01, H'00, H'00: H'01000000)
- Program data (128 bytes): Data to be programmed
 The size is specified in the response to the programming unit inquiry.
- SUM (one byte): Checksum

Response H'06

• Response, H'06, (one byte): Response to 128-byte programming On completion of programming, the boot program will return ACK.

Error Response H'D0 ERROR

- Error response, H'D0, (one byte): Error response for 128-byte programming
- ERROR: (one byte): Error code

H'11: Checksum error H'2A: Address error

The address is not within the specified range of areas.

H'53: Programming error

A programming error has occurred and programming cannot be continued.

The specified address should match the unit for programming of data. For example, when the programming is in 128-byte units, the lower eight bits of the address should be H'00 or H'80. When there are less than 128 bytes of data to be programmed, the host should fill the rest with H'FF.

Sending the 128-byte programming command with the address of H'FFFFFFFF will stop the programming operation. The boot program will interpret this as the end of the programming and wait for selection of programming or erasing.

Command H'50 Address SUM

• Command, H'50, (one byte): 128-byte programming

• Programming Address (four bytes): End code is H'FF, H'FF, H'FF, H'FF.

• SUM (one byte): Checksum

Response H'06

• Response, H'06, (one byte): Response to 128-byte programming On completion of programming, the boot program will return ACK.

Error Response H'D0 ERROR

• Error Response, H'D0, (one byte): Error response for 128-byte programming

• ERROR: (one byte): Error code

H'11: Checksum error H'53: Programming error

An error has occurred in programming and programming cannot be continued.

(d) Erasure Selection

The boot program will transfer the erasure program. User mat data is erased by the transferred erasure program.

Command H'48

• Command, H'48, (one byte): Erasure selection

Response H'06

Response, H'06, (one byte): Response for erasure selection
 After the erasure program has been transferred, the boot program will return ACK.

(e) Block Erasure

The boot program will erase the contents of the specified block.

Command H'58 Size Block number SUM

- Command, H'58, (one byte): Erasure
- Size (one byte): The number of bytes that represents the erase block number This is fixed to 1.
- Block number (one byte): Number of the block to be erased
- SUM (one byte): Checksum

Response H'06

• Response, H'06, (one byte): Response to Erasure
After erasure has been completed, the boot program will return ACK.

Error Response H'D8 ERROR

- Error Response, H'D8, (one byte): Response to Erasure
- ERROR (one byte): Error code

H'11: Checksum error

H'29: Block number error

Block number is incorrect.

H'51: Erasure error

An error has occurred during erasure.

On receiving block number H'FF, the boot program will stop erasure and wait for a selection command.

Command H'58 Size Block number SUM

- Command, H'58, (one byte): Erasure
- Size, (one byte): The number of bytes that represents the block number This is fixed to 1.
- Block number (one byte): H'FF Stop code for erasure
- SUM (one byte): Checksum

Response H'06

Page 868 of 1054

Response, H'06, (one byte): Response to end of erasure (ACK)
 When erasure is to be performed after the block number H'FF has been sent, the procedure should be executed from the erasure selection command.

(f) Memory Read

The boot program will return the data in the specified address.

Command H'52 Size Area Read address
Read size SUM

- Command: H'52 (one byte): Memory read
- Size (one byte):

Amount of data that represents the area, read address, and read size (fixed at 9)

Area (one byte)

H'00: User boot mat H'01: User mat

An address error occurs when the area setting is incorrect.

- Read address (four bytes): Start address to be read from
- Read size (four bytes): Size of data to be read
- SUM (one byte): Checksum

Response	H'52	Read size					
	Data						
	SUM						

- Response: H'52 (one byte): Response to memory read
- Read size (four bytes): Size of data to be read
- Data (n bytes): Data for the read size from the read address
- SUM (one byte): Checksum

Error Response H'D2 ERROR

- Error response: H'D2 (one byte): Error response to memory read
- ERROR: (one byte): Error code

H'11: Checksum error H'2A: Address error

The read address is not in the mat.

H'2B: Size error

The read size exceeds the mat.

(g) User Boot Mat Sum Check

The boot program will return the byte-by-byte total of the contents of the user boot mat.

Command H'4A

• Command, H'4A (one byte): Sum check for user boot mat

Response H'5A Size Checksum of mat SUM

- Response, H'5A (one byte): Response to the sum check for the user boot mat
- Size (one byte): The number of characters that represents the checksum This is fixed at 4.
- Checksum of mat (four bytes): Checksum of user boot mats
 The total of the data is obtained in byte units.
- SUM (one byte): Checksum of transmit data

(h) User Mat Sum Check

The boot program will return the byte-by-byte total of the contents of the user mat.

Command H'4B

• Command, H'4B, (one byte): Sum check for user mat

Response H'5B Size Checksum of user mat SUM

- Response, H'5B, (one byte): Response to the sum check for the user mat
- Size (one byte): The number of characters that represents the checksum This is fixed at 4.
- Checksum of user mat (four bytes): Checksum of user mats
 The total of the data is obtained in byte units.
- SUM (one byte): Checksum of transmit data

(i) Data Flash Sum Check

The boot program will return the byte-by-byte total of the contents of the data flash.

Command H'61

• Command, H'61, (one byte): Sum check for data flash

Response H'71 Size Checksum of data flash SUM

- Response, H'71, (one byte): Response to the sum check for the data flash
- Size (one byte): The number of characters that represents the checksum This is fixed at 4.
- Checksum of data flash (four bytes): Checksum of data flash
 The total of the data is obtained in byte units.
- SUM (one byte): Checksum of transmit data (this value should be determined so that the sum of bytes from the command to SUM becomes H'00)

(j) User Boot Mat Blank Check

The boot program will check whether or not all user boot mats are blank and return the result.

Command H'4C

• Command, H'4C (one byte): Blank check for user boot mats

Response H'06

Response, H'06 (one byte): Response to blank check for user boot mats
 If all user boot mats are blank (H'FF), the boot program will return ACK.

Error Response H'CC H'52

- Error response, H'CC (one byte): Error response to blank check for user boot mats
- Error code, H'52 (one byte): Erasure has not been completed.

(k) User Mat Blank Check

The boot program will check whether or not all user mats are blank and return the result.

Command H'4D

• Command, H'4D, (one byte): Blank check for user mats

Response H'06

• Response, H'06, (one byte): Response to blank check for user mats If all user mats are blank (H'FF), the boot program will return ACK.

Error Response H'CD H'52

- Error Response, H'CD, (one byte): Error response to blank check for user mats.
- Error code, H'52, (one byte): Erasure has not been completed.

(l) Data Flash Blank Check

The boot program will check whether or not all data flash areas are blank and return the result.

Command H'62

• Command, H'62, (one byte): Blank check for data flash

Response H'06

• Response, H'06, (one byte): Response to blank check for data flash If all data flash areas are blank (H'FF), the boot program will return ACK.

Error Response H'E2 H'52

- Error Response, H'E2, (one byte): Error response to blank check for data flash.
- Error code, H'52, (one byte): Erasure has not been completed.

(m) Boot Program Status Inquiry

The boot program will return indications of its present state and error condition. This inquiry can be made in the inquiry/selection state or the programming/erasing state.

Command H'4F

• Command, H'4F, (one byte): Inquiry regarding boot program's state

Response H'5F Size Status ERROR SUM

• Response, H'5F, (one byte): Response to boot program state inquiry

• Size (one byte): The number of bytes. This is fixed to 2.

• Status (one byte): Status of the boot program

• ERROR (one byte): Error status

ERROR = 0 indicates normal operation.

ERROR = 1 indicates error has occurred.

• SUM (one byte): Checksum

Table 27.11 Status Codes

Code	Description
H'11	Device selection wait
H'12	Clock mode selection wait
H'13	Bit rate selection wait
H'1F	Programming/erasing state transition wait (bit rate selection is completed)
H'31	Programming state for erasure
H'3F	Programming/erasing selection wait (erasure is completed)
H'4F	Program data receive wait
H'5F	Erase block specification wait (erasure is completed)

Table 27.12 Error Codes

Code	Description			
H'00	No error			
H'11	Checksum error			
H'12	Program size error			
H'21	Device code mismatch error			
H'22	Clock mode mismatch error			
H'24	Bit rate selection error			
H'25	Input frequency error			
H'26	Division ratio error			
H'27	Operating frequency error			
H'29	Block number error			
H'2A	Address error			
H'2B	Data length error			
H'51	Erasure error			
H'52	Erasure incomplete error			
H'53	Programming error			
H'80	Command error			
H'FF	Bit-rate-adjustment confirmation error			

27.17 Usage Notes

- 1. The initial state of the product at its shipment is in the erased state. For the product whose revision of erasing is undefined, we recommend to execute automatic erasure for checking the initial state (erased state) and compensating.
- 2. For the PROM programmer suitable for programmer mode in this LSI and its program version, refer to the instruction manual of the socket adapter.
- 3. If the socket, socket adapter, or product index does not match the specifications, too much current flows and the product may be damaged.
- 4. Use a PROM programmer that supports the device with 128-Kbyte on-chip flash memory and 3.0-V programming voltage. Use only the specified socket adapter.
- 5. Do not power off the Vcc power supply (including the removal of the chip from the PROM programmer) during programming/erasing in which a high voltage is applied to the flash memory. Doing so may damage the flash memory permanently. If a reset is input, the reset must be released after the reset input period of at least 100µs.
- 6. In on-board programming mode or programmer mode, programming of the 128-byte programming-unit block must be performed only once. Perform programming in the state where the programming-unit block is fully erased.
- 7. When the chip is to be reprogrammed with the programmer after execution of programming or erasure in on-board programming mode, it is recommended that automatic programming is performed after execution of automatic erasure.
- 8. If data other than H'FF (4 bytes) is written to the key code area (H'00003C to H'00003F) of the flash memory, reading cannot be performed in programmer mode. (In this case, data is read as H'00. Rewrite is possible after erasing the data.) For reading in programmer mode, make sure to write H'FF to the entire key code area.
- 9. If data other than H'FF is to be written to the key code area in programmer mode, a verification error will occur unless a software countermeasure is taken for the PROM programmer and version of program.
- 10. The following instruction cannot be used in EW0 mode because it refers to data in the flash memory.

TRAP instruction

Section 28 Clock Pulse Generator

This LSI incorporates a clock pulse generator which generates the system clock (ϕ) , internal clock, bus master clock, and subclock (ϕSUB) . The clock pulse generator consists of an oscillator, duty correction circuit, system clock select circuit, and subclock input circuit. Figure 28.1 shows a block diagram of the clock pulse generator.

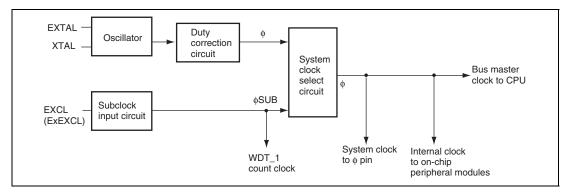


Figure 28.1 Block Diagram of Clock Pulse Generator

The subclock input is controlled by software according to the EXCLE bit and the EXCLS bit in the port control register (PTCNT0) settings in the low power control register (LPWRCR). For details on LPWRCR, see section 29.1.2, Low-Power Control Register (LPWRCR). For details on PTCNT0, see section 9.3.1, Port Control Register 0 (PTCNT0).

28.1 Oscillator

Clock pulses can be supplied either by connecting a crystal resonator or by providing external clock input.

28.1.1 Connecting Crystal Resonator

Figure 28.2 shows a typical method for connecting a crystal resonator. An appropriate damping resistance R_a , given in table 28.1 should be used. An AT-cut parallel-resonance crystal resonator should be used.

Figure 28.3 shows an equivalent circuit of a crystal resonator. A crystal resonator having the characteristics given in table 28.2 should be used.

The frequency of the crystal resonator should be the same as that of the system clock (ϕ) .

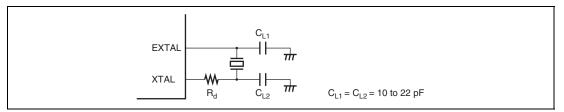


Figure 28.2 Typical Connection to Crystal Resonator

Table 28.1 Damping Resistor Values

Frequency (MHz)	8	10	12	16	20
$R_{d}(\Omega)$	200	0	0	0	0

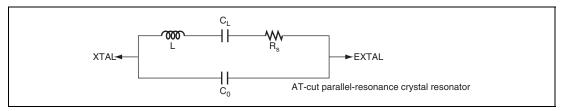


Figure 28.3 Equivalent Circuit of Crystal Resonator

Table 28.2 Crystal Resonator Parameters

Frequency (MHz)	8	10	12	16	20
R_s (max) (Ω)	80	70	60	50	40
C ₀ (max) (pF)	7	7	7	7	7

28.1.2 **External Clock Input Method**

Figure 28.4 shows a typical method of inputting an external clock signal. To leave the XTAL pin open, incidental capacitance should be 10 pF or less. To input an inverted clock to the XTAL pin, the external clock should be set to high in standby mode or watch mode. External clock input conditions are shown in table 28.3. The frequency of the external clock should be the same as that of the system clock (ϕ).

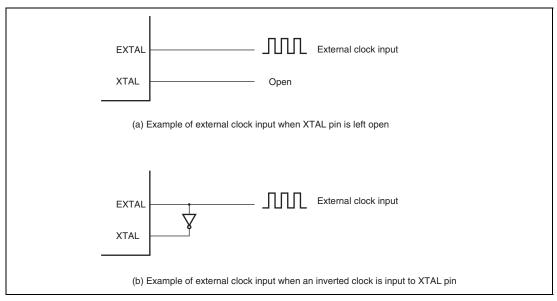


Figure 28.4 Example of External Clock Input

Table 28.3 External Clock Input Conditions

		VCC :	= 3.0 to 3.6 V		
Item	Symbol	Min.	Max.	Unit	Test Conditions
External clock input pulse width low level	t _{EXL}	20	_	ns	Figure 28.5
External clock input pulse width high level	t _{EXH}	20	_	ns	
External clock rising time	t _{EXr}	_	5	ns	_
External clock falling time	t _{exf}	_	5	ns	_
Clock pulse width low level	t _{cl}	0.4	0.6	t _{cyc}	Figure 28.4
Clock pulse width high level	t _{ch}	0.4	0.6	t	-

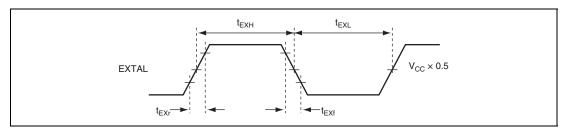


Figure 28.5 External Clock Input Timing

The oscillator and duty correction circuit can adjust the waveform of the external clock input that is input from the EXTAL pin.

When a specified clock signal is input to the EXTAL pin, internal clock signal output is determined after the external clock output stabilization delay time (t_{DEXT}) has passed. As the clock signal output is not determined during the t_{DEXT} cycle, a reset signal should be set to low to maintain the reset state. Table 28.4 shows the external clock output stabilization delay time. Figure 28.6 shows the timing of the external clock output stabilization delay time.

Table 28.4 External Clock Output Stabilization Delay Time

Condition: VCC = 3.0 V to 3.6 V, AVCC = 3.0 V to 3.6 V, VSS = AVSS = 0 V

Item	Symbol	Min.	Max.	Unit	Remarks
External clock output stabilization delay time	y t _{DEXT} *	500	_	μs	Figure 28.6

 t_{next} includes a \overline{RES} pulse width (t_{RESW}) . Note:

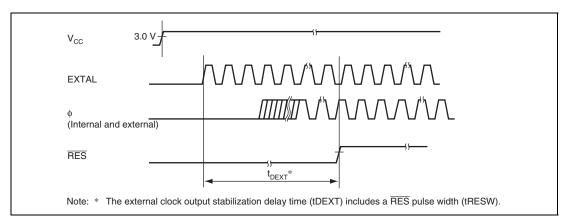


Figure 28.6 Timing of External Clock Output Stabilization Delay Time

28.2 Duty Correction Circuit

The duty correction circuit generates the system clock (ϕ) by correcting the duty of the clock output from the oscillator.

28.3 Subclock Input Circuit

The subclock input circuit controls subclock input from the EXCL or ExEXCL pin. To use the subclock, a 32.768-kHz external clock should be input from the EXCL or ExEXCL pin.

Figure 28.7 shows the relationship of subclock input from the EXCL pin and the ExEXCL pin. When using a pin to input the subclock, specify input for the pin by clearing the DDR bit of the pin to 0. The EXCL pin is specified as an input pin by clearing the EXCLS bit in PTCNT0 to 0. The ExEXCL pin is specified as an input pin by setting the EXCLS bit in PTCNT0 to 1. The subclock input is enabled by setting the EXCLE bit in LPWRCR to 1.

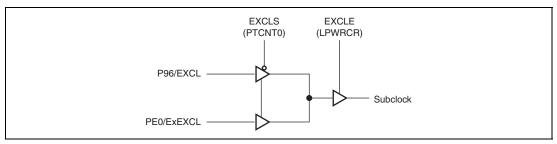


Figure 28.7 Subclock Input from EXCL Pin and ExEXCL Pin

Subclock input conditions are shown in table 28.5. When the subclock is not used, subclock input should not be enabled.

Table 28.5 Subclock Input Conditions

		V	CC = 3.0 to	3.6 V		
Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Subclock input pulse width low level	t _{EXCLL}	_	15.26	_	μs	Figure 28.8
Subclock input pulse width high level	t _{exclh}	_	15.26	_	μs	_
Subclock input rising time	t _{EXCLr}		_	10	ns	_
Subclock input falling time	t _{EXCLf}	_	_	10	ns	_

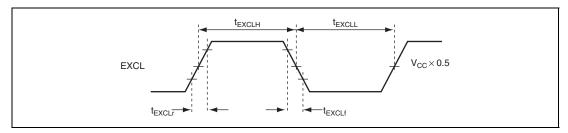


Figure 28.8 Subclock Input Timing

28.4 Clock Select Circuit

The clock select circuit selects the system clock that is used in this LSI.

A clock generated by the oscillator to which the XTAL and EXTAL pins are connected is selected as a system clock (ϕ) when returning from high-speed mode, sleep mode, the reset state, or standby mode.

In watch mode, a subclock input from the EXCL (ExEXCL) pin is selected as a system clock when the EXCLE bit in LPWRCR is 1. At this time, on-chip peripheral modules such as WDT_1 and interrupt controller operate on the ϕ SUB clock. The count clock and sampling clock for each timer are divided ϕ SUB clocks.

28.5 Usage Notes

28.5.1 Notes on Resonator

Since all kinds of characteristics of the resonator are closely related to the board design by the user, use the example of resonator connection in this document for only reference; be sure to use an resonator that has been sufficiently evaluated by the user. Consult with the resonator manufacturer about the resonator circuit ratings that vary depending on the stray capacitances of the resonator and installation circuit. Make sure the voltage applied to the oscillation pins do not exceed the maximum rating.

28.5.2 Notes on Board Design

When using a crystal resonator, the crystal resonator and its load capacitors should be placed as close as possible to the XTAL and EXTAL pins. Other signal lines should be routed away from the oscillator to prevent inductive interference with correct oscillation as shown in figure 28.9.

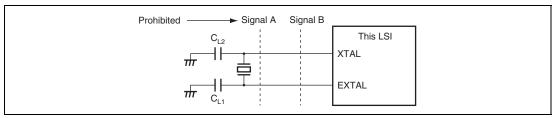


Figure 28.9 Note on Board Design of Oscillator Section

Section 29 Power-Down Modes

For operating modes after the reset state is cancelled, this LSI has four power-down operating modes in which power consumption is significantly reduced. In addition, there is also module stop mode in which reduced power consumption can be achieved by individually stopping on-chip peripheral modules.

- Medium-speed mode System clock frequency for the CPU operation can be selected as $\phi/2$, $\phi/4$, $\phi/8$, $\phi/16$ or $\phi/32$.
- Sleep mode The CPU stops but on-chip peripheral modules continue operating.
- Watch mode The CPU stops but on-chip peripheral module WDT_1 continue operating.
- Software standby mode The clock pulse generator circuits stop, and the CPU and on-chip peripheral modules stop operating.
- Module stop mode Independently of above operating modes, on-chip peripheral modules that are not used can be stopped individually.

29.1 Register Descriptions

Power-down modes are controlled by the following registers. For details on the serial/timer control register, see section 3.2.3, Serial/Timer Control Register (STCR). For details on the PSS bit in TSCR_1 (WDT_1), see TCSR_1 in section 12.3.6, Timer Control/Status Register (TCSR).

Table 29.1 Register Configuration

Register Name	Abbreviation	R/W	Initial Value	Address	Data Bus Width
Standby control register	SBYCR	R/W	H'00	H'FF94	8
Low power control register	LPWRCR	R/W	H'00	H'FF95	8
Module stop control register H	MSTPCRH	R/W	H'FF	H'FF96	8
Module stop control register L	MSTPCRL	R/W	H'FF	H'FF97	8
Module stop control register A	MSTPCRA	R/W	H'FF	H'FF98	8
Module stop control register B	MSTPCRB	R/W	H'FF	H'FF99	8

29.1.1 Standby Control Register (SBYCR)

SBYCR controls power-down modes.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	SSBY	0	R/W	Software Standby
				Specifies the operating mode to be entered after executing the SLEEP instruction.
				When the SLEEP instruction is executed in high- speed mode or medium-speed mode:
				0: Shifts to sleep mode
				1: Shifts to software standby mode or watch mode
				Note that the SSBY bit is not changed even if a mode transition is made by an interrupt.

Bit	Bit Name	Initial Value	R/W	Description
6	STS2	0	R/W	Standby Timer Select 2 to 0
5	STS1	0	R/W	On canceling software standby mode or watch mode,
4	STS0	0	R/W	these bits select the wait time for clock stabilization from clock oscillation start. Select a wait time of 6 ms (oscillation stabilization time) or more, depending on the operating frequency. Table 29.2 shows the relationship between the STS2 to STS0 values and wait time.
				With an external clock, an arbitrary wait time can be selected. For normal cases, the minimum value is recommended.
3	_	0	R/W	Reserved
				The initial value should not be changed.
2	SCK2	0	R/W	System Clock Select 2 to 0
1 0	SCK1 SCK0	0	R/W R/W	These bits select a clock for the bus master in high- speed mode or medium-speed mode.
	00.10			When making a transition to watch mode, these bits must be cleared to B'000.
				000: High-speed mode
				001: Medium-speed clock: φ/2
				010: Medium-speed clock: φ/4
				011: Medium-speed clock: φ/8
				100: Medium-speed clock: φ/16
				101: Medium-speed clock: φ/32
				11X: Setting prohibited

[Legend]

X: Don't care

Table 29.2 Operating Frequency and Wait Time

STS2	STS1	STS0	Wait Time	20 MHz	10 MHz	8 MHz	Unit
0	0	0	8192 states	0.4	0.8	1.0	ms
0	0	1	16384 states	0.8	1.6	2.0	-
0	1	0	32768 states	1.6	3.3	4.1	-
0	1	1	65536 states	3.3	6.6	8.2	
1	0	0	131072 states	6.6	13.1	16.4	-
1	0	1	262144 states	13.1	27.2	32.8	-
1	1	0/1	Reserved*	_	_	_	_

Recommended specification

Note: * Setting prohibited

29.1.2 Low-Power Control Register (LPWRCR)

LPWRCR controls power-down modes.

Bit	Bit Name	Initial Value	R/W	Description
7 to 5	_	All 0	R/W	Reserved
				The initial value should not be changed.
4	EXCLE	0	R/W	Subclock Input Enable
				This bit controls the subclock input from the EXCL or ExEXCL pin.
				0: The subclock input from the EXCL or ExEXCL pin is disabled.
				1: The subclock input from the EXCL or ExEXCL pin is enabled.
3 to 0	_	All 0	R/W	Reserved
				The initial value should not be changed.

29.1.3 Module Stop Control Registers H, L, A, and B (MSTPCRH, MSTPCRL, MSTPCRA, MSTPCRB)

MSTPCR specifies on-chip peripheral modules to shift to module stop mode in module units. Each module can enter module stop mode by setting the corresponding bit to 1.

MSTPCRH

Bit	Bit Name	Initial Value	R/W	Corresponding Module
7	MSTP15	1	R/W	Reserved
				The initial value should not be changed.
6	MSTP14	1	R/W	Battery backup RAM (BBR)
5	MSTP13	1	R/W	Reserved
				The initial value should not be changed.
4	MSTP12	1	R/W	8-bit timers (TMR_0 and TMR_1)
3	MSTP11	1	R/W	Reserved
2	MSTP10	1	R/W	The initial value should not be changed.
1	MSTP9	1	R/W	A/D converter
0	MSTP8	1	R/W	8-bit timers (TMR_X and TMR_Y)

MSTPCRL

Bit	Bit Name	Initial Value	R/W	Corresponding Module
7	MSTP7	1	R/W	Reserved
				The initial value should not be changed.
6	MSTP6	1	R/W	Serial communication interface (SCI)
5	MSTP5	1	R/W	Reserved
				The initial value should not be changed.
4	MSTP4	1	R/W	I ² C bus interface channel_0 (IIC_0/SMBUS)
3	MSTP3	1	R/W	I ² C bus interface channel_1 (IIC_1)
2	MSTP2	1	R/W	Keyboard buffer control unit_0 (PS2_0)
				Keyboard buffer control unit_1 (PS2_1)
				Keyboard buffer control unit_2 (PS2_2)
1	MSTP1	1	R/W	16-bit timer pulse unit (TPU)
0	MSTP0	1	R/W	LPC interface (LPC)

MSTPCRA

Bit	Bit Name	Initial Value	R/W	Corresponding Module
7	MSTPA7	1	R/W	Platform environment control interface (PECI)
6	MSTPA6	1	R/W	Reserved
5	MSTPA5	1	R/W	The initial value should not be changed.
4	MSTPA4	1	R/W	-
3	MSTPA3	1	R/W	-
2	MSTPA2	1	R/W	FSI interface (FSI)*
1	MSTPA1	1	R/W	Reserved
0	MSTPA0	1	R/W	The initial value should not be changed.

Note: * When using the SFI together with the LPC interface, clear bit 0 (MSTP0) of MSTPCRL and bit 2 (MSTPA2) of MSTPCRA.

MSTPCRB

Bit	Bit Name	Initial Value	R/W	Corresponding Module
7	MSTPB7	1	R/W	Synchronous serial communication unit (SSU)
6	MSTPB6	1	R/W	Reserved
5	MSTPB5	1	R/W	The initial value should not be changed.
4	MSTPB4	1	R/W	I ² C bus interface_2 (IIC_2)
3	MSTPB3	1	R/W	Serial communication interface with FIFO (SCIF)
2	MSTPB2	1	R/W	Cycle measurement timer_2 (TCM_2)
1	MSTPB1	1	R/W	Cycle measurement timer_0 (TCM_0)
				Cycle measurement timer_1 (TCM_1)
0	MSTPB0	1	R/W	8-bit PWMU timer (PWMU)

29.2 Mode Transitions and LSI States

Figure 29.1 shows the possible mode transition diagram. The mode transition from program execution state to program halt state is performed by the SLEEP instruction. The mode transition from program halt state to program execution state is performed by an interrupt. The reset input causes a mode transition from any state to the reset state. For the details on the types of resets, see section 4, Resets. Table 29.3 shows the LSI internal states in each operating mode.

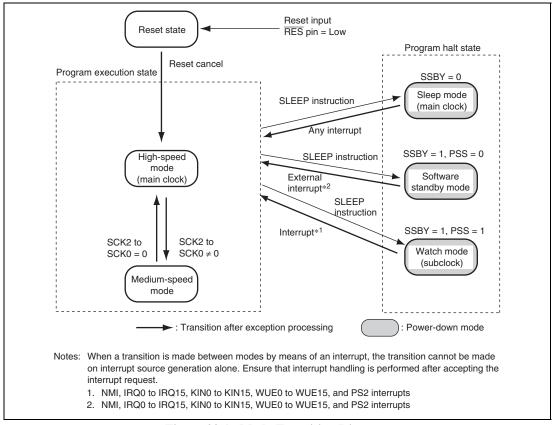


Figure 29.1 Mode Transition Diagram

Software

Table 29.3 LSI Internal States in Each Operating Mode

Function		High Speed	Medium Speed	Sleep	Module Stop	Watch	Software Standby
System clo	ck pulse generator	Functioning	Functioning	Functioning	Functioning	Stopped	Stopped
Subclock ir	put	Functioning	Functioning	Functioning	Functioning	Functioning	Stopped
CPU	Instruction execution	Functioning	Medium-speed operation	Stopped	Functioning	Stopped	Halted
	Registers	-		Retained	-	Retained	Retained
External	NMI	Functioning	Functioning	Functioning	Functioning	Functioning	Functioning
interrupts	IRQ0 to IRQ15	-					
	KIN0 to KIN15	_					
	WUE0 to WUE15	_					
On-chip peripheral	WDT_1	Functioning	Functioning	Functioning	Functioning	Subclock operation	Stopped (retained)
modules	WDT_0	-				Stopped	-
	TMR_0, TMR_1	_			Functioning/	(retained)	
	TPU	_			Stopped (retained)		
	TCM_0 to TCM_2	-			(101411104)		
	TMR_X, TMR_Y	_					
	SCIF	_					
	IIC_0 (SMBUS), IIC_1, IIC_2	-					
	LPC	_					
	FSI	_					
	SSU	=					
	PECI	_					
	PS2_0 to PS2_2	-	Medium-speed operation				
	PWMU	_	Functioning		Functioning/	Stopped	Stopped
	SCI	-			stopped (reset)	(reset)	(reset)
	A/D converter				Functioning/ stopped (retained)	Functioning/ stopped (retained)	Functioning stopped (retained)
	BBR	Functioning	Functioning	Functioning	Functioning/ stopped (retained)	Retained	Retained
	RAM	Functioning	Functioning	Functioning	Functioning	Retained	Retained
	I/O	Functioning	Functioning	Functioning	Functioning	Retained	Retained

Note: Stopped (retained) means that the internal register values are retained and the internal state is operation suspended.

Stopped (reset) means that the internal register values and the internal state are initialized. In module stop mode, only modules for which a stop setting has been made are stopped (reset or retained).

29.3 Medium-Speed Mode

The operating mode changes to medium-speed mode as soon as the current bus cycle ends by the settings of the SCK2 to SCK0 bits in SBYCR. The operating clock can be selected from $\phi/2$, $\phi/4$, $\phi/8$, $\phi/16$, or $\phi/32$. On-chip peripheral functions other than the bus masters and the PS2 operate on the system clock (ϕ) .

In medium-speed mode, a bus access is executed in the specified number of states with respect to the bus master operating clock. For example, if $\phi/4$ is selected as the operating clock, on-chip memory is accessed in four states, and internal I/O registers in eight states.

A transition is made from medium-speed mode to high-speed mode at the end of the current bus cycle by clearing all of bits SCK2 to SCK0 to 0.

If the SLEEP instruction is executed when the SSBY bit in SBYCR is 0, a transition is made to sleep mode. When sleep mode is canceled by an interrupt, medium-speed mode is restored. When the SLEEP instruction is executed with the SSBY bit set to 1 and the PSS bit in TCSR (WDT_1) set to 0, operation shifts to software standby mode. When software standby mode is canceled by an external interrupt, medium-speed mode is restored.

When the \overline{RES} pin is driven low and medium-speed mode is cancelled, operation shifts to the reset state. The same applies to a reset caused by an overflow of the watchdog timer.

Figure 29.2 shows the timing of medium-speed mode.

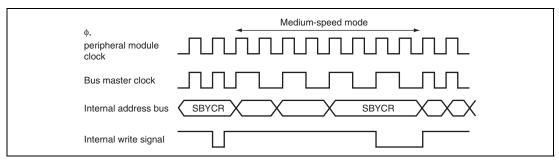


Figure 29.2 Timing of Medium-Speed Mode

29.4 Sleep Mode

The CPU makes a transition to sleep mode if the SLEEP instruction is executed when the SSBY bit in SBYCR is cleared to 0. In sleep mode, CPU operation stops but the on-chip peripheral modules do not. The contents of the CPU's internal registers are retained.

Sleep mode is cleared by any interrupt or the \overline{RES} pin input.

When an interrupt occurs, sleep mode is cleared and interrupt exception handling starts. Sleep mode is not cleared if the interrupt is disabled, or interrupts other than NMI have been masked by the CPU.

When the \overline{RES} pin is driven low and sleep mode is cleared, a transition is made to the reset state. After the specified reset input time has elapsed, driving the \overline{RES} pin high causes the CPU to start reset exception handling.

29.5 Software Standby Mode

The CPU makes a transition to software standby mode when the SLEEP instruction is executed with the SSBY bit in SBYCR set to 1 and the PSS bit in TCSR (WDT_1) cleared to 0. In software standby mode, the CPU, on-chip peripheral modules, and clock pulse generator all stop. However, the contents of the CPU registers and some of the on-chip peripheral registers, and on-chip RAM data are retained as long as the prescribed voltage is supplied. Also, the I/O port retains the state before transition to the software standby mode.

Software standby mode is cleared by an external interrupt (NMI, IRQ0 to IRQ15, KIN0 to KIN15, or WUE0 to WUE15), PS2 interrupts, or RES pin input.

When an external interrupt request signal is input, system clock oscillation starts, and after the elapse of the time set in bits STS2 to STS0 in SBYCR, software standby mode is cleared, and interrupt exception handling is started. When clearing software standby mode with an IRQ0 to IRQ15 interrupt, set the corresponding enable bit to 1. When clearing software standby mode with a KIN0 to KIN15 or WUE0 to WUE15 interrupt, enable the input. In these cases, ensure that no interrupt with a higher priority than interrupts IRQ0 to IRQ15 is generated. In the case of an IRQ0 to IRQ15 interrupt, software standby mode is not cleared if the corresponding enable bit is cleared to 0 or if the interrupt has been masked by the CPU. In the case of a KIN0 to KIN15 or WUE0 to WUE15 interrupt, software standby mode is not cleared if the input is disabled or if the interrupt has been masked by the CPU.

When the \overline{RES} pin is driven low, the clock pulse generator starts oscillation. Simultaneously with the start of system clock oscillation, the system clock is supplied to the entire LSI. Note that the \overline{RES} pin must be held low until clock oscillation is stabilized. If the \overline{RES} pin is driven high after the clock oscillation stabilization time has elapsed, the CPU starts reset exception handling.

Figure 29.3 shows an example in which a transition is made to software standby mode at the falling edge of the NMI pin, and software standby mode is cleared at the rising edge of the NMI pin.

In this example, an NMI interrupt is accepted with the NMIEG bit in SYSCR cleared to 0 (falling edge specification), then the NMIEG bit is set to 1 (rising edge specification), the SSBY bit is set to 1, and a SLEEP instruction is executed, causing a transition to software standby mode.

Software standby mode is then cleared at the rising edge of the NMI pin.

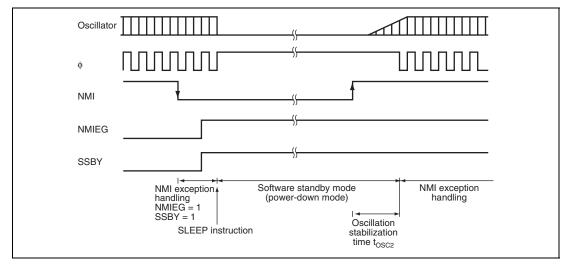


Figure 29.3 Software Standby Mode Application Example

29.6 Watch Mode

The CPU makes a transition to watch mode when the SLEEP instruction is executed in high-speed mode with the SSBY bit in SBYCR set to 1 and the PSS bit in TCSR (WDT 1) set to 1.

In watch mode, the CPU is stopped and on-chip peripheral modules other than WDT 1 are also stopped. The contents of the CPU's internal registers, several on-chip peripheral module registers, and on-chip RAM data are retained and the I/O ports retain their values before transition as long as the prescribed voltage is supplied.

Watch mode is cleared by an interrupt (WOVI1, NMI, IRQ0 to IRQ15, KIN0 to KIN15, or WUE0 to WUE15), PS2 interrupts, or RES pin input.

When an interrupt occurs, watch mode is cleared and a transition is made to high-speed mode or medium-speed mode. When a transition is made to high-speed mode, a stable clock is supplied to the entire LSI and interrupt exception handling starts after the time set in the STS2 to STS0 bits in SBYCR has elapsed. In the case of an IRO0 to IRO15 interrupt, watch mode is not cleared if the corresponding enable bit has been cleared to 0 or the interrupt has been masked by the CPU. In the case of a KIN0 to KIN15 or WUE0 to WUE15 interrupt, watch mode is not cleared if the input is disabled or the interrupt has been masked by the CPU. In the case of an interrupt from an on-chip peripheral module, watch mode is not cleared if the interrupt enable register has been set to disable the reception of that interrupt or the interrupt has been masked by the CPU.

When the RES pin is driven low, the clock pulse generator starts oscillation. Simultaneously with the start of system clock oscillation, the system clock is supplied to the entire LSI. Note that the RES pin must be held low until clock oscillation is stabilized. If the RES pin is driven high after the clock oscillation stabilization time has elapsed, the CPU starts reset exception handling.

29.7 Module Stop Mode

Module stop mode can be individually set for each on-chip peripheral module.

When the corresponding MSTP bit in MSTPCR is set to 1, module operation stops at the end of the bus cycle and a transition is made to module stop mode. In turn, when the corresponding MSTP bit is cleared to 0, module stop mode is cleared and module operation resumes at the end of the bus cycle. In module stop mode, the internal states of some on-chip peripheral modules are retained.

After the reset state is cancelled, all on-chip peripheral modules are in module stop mode.

While an on-chip peripheral module is in module stop mode, its registers cannot be read from or written to.

29.8 Usage Notes

29.8.1 I/O Port Status

The status of the I/O ports is retained in software standby mode. Therefore, while a high level is output or the pull-up MOS is on, the current consumption is not reduced by the amount of current to support the high level output.

29.8.2 Current Consumption when Waiting for Oscillation Stabilization

The current consumption increases during oscillation stabilization.

Section 30 List of Registers

The list of registers gives information on the on-chip register addresses, how the register bits are configured, the register states in each operating mode, the register selection condition, and the register address of each module. The information is given as shown below.

- 1. Register addresses (address order)
- Registers are listed from the lower allocation addresses.
- For the addresses of 16 bits, the MSB is described.
- Registers are classified by functional modules.
- The access size is indicated.
- 2. Register bits
- Bit configurations of the registers are described in the same order as the register addresses in section 30.1, Register Addresses (Address Order).
- Reserved bits are indicated by "—" in the bit name column.
- The bit number in the bit-name column indicates that the whole register is allocated as a counter or for holding data.
- Each line covers eight bits, and 16-bit register is shown as 2 lines, respectively.
- 3. Register states in each operating mode
- Register states are described in the same order as the register addresses in section 30.1, Register Addresses (Address Order).
- The register states described here are for the basic operating modes. If there is a specific reset for an on-chip peripheral module, see the section on that on-chip peripheral module.
- 4. Register selection conditions
- Register selection conditions are described in the same order as the register addresses in section 30.1, Register Addresses (Address Order).
- For register selection conditions, see section 3.2.2, System Control Register (SYSCR), section 29.1.3, Module Stop Control Registers H, L, A, and B (MSTPCRH, MSTPCRL, MSTPCRA, MSTPCRB), or register descriptions for each module.
- 5. Register addresses (classification by type of module)
- The register addresses are described by modules.
- The register addresses are described in channel order when the module has multiple channels.

30.1 Register Addresses (Address Order)

The data bus width indicates the number of bits.

The number of access states indicates the number of states based on the specified reference clock.

Register Name	Abbreviation	Number of Bits	Address	Module	Data Width	Access States
BBR register 0	BBR0	8	H'F800	BBR	8	2
BBR register 1	BBR1	8	H'F801	BBR	8	2
BBR register 2	BBR2	8	H'F802	BBR	8	2
BBR register 3	BBR3	8	H'F803	BBR	8	2
BBR register 4	BBR4	8	H'F804	BBR	8	2
BBR register 5	BBR5	8	H'F805	BBR	8	2
BBR register 6	BBR6	8	H'F806	BBR	8	2
BBR register 7	BBR7	8	H'F807	BBR	8	2
BBR register 8	BBR8	8	H'F808	BBR	8	2
BBR register 9	BBR9	8	H'F809	BBR	8	2
BBR register 10	BBR10	8	H'F80A	BBR	8	2
BBR register 11	BBR11	8	H'F80B	BBR	8	2
BBR register 12	BBR12	8	H'F80C	BBR	8	2
BBR register 13	BBR13	8	H'F80D	BBR	8	2
BBR register 14	BBR14	8	H'F80E	BBR	8	2
BBR register 15	BBR15	8	H'F80F	BBR	8	2
BBR register 16	BBR16	8	H'F810	BBR	8	2
BBR register 17	BBR17	8	H'F811	BBR	8	2
BBR register 18	BBR18	8	H'F812	BBR	8	2
BBR register 19	BBR19	8	H'F813	BBR	8	2
BBR register 20	BBR20	8	H'F814	BBR	8	2
BBR register 21	BBR21	8	H'F815	BBR	8	2
BBR register 22	BBR22	8	H'F816	BBR	8	2
BBR register 23	BBR23	8	H'F817	BBR	8	2
BBR register 24	BBR24	8	H'F818	BBR	8	2

BBR register 25 BBR25 8 H'F819 BBR BBR register 26 BBR26 8 H'F81A BBR BBR register 27 BBR27 8 H'F81B BBR BBR register 28 BBR28 8 H'F81C BBR BBR register 29 BBR29 8 H'F81D BBR BBR register 30 BBR30 8 H'F81E BBR	8 8 8	2 2 2
BBR register 27 BBR27 8 H'F81B BBR BBR register 28 BBR28 8 H'F81C BBR BBR register 29 BBR29 8 H'F81D BBR	8	2
BBR register 28 BBR28 8 H'F81C BBR BBR register 29 BBR29 8 H'F81D BBR		
BBR register 29 BBR29 8 H'F81D BBR	8	
		2
BBR register 30 BBR30 8 H'F81E BBR	8	2
	8	2
BBR register 31 BBR31 8 H'F81F BBR	8	2
BBR register 32 BBR32 8 H'F820 BBR	8	2
BBR register 33 BBR33 8 H'F821 BBR	8	2
BBR register 34 BBR34 8 H'F822 BBR	8	2
BBR register 35 BBR35 8 H'F823 BBR	8	2
BBR register 36 BBR36 8 H'F824 BBR	8	2
BBR register 37 BBR37 8 H'F825 BBR	8	2
BBR register 38 BBR38 8 H'F826 BBR	8	2
BBR register 39 BBR39 8 H'F827 BBR	8	2
BBR register 40 BBR40 8 H'F828 BBR	8	2
BBR register 41 BBR41 8 H'F829 BBR	8	2
BBR register 42 BBR42 8 H'F82A BBR	8	2
BBR register 43 BBR43 8 H'F82B BBR	8	2
BBR register 44 BBR44 8 H'F82C BBR	8	2
BBR register 45 BBR45 8 H'F82D BBR	8	2
BBR register 46 BBR46 8 H'F82E BBR	8	2
BBR register 47 BBR47 8 H'F82F BBR	8	2
BBR register 48 BBR48 8 H'F830 BBR	8	2
BBR register 49 BBR49 8 H'F831 BBR	8	2
BBR register 50 BBR50 8 H'F832 BBR	8	2
BBR register 51 BBR51 8 H'F833 BBR	8	2
BBR register 52 BBR52 8 H'F834 BBR	8	2
BBR register 53 BBR53 8 H'F835 BBR	8	2
BBR register 54 BBR54 8 H'F836 BBR	8	2

Register Name	Abbreviation	Number of Bits	Address	Module	Data Width	Access States
BBR register 55	BBR55	8	H'F837	BBR	8	2
BBR register 56	BBR56	8	H'F838	BBR	8	2
BBR register 57	BBR57	8	H'F839	BBR	8	2
BBR register 58	BBR58	8	H'F83A	BBR	8	2
BBR register 59	BBR59	8	H'F83B	BBR	8	2
BBR register 60	BBR60	8	H'F83C	BBR	8	2
BBR register 61	BBR61	8	H'F83D	BBR	8	2
BBR register 62	BBR62	8	H'F83E	BBR	8	2
BBR register 63	BBR63	8	H'F83F	BBR	8	2
Reset source flag register B	RSTFRB	8	H'F840	BBR	8	2
BBR write protection register	BWPRT	8	H'F841	BBR	8	2
Port 1 data direction register	P1DDR	8	H'F900	PORT	8	2
Port 2 data direction register	P2DDR	8	H'F901	PORT	8	2
Port 1 output data register	P1ODR	8	H'F902	PORT	8	2
Port 2 output data register	P2ODR	8	H'F903	PORT	8	2
Port 1 input data register	P1PIN	8	H'F904	PORT	8	2
Port 2 input data register	P2PIN	8	H'F905	PORT	8	2
Port 1 pull-up MOS control register	P1PCR	8	H'F906	PORT	8	2
Port 2 pull-up MOS control register	P2PCR	8	H'F907	PORT	8	2
Port 3 data direction register	P3DDR	8	H'F910	PORT	8	2
Port 4 data direction register	P4DDR	8	H'F911	PORT	8	2
Port 3 output data register	P3ODR	8	H'F912	PORT	8	2
Port 4 output data register	P4ODR	8	H'F913	PORT	8	2
Port 3 input data register	P3PIN	8	H'F914	PORT	8	2
Port 4 input data register	P4PIN	8	H'F915	PORT	8	2
Port 3 pull-up MOS control register	P3PCR	8	H'F916	PORT	8	2
Port 4 pull-up MOS control register	P4PCR	8	H'F917	PORT	8	2
Port 4 noise canceller enable register	P4NCE	8	H'F91B	PORT	8	2
Port 4 noise canceller decision control register	P4NCMC	8	H'F91D	PORT	8	2

Register Name	Abbreviation	Number of Bits	Address	Module	Data Width	Access States
Port 4 noise cancel cycle setting register	P4NCCS	8	H'F91F	PORT	8	2
Port 5 data direction register	P5DDR	8	H'F920	PORT	8	2
Port 6 data direction register	P6DDR	8	H'F921	PORT	8	2
Port 5 output data register	P5ODR	8	H'F922	PORT	8	2
Port 6 output data register	P6ODR	8	H'F923	PORT	8	2
Port 5 input data register	P5PIN	8	H'F924	PORT	8	2
Port 6 input data register	P6PIN	8	H'F925	PORT	8	2
Port 5 pull-up MOS control register	P5PCR	8	H'F926	PORT	8	2
Port 6 pull-up MOS control register	P6PCR	8	H'F927	PORT	8	2
Port 6 noise canceller enable register	P6NCE	8	H'F92B	PORT	8	2
Port 6 noise canceller decision control register	P6NCMC	8	H'F92D	PORT	8	2
Port 6 noise cancel cycle setting register	P6NCCS	8	H'F92F	PORT	8	2
Port 8 data direction register	P8DDR	8	H'F931	PORT	8	2
Port 8 output data register	P8ODR	8	H'F933	PORT	8	2
Port 7 input data register	P7PIN	8	H'F934	PORT	8	2
Port 8 input data register	P8PIN	8	H'F935	PORT	8	2
Port 8 pull-up MOS control register	P8PCR	8	H'F937	PORT	8	2
Port 9 data direction register	P9DDR	8	H'F940	PORT	8	2
Port 9 output data register	P9ODR	8	H'F942	PORT	8	2
Port 9 input data register	P9PIN	8	H'F944	PORT	8	2
Port 9 pull-up MOS control register	P9PCR	8	H'F946	PORT	8	2
Port A data direction register	PADDR	8	H'F950	PORT	8	2
Port B data direction register	PBDDR	8	H'F951	PORT	8	2
Port A output data register	PAODR	8	H'F952	PORT	8	2
Port B output data register	PBODR	8	H'F953	PORT	8	2
Port A input data register	PAPIN	8	H'F954	PORT	8	2
Port B input data register	PBPIN	8	H'F955	PORT	8	2

Register Name	Abbreviation	Number of Bits	Address	Module	Data Width	Access States
Port B pull-up MOS control register	PBPCR	8	H'F957	PORT	8	2
Port A Nch-OD control register	PANOCR	8	H'F958	PORT	8	2
Port C data direction register	PCDDR	8	H'F960	PORT	8	2
Port D data direction register	PDDDR	8	H'F961	PORT	8	2
Port C output data register	PCODR	8	H'F962	PORT	8	2
Port D output data register	PDODR	8	H'F963	PORT	8	2
Port C input data register	PCPIN	8	H'F964	PORT	8	2
Port D input data register	PDPIN	8	H'F965	PORT	8	2
Port C pull-up MOS control register	PCPCR	8	H'F966	PORT	8	2
Port D pull-up MOS control register	PDPCR	8	H'F967	PORT	8	2
Port C Nch-OD control register	PCNOCR	8	H'F968	PORT	8	2
Port D Nch-OD control register	PDNOCR	8	H'F969	PORT	8	2
Port C noise canceller enable register	PCNCE	8	H'F96A	PORT	8	2
Port C noise canceller decision control register	PCNCMC	8	H'F96C	PORT	8	2
Port C noise cancel cycle setting register	PCNCCS	8	H'F96E	PORT	8	2
Port E data direction register	PEDDR	8	H'F970	PORT	8	2
Port F data direction register	PFDDR	8	H'F971	PORT	8	2
Port E output data register	PEODR	8	H'F972	PORT	8	2
Port F output data register	PFODR	8	H'F973	PORT	8	2
Port E input data register	PEPIN	8	H'F974	PORT	8	2
Port F input data register	PFPIN	8	H'F975	PORT	8	2
Port E pull-up MOS control register	PEPCR	8	H'F976	PORT	8	2
Port F pull-up MOS control register	PFPCR	8	H'F977	PORT	8	2
Port E Nch-OD control register	PENOCR	8	H'F978	PORT	8	2
Port F Nch-OD control register	PFNOCR	8	H'F979	PORT	8	2
Port G data direction register	PGDDR	8	H'F980	PORT	8	2
Port H data direction register	PHDDR	8	H'F981	PORT	8	2
Port G output data register	PGODR	8	H'F982	PORT	8	2

Register Name	Abbreviation	Number of Bits	Address	Module	Data Width	Access States
Port H output data register	PHODR	8	H'F983	PORT	8	2
Port G input data register	PGPIN	8	H'F984	PORT	8	2
Port H input data register	PHPIN	8	H'F985	PORT	8	2
Port H pull-up MOS control register	PHPCR	8	H'F987	PORT	8	2
Port G Nch-OD control register	PGNOCR	8	H'F988	PORT	8	2
Port H Nch-OD control register	PHNOCR	8	H'F989	PORT	8	2
Port G noise canceller enable register	PGNCE	8	H'F98A	PORT	8	2
Port G noise canceller decision control register	PGNCMC	8	H'F98C	PORT	8	2
Port G noise cancel cycle setting register	PGNCCS	8	H'F98E	PORT	8	2
Port I data direction register	PIDDR	8	H'F990	PORT	8	2
Port J data direction register	PJDDR	8	H'F991	PORT	8	2
Port I output data register	PIODR	8	H'F992	PORT	8	2
Port J output data register	PJODR	8	H'F993	PORT	8	2
Port I input data register	PIPIN	8	H'F994	PORT	8	2
Port J input data register	PJPIN	8	H'F995	PORT	8	2
Port I Nch-OD control register	PINOCR	8	H'F998	PORT	8	2
Port J Nch-OD control register	PJNOCR	8	H'F999	PORT	8	2
Flash memory control register 1	FLMCR1	8	H'FB20	ROM	8	2
Flash memory data block protect register	DFPR	8	H'FB22	ROM	8	2
Flash memory status register	FLMSTR	8	H'FB23	ROM	8	2
Flash mat select register	FMATS	8	H'FB25	ROM	8	2
Reset source flag register	RSTFR	8	H'FB40	SYSTEM	8	2
Low-voltage detection circuit 1 control register H	LD1CRH	8	H'FB44	SYSTEM	8	2
Low-voltage detection circuit 1 control register L	LD1CRL	8	H'FB45	SYSTEM	8	2
Low-voltage detection circuit 0 control register H	LD0CRH	8	H'FB46	SYSTEM	8	2

Register Name	Abbreviation	Number of Bits	Address	Module	Data Width	Access States
Low-voltage detection circuit 0 control register L	LD0CRL	8	H'FB47	SYSTEM	8	2
Low-voltage detection circuit control protect register	VDCPR	8	H'FB49	SYSTEM	8	2
PECI control register	PECR	8	H'FBA0	PECI	8	2
PECI status register	PESTR	8	H'FBA1	PECI	8	2
PECI timing count pre-register	PECNT0_PRE	16	H'FBA2	PECI	16	2
PECI timing count general register	PECNT0_GR	16	H'FBA4	PECI	16	2
PECI timing count address general register	PECNT0_GRA	16	H'FBA6	PECI	16	2
PECI address register	PEADD	8	H'FBA8	PECI	8	2
PECI write byte count register	PEWBNR	8	H'FBA9	PECI	8	2
PECI read byte count register	PERBNR	8	H'FBAA	PECI	8	2
PECI client write frame check sequence register	PECWFCSR	8	H'FBAD	PECI	8	2
PECI client read frame check sequence register	PECRFCSR	8	H'FBAE	PECI	8	2
PECI FIFO register	PEFIFO	8	H'FBAF	PECI	8	2
TCM timer counter_0	TCMCNT_0	16	H'FBC0	TCM_0	16	2
TCM cycle upper limit register_0	TCMMLCM_0	16	H'FBC2	TCM_0	16	2
TCM input capture register_0	TCMICR_0	16	H'FBC4	TCM_0	16	2
TCM input capture buffer register_0	TCMICRF_0	16	H'FBC6	TCM_0	16	2
TCM status register_0	TCMCSR_0	8	H'FBC8	TCM_0	8	2
TCM control register_0	TCMCR_0	8	H'FBC9	TCM_0	8	2
TCM interrupt enable register_0	TCMIER_0	8	H'FBCA	TCM_0	8	2
TCM cycle lower limit register_0	TCMMINCM_0	16	H'FBCC	TCM_0	16	2
TCM timer counter_1	TCMCNT_1	16	H'FBD0	TCM_1	16	2
TCM cycle upper limit register_1	TCMMLCM_1	16	H'FBD2	TCM_1	16	2
TCM input capture register_1	TCMICR_1	16	H'FBD4	TCM_1	16	2
TCM input capture buffer register_1	TCMICRF_1	16	H'FBD6	TCM_1	16	2
TCM status register_1	TCMCSR_1	8	H'FBD8	TCM_1	8	2
TCM control register_1	TCMCR_1	8	H'FBD9	TCM_1	8	2

Register Name	Abbreviation	Number of Bits	Address	Module	Data Width	Access States
TCM interrupt enable register_1	TCMIER_1	8	H'FBDA	TCM_1	8	2
TCM cycle lower limit register_1	TCMMINCM_1	16	H'FBDC	TCM_1	16	2
TCM timer counter_2	TCMCNT_2	16	H'FBE0	TCM_2	16	2
TCM cycle upper limit register_2	TCMMLCM_2	16	H'FBE2	TCM_2	16	2
TCM input capture register_2	TCMICR_2	16	H'FBE4	TCM_2	16	2
TCM input capture buffer register_2	TCMICRF_2	16	H'FBE6	TCM_2	16	2
TCM status register_2	TCMCSR_2	8	H'FBE8	TCM_2	8	2
TCM control register_2	TCMCR_2	8	H'FBE9	TCM_2	8	2
TCM interrupt enable register_2	TCMIER_2	8	H'FBEA	TCM_2	8	2
TCM cycle lower limit register_2	TCMMINCM_2	16	H'FBEC	TCM_2	16	2
A/D data register A	ADDRA	16	H'FC00	A/D converter	16	2
A/D data register B	ADDRB	16	H'FC02	A/D converter	16	2
A/D data register C	ADDRC	16	H'FC04	A/D converter	16	2
A/D data register D	ADDRD	16	H'FC06	A/D converter	16	2
A/D data register E	ADDRE	16	H'FC08	A/D converter	16	2
A/D data register F	ADDRF	16	H'FC0A	A/D converter	16	2
A/D data register G	ADDRG	16	H'FC0C	A/D converter	16	2
A/D data register H	ADDRH	16	H'FC0E	A/D converter	16	2
A/D control/status register	ADCSR	8	H'FC10	A/D converter	8	2
A/D control register	ADCR	8	H'FC11	A/D converter	8	2
Receive buffer register	FRBR	8	H'FC20	SCIF	8	2
Transmitter holding register	FTHR	8	H'FC20	SCIF	8	2
Divisor latch L	FDLL	8	H'FC20	SCIF	8	2
Interrupt enable register	FIER	8	H'FC21	SCIF	8	2

Register Name	Abbreviation	Number of Bits	Address	Module	Data Width	Access States
Divisor latch H	FDLH	8	H'FC21	SCIF	8	2
Interrupt identification register	FIIR	8	H'FC22	SCIF	8	2
FIFO control register	FFCR	8	H'FC22	SCIF	8	2
Line control register	FLCR	8	H'FC23	SCIF	8	2
Modem control register	FMCR	8	H'FC24	SCIF	8	2
Line status register	FLSR	8	H'FC25	SCIF	8	2
Modem status register	FMSR	8	H'FC26	SCIF	8	2
Scratch pad register	FSCR	8	H'FC27	SCIF	8	2
SCIF control register	SCIFCR	8	H'FC28	SCIF	8	2
FSI access host base address register H	FSIHBARH	8	H'FC50	FSI	8	2
FSI access host base address register L	FSIHBARL	8	H'FC51	FSI	8	2
FSI flash memory size register	FSISR	8	H'FC52	FSI	8	2
FSI command host base address register H	CMDHBARH	8	H'FC53	FSI	8	2
FSI command host base address register L	CMDHBARL	8	H'FC54	FSI	8	2
FSI command register	FSICMDR	8	H'FC55	FSI	8	2
FSILPC command status register 1	FSILSTR1	8	H'FC56	FSI	8	2
FSI general-purpose register 1	FSIGPR1	8	H'FC57	FSI	8	2
FSI general-purpose register 2	FSIGPR2	8	H'FC58	FSI	8	2
FSI general-purpose register 3	FSIGPR3	8	H'FC59	FSI	8	2
FSI general-purpose register 4	FSIGPR4	8	H'FC5A	FSI	8	2
FSI general-purpose register 5	FSIGPR5	8	H'FC5B	FSI	8	2
FSI general-purpose register 6	FSIGPR6	8	H'FC5C	FSI	8	2
FSI general-purpose register 7	FSIGPR7	8	H'FC5D	FSI	8	2
FSI general-purpose register 8	FSIGPR8	8	H'FC5E	FSI	8	2
FSI general-purpose register 9	FSIGPR9	8	H'FC5F	FSI	8	2
FSI general-purpose register A	FSIGPRA	8	H'FC60	FSI	8	2
FSI general-purpose register B	FSIGPRB	8	H'FC61	FSI	8	2

Register Name	Abbreviation	Number of Bits	Address	Module	Data Width	Access States
FSI general-purpose register C	FSIGPRC	8	H'FC62	FSI	8	2
FSI general-purpose register D	FSIGPRD	8	H'FC63	FSI	8	2
FSI general-purpose register E	FSIGPRE	8	H'FC64	FSI	8	2
FSI general-purpose register F	FSIGPRF	8	H'FC65	FSI	8	2
FSILPC control register	SLCR	8	H'FC66	FSI	8	2
FSI address register H	FSIARH	8	H'FC67	FSI	8	2
FSI address register M	FSIARM	8	H'FC68	FSI	8	2
FSI address register L	FSIARL	8	H'FC69	FSI	8	2
FSI write data register HH	FSIWDRHH	8	H'FC6A	FSI	8	2
FSI write data register HL	FSIWDRHL	8	H'FC6B	FSI	8	2
FSI write data register LH	FSIWDRLH	8	H'FC6C	FSI	8	2
FSI write data register LL	FSIWDRLL	8	H'FC6D	FSI	8	2
FSI LPC command status register 2	FSILSTR2	8	H'FC6E	FSI	8	2
SS control register H	SSCRH	8	H'FC80	SSU	8	2
SS control register L	SSCRL	8	H'FC81	SSU	8	2
SS mode register	SSMR	8	H'FC82	SSU	8	2
SS enable register	SSER	8	H'FC83	SSU	8	2
SS status register	SSSR	8	H'FC84	SSU	8	2
SS control register 2	SSCR2	8	H'FC85	SSU	8	2
SS transmit data registers 0	SSTDR0	8	H'FC86	SSU	8	2
SS transmit data registers 1	SSTDR1	8	H'FC87	SSU	8	2
SS transmit data registers 2	SSTDR2	8	H'FC88	SSU	8	2
SS transmit data registers 3	SSTDR3	8	H'FC89	SSU	8	2
SS receive data registers 0	SSRDR0	8	H'FC8A	SSU	8	2
SS receive data registers 1	SSRDR1	8	H'FC8B	SSU	8	2
SS receive data registers 2	SSRDR2	8	H'FC8C	SSU	8	2
SS receive data registers 3	SSRDR3	8	H'FC8D	SSU	8	2
FSI control register 1	FSICR1	8	H'FC90	FSI	8	2
FSI control register 2	FSICR2	8	H'FC91	FSI	8	2
FSI byte count register	FSIBNR	8	H'FC92	FSI	8	2

Register Name	Abbreviation	Number of Bits	Address	Module	Data Width	Access States
FSI instruction register	FSIINS	8	H'FC93	FSI	8	2
FSI read instruction register	FSIRDINS	8	H'FC94	FSI	8	2
FSI program instruction register	FSIPPINS	8	H'FC95	FSI	8	2
FSI status register	FSISTR	8	H'FC96	FSI	8	2
FSI transmit data register 0	FSITDR0	8	H'FC98	FSI	8	2
FSI transmit data register 1	FSITDR1	8	H'FC99	FSI	8	2
FSI transmit data register 2	FSITDR2	8	H'FC9A	FSI	8	2
FSI transmit data register 3	FSITDR3	8	H'FC9B	FSI	8	2
FSI transmit data register 4	FSITDR4	8	H'FC9C	FSI	8	2
FSI transmit data register 5	FSITDR5	8	H'FC9D	FSI	8	2
FSI transmit data register 6	FSITDR6	8	H'FC9E	FSI	8	2
FSI transmit data register 7	FSITDR7	8	H'FC9F	FSI	8	2
FSI receive data register	FSIRDR	8	H'FCA0	FSI	8	2
WRSR instruction register	WRSRINS	8	H'FCA4	FSI	8	2
RDSR instruction register	RDSRINS	8	H'FCA5	FSI	8	2
PWM duty setting register 0_A	PWMREG0_A	8	H'FD00	PWMU_A	. 8	2
PWM prescaler register 0_A	PWMPRE0_A	8	H'FD01	PWMU_A	. 8	2
PWM duty setting register 1_A	PWMREG1_A	8	H'FD02	PWMU_A	. 8	2
PWM prescaler register 1_A	PWMPRE1_A	8	H'FD03	PWMU_A	. 8	2
PWM duty setting register 2_A	PWMREG2_A	8	H'FD04	PWMU_A	. 8	2
PWM prescaler register 2_A	PWMPRE2_A	8	H'FD05	PWMU_A	. 8	2
PWM duty setting register 3_A	PWMREG3_A	8	H'FD06	PWMU_A	. 8	2
PWM prescaler register 3_A	PWMPRE3_A	8	H'FD07	PWMU_A	. 8	2
PWM duty setting register 4_A	PWMREG4_A	8	H'FD08	PWMU_A	. 8	2
PWM prescaler register 4_A	PWMPRE4_A	8	H'FD09	PWMU_A	. 8	2
PWM duty setting register 5_A	PWMREG5_A	8	H'FD0A	PWMU_A	. 8	2
PWM prescaler register 5_A	PWMPRE5_A	8	H'FD0B	PWMU_A	. 8	2
PWM clock control register_A	PWMCKCR_A	8	H'FD0C	PWMU_A	. 8	2
PWM output control register_A	PWMOUTCR_A	8	H'FD0D	PWMU_A	. 8	2
PWM mode control register_A	PWMMDCR_A	8	H'FD0E	PWMU_A	8	2

Register Name	Abbreviation	Number of Bits	Address	Module	Data Width	Access States
PWM phase control register_A	PWMPCR_A	8	H'FD0F	PWMU_A	. 8	2
PWM duty setting register 0_B	PWMREG0_B	8	H'FD10	PWMU_B	8	2
PWM prescaler register 0_B	PWMPRE0_B	8	H'FD11	PWMU_B	8	2
PWM duty setting register 1_B	PWMREG1_B	8	H'FD12	PWMU_B	8	2
PWM prescaler register 1_B	PWMPRE1_B	8	H'FD13	PWMU_B	8	2
PWM duty setting register 2_B	PWMREG2_B	8	H'FD14	PWMU_B	8	2
PWM prescaler register 2_B	PWMPRE2_B	8	H'FD15	PWMU_B	8	2
PWM duty setting register 3_B	PWMREG3_B	8	H'FD16	PWMU_B	8	2
PWM prescaler register 3_B	PWMPRE3_B	8	H'FD17	PWMU_B	8	2
PWM duty setting register 4_B	PWMREG4_B	8	H'FD18	PWMU_B	8	2
PWM prescaler register 4_B	PWMPRE4_B	8	H'FD19	PWMU_B	8	2
PWM duty setting register 5_B	PWMREG5_B	8	H'FD1A	PWMU_B	8	2
PWM prescaler register 5_B	PWMPRE5_B	8	H'FD1B	PWMU_B	8	2
PWM clock control register_B	PWMCKCR_B	8	H'FD1C	PWMU_B	8	2
PWM output control register_B	PWMOUTCR_B	8	H'FD1D	PWMU_B	8	2
PWM mode control register_B	PWMMDCR_B	8	H'FD1E	PWMU_B	8	2
PWM phase control register_B	PWMPCR_B	8	H'FD1F	PWMU_B	8	2
Timer control register_1	TCR_1	8	H'FD40	TPU_1	8	2
Timer mode register_1	TMDR_1	8	H'FD41	TPU_1	8	2
Timer I/O control register H_1	TIOR_1	8	H'FD42	TPU_1	8	2
Timer interrupt enable register_1	TIER_1	8	H'FD44	TPU_1	8	2
Timer status register_1	TSR_1	8	H'FD45	TPU_1	8	2
Timer counter_1	TCNT_1	16	H'FD46	TPU_1	16	2
Timer general register A_1	TGRA_1	16	H'FD48	TPU_1	16	2
Timer general register B_1	TGRB_1	16	H'FD4A	TPU_1	16	2
PEC calculation data entry register	PECX	8	H'FD60	SMBUS	8	2
PEC calculation data re-entry register	PECY	8	H'FD61	SMBUS	8	2
PEC calculation result output register	PECZ	8	H'FD63	SMBUS	8	2
LPC channel 1 address register H	LADR1H	8	H'FDC0	LPC	8	2

Register Name	Abbreviation	Number of Bits	Address	Module	Data Width	Access States
LPC channel 1 address register L	LADR1L	8	H'FDC1	LPC	8	2
LPC channel 2 address register H	LADR2H	8	H'FDC2	LPC	8	2
LPC channel 2 address register L	LADR2L	8	H'FDC3	LPC	8	2
SCIF address register H	SCIFADRH	8	H'FDC4	LPC	8	2
SCIF address register L	SCIFADRL	8	H'FDC5	LPC	8	2
LPC channel A address register H	LADRAH	8	H'FDD0	LPC	8	2
LPC channel A address register L	LADRAL	8	H'FDD1	LPC	8	2
Input data register A	IDRA	8	H'FDD2	LPC	8	2
Output data register A	ODRA	8	H'FDD3	LPC	8	2
LPC channel 4 address register H	LADR4H	8	H'FDD4	LPC	8	2
LPC channel 4 address register L	LADR4L	8	H'FDD5	LPC	8	2
Input data register 4	IDR4	8	H'FDD6	LPC	8	2
Output data register 4	ODR4	8	H'FDD7	LPC	8	2
Status register 4	STR4	8	H'FDD8	LPC	8	2
Host interface control register 4	HICR4	8	H'FDD9	LPC	8	2
SERIRQ control register 2	SIRQCR2	8	H'FDDA	LPC	8	2
SERIRQ control register 3	SIRQCR3	8	H'FDDB	LPC	8	2
Clock run control register	CKRCR	8	H'FDDF	LPC	8	2
CH4 bidirectional data register 0MW	TWDR0MW	8	H'FDE0	LPC	8	2
CH4 bidirectional data register 0SW	TWDR0SW	8	H'FDE0	LPC	8	2
CH4 bidirectional data register 1	TWDR1	8	H'FDE1	LPC	8	2
CH4 bidirectional data register 2	TWDR2	8	H'FDE2	LPC	8	2
CH4 bidirectional data register 3	TWDR3	8	H'FDE3	LPC	8	2
CH4 bidirectional data register 4	TWDR4	8	H'FDE4	LPC	8	2
CH4 bidirectional data register 5	TWDR5	8	H'FDE5	LPC	8	2
CH4 bidirectional data register 6	TWDR6	8	H'FDE6	LPC	8	2
CH4 bidirectional data register 7	TWDR7	8	H'FDE7	LPC	8	2
CH4 bidirectional data register 8	TWDR8	8	H'FDE8	LPC	8	2
CH4 bidirectional data register 9	TWDR9	8	H'FDE9	LPC	8	2

Register Name	Abbreviation	Number of Bits	Address	Module	Data Width	Access States
CH4 bidirectional data register 10	TWDR10	8	H'FDEA	LPC	8	2
CH4 bidirectional data register 11	TWDR11	8	H'FDEB	LPC	8	2
CH4 bidirectional data register 12	TWDR12	8	H'FDEC	LPC	8	2
CH4 bidirectional data register 13	TWDR13	8	H'FDED	LPC	8	2
CH4 bidirectional data register 14	TWDR14	8	H'FDEE	LPC	8	2
CH4 bidirectional data register 15	TWDR15	8	H'FDEF	LPC	8	2
CH4 bidirectional data register 16	TWDR16	8	H'FDF0	LPC	8	2
CH4 bidirectional data register 17	TWDR17	8	H'FDF1	LPC	8	2
CH4 bidirectional data register 18	TWDR18	8	H'FDF2	LPC	8	2
CH4 bidirectional data register 19	TWDR19	8	H'FDF3	LPC	8	2
CH4 bidirectional data register 20	TWDR20	8	H'FDF4	LPC	8	2
CH4 bidirectional data register 21	TWDR21	8	H'FDF5	LPC	8	2
CH4 bidirectional data register 22	TWDR22	8	H'FDF6	LPC	8	2
CH4 bidirectional data register 23	TWDR23	8	H'FDF7	LPC	8	2
CH4 bidirectional data register 24	TWDR24	8	H'FDF8	LPC	8	2
CH4 bidirectional data register 25	TWDR25	8	H'FDF9	LPC	8	2
CH4 bidirectional data register 26	TWDR26	8	H'FDFA	LPC	8	2
CH4 bidirectional data register 27	TWDR27	8	H'FDFB	LPC	8	2
CH4 bidirectional data register 28	TWDR28	8	H'FDFC	LPC	8	2
CH4 bidirectional data register 29	TWDR29	8	H'FDFD	LPC	8	2
CH4 bidirectional data register 30	TWDR30	8	H'FDFE	LPC	8	2
CH4 bidirectional data register 31	TWDR31	8	H'FDFF	LPC	8	2
Port control register 0	PTCNT0	8	H'FE10	PORT	8	2
Port control register 1	PTCNT1	8	H'FE11	PORT	8	2
Port control register 2	PTCNT2	8	H'FE12	PORT	8	2
Bidirectional data register 0MW	TWR0MW	8	H'FE20	LPC	8	2
Bidirectional data register 0SW	TWR0SW	8	H'FE20	LPC	8	2
Bidirectional data register 0	TWR0	8	H'FE20	LPC	8	2
Bidirectional data register 1	TWR1	8	H'FE21	LPC	8	2
Bidirectional data register 2	TWR2	8	H'FE22	LPC	8	2

Bidirectional data register 3 TWR3 8 HFE23 LPC 8 2 Bidirectional data register 4 TWR4 8 HFE24 LPC 8 2 Bidirectional data register 5 TWR6 8 HFE25 LPC 8 2 Bidirectional data register 6 TWR6 8 HFE26 LPC 8 2 Bidirectional data register 7 TWR7 8 HFE27 LPC 8 2 Bidirectional data register 8 TWR8 8 HFE28 LPC 8 2 Bidirectional data register 9 TWR9 8 HFE29 LPC 8 2 Bidirectional data register 10 TWR10 8 HFE2A LPC 8 2 Bidirectional data register 11 TWR11 8 HFE2D LPC 8 2 Bidirectional data register 13 TWR13 8 HFE2D LPC 8 2 Bidirectional data register 14 TWR14 8 HFE2D LPC	Register Name	Abbreviation	Number of Bits	Address	Module	Data Width	Access States
Bidirectional data register 5 TWR5 8 HFE25 LPC 8 2	Bidirectional data register 3	TWR3	8	H'FE23	LPC	8	2
Bidirectional data register 6	Bidirectional data register 4	TWR4	8	H'FE24	LPC	8	2
Bidirectional data register 7 TWR7 8 HFE27 LPC 8 2	Bidirectional data register 5	TWR5	8	H'FE25	LPC	8	2
Bidirectional data register 8 TWR8 8 H'FE28 LPC 8 2 Bidirectional data register 9 TWR9 8 H'FE29 LPC 8 2 Bidirectional data register 10 TWR10 8 H'FE2A LPC 8 2 Bidirectional data register 11 TWR11 8 H'FE2B LPC 8 2 Bidirectional data register 12 TWR12 8 H'FE2C LPC 8 2 Bidirectional data register 13 TWR13 8 H'FE2C LPC 8 2 Bidirectional data register 14 TWR14 8 H'FE2C LPC 8 2 Bidirectional data register 15 TWR15 8 H'FE2E LPC 8 2 Bidirectional data register 15 TWR15 8 H'FE2F LPC 8 2 Input data register 3 IDR3 8 H'FE30 LPC 8 2 Input data register 3 IDR3 8 H'FE30 LPC 8 2 Status register 3 STR3 8 H'FE32 LPC 8 2 EACH Cohannel 3 address register H LADR3H 8 H'FE34 LPC 8 2 LPC Channel 3 address register L LADR3L 8 H'FE35 LPC 8 2 SERIRQ control register 0 SIRQCR0 8 H'FE36 LPC 8 2 SERIRQ control register 1 IDR1 8 H'FE38 LPC 8 2 Input data register 1 IDR1 8 H'FE38 LPC 8 2 SERIRQ control register 1 STR1 8 H'FE38 LPC 8 2 Input data register 1 STR1 8 H'FE38 LPC 8 2 SERIRQ control register 1 IDR1 8 H'FE38 LPC 8 2 SERIRQ control register 1 STR1 8 H'FE38 LPC 8 2 SERIRQ control register 1 STR1 8 H'FE38 LPC 8 2 SERIRQ control register 1 STR1 8 H'FE38 LPC 8 2 SERIRQ control register 1 STR1 8 H'FE38 LPC 8 2 SERIRQ control register 1 STR1 8 H'FE38 LPC 8 2 SERIRQ control register 2 IDR2 8 H'FE3B LPC 8 2 SERIRQ control register 4 SIRQCR4 8 H'FE3B LPC 8 2 SERIRQ control register 2 IDR2 8 H'FE3B LPC 8 2 SERIRQ control register 4 SIRQCR4 8 H'FE3B LPC 8 2 SERIRQ control register 2 STR2 8 H'FE3B LPC 8 2 SHatus register 2 STR2 8 H'FE3E LPC 8 2 Host interface select register HISEL 8 H'FE3F LPC 8 2	Bidirectional data register 6	TWR6	8	H'FE26	LPC	8	2
Bidirectional data register 9 TWR9 8 H'FE29 LPC 8 2 Bidirectional data register 10 TWR10 8 H'FE2A LPC 8 2 Bidirectional data register 11 TWR11 8 H'FE2B LPC 8 2 Bidirectional data register 12 TWR12 8 H'FE2C LPC 8 2 Bidirectional data register 13 TWR13 8 H'FE2D LPC 8 2 Bidirectional data register 14 TWR14 8 H'FE2E LPC 8 2 Bidirectional data register 15 TWR15 8 H'FE2E LPC 8 2 Bidirectional data register 1 TWR14 8 H'FE2E LPC 8 2 Bidirectional data register 1 TWR15 8 H'FE2D LPC 8 2 Bidirectional data register 1 TWR15 8 H'FE3D LPC 8 2 Input data register 3 TWR15 8 H'FE31 LPC	Bidirectional data register 7	TWR7	8	H'FE27	LPC	8	2
Bidirectional data register 10 TWR10 8 H'FE2A LPC 8 2 Bidirectional data register 11 TWR11 8 H'FE2B LPC 8 2 Bidirectional data register 12 TWR12 8 H'FE2C LPC 8 2 Bidirectional data register 13 TWR13 8 H'FE2D LPC 8 2 Bidirectional data register 14 TWR14 8 H'FE2E LPC 8 2 Bidirectional data register 15 TWR15 8 H'FE2E LPC 8 2 Bidirectional data register 15 TWR15 8 H'FE30 LPC 8 2 Dinput data register 3 IDR3 8 H'FE30 LPC 8 2 Dutput data register 3 ODR3 8 H'FE31 LPC 8 2 Status register 3 STR3 8 H'FE32 LPC 8 2 Host interface control register 5 HICR5 8 H'FE33 LPC 8 2 LPC channel 3 address register H LADR3H 8 H'FE34 LPC 8 2 LPC channel 3 address register L LADR3L 8 H'FE35 LPC 8 2 SERIRQ control register 0 SIRQCR0 8 H'FE36 LPC 8 2 SERIRQ control register 1 IDR1 8 H'FE37 LPC 8 2 Input data register 1 IDR1 8 H'FE38 LPC 8 2 Status register 1 STR1 8 H'FE39 LPC 8 2 Status register 1 STR1 8 H'FE30 LPC 8 2 SERIRQ control register 1 STR1 8 H'FE38 LPC 8 2 SERIRQ control register 1 STR1 8 H'FE38 LPC 8 2 SERIRQ control register 1 STR1 8 H'FE36 LPC 8 2 SERIRQ control register 2 IDR2 8 H'FE3C LPC 8 2 SERIRQ control register 4 SIRQCR4 8 H'FE3B LPC 8 2 SERIRQ control register 4 SIRQCR4 8 H'FE3B LPC 8 2 SERIRQ control register 4 SIRQCR4 8 H'FE3B LPC 8 2 SERIRQ control register 4 SIRQCR4 8 H'FE3B LPC 8 2 SERIRQ control register 4 SIRQCR4 8 H'FE3B LPC 8 2 SERIRQ control register 5 STR2 8 H'FE3E LPC 8 2 Status register 2 STR2 8 H'FE3E LPC 8 2	Bidirectional data register 8	TWR8	8	H'FE28	LPC	8	2
Bidirectional data register 11 TWR11 8 H'FE2B LPC 8 2 Bidirectional data register 12 TWR12 8 H'FE2C LPC 8 2 Bidirectional data register 13 TWR13 8 H'FE2D LPC 8 2 Bidirectional data register 14 TWR14 8 H'FE2E LPC 8 2 Bidirectional data register 15 TWR15 8 H'FE2E LPC 8 2 Bidirectional data register 15 TWR15 8 H'FE2E LPC 8 2 Bidirectional data register 15 TWR15 8 H'FE2E LPC 8 2 Input data register 3 IDR3 8 H'FE30 LPC 8 2 Output data register 3 ODR3 8 H'FE31 LPC 8 2 Status register 3 STR3 8 H'FE32 LPC 8 2 LPC channel 3 address register 4 LADR3H 8 H'FE34 LPC <t< td=""><td>Bidirectional data register 9</td><td>TWR9</td><td>8</td><td>H'FE29</td><td>LPC</td><td>8</td><td>2</td></t<>	Bidirectional data register 9	TWR9	8	H'FE29	LPC	8	2
Bidirectional data register 12 TWR12 8 H'FE2C LPC 8 2 Bidirectional data register 13 TWR13 8 H'FE2D LPC 8 2 Bidirectional data register 14 TWR14 8 H'FE2E LPC 8 2 Bidirectional data register 15 TWR15 8 H'FE2F LPC 8 2 Input data register 3 IDR3 8 H'FE30 LPC 8 2 Input data register 3 ODR3 8 H'FE31 LPC 8 2 Status register 3 STR3 8 H'FE31 LPC 8 2 Host interface control register 5 HICR5 8 H'FE32 LPC 8 2 LPC channel 3 address register H LADR3H 8 H'FE34 LPC 8 2 LPC channel 3 address register L LADR3L 8 H'FE35 LPC 8 2 SERIRQ control register 0 SIRQCR0 8 H'FE36 LPC 8 2 SERIRQ control register 1 SIRQCR1 8 H'FE37 LPC 8 2 Input data register 1 IDR1 8 H'FE38 LPC 8 2 Status register 1 ODR1 8 H'FE3A LPC 8 2 Status register 1 STR1 8 H'FE3A LPC 8 2 SERIRQ control register 4 SIRQCR4 8 H'FE3A LPC 8 2 SERIRQ control register 4 SIRQCR4 8 H'FE3B LPC 8 2 SERIRQ control register 4 SIRQCR4 8 H'FE3B LPC 8 2 SERIRQ control register 4 SIRQCR4 8 H'FE3B LPC 8 2 SERIRQ control register 4 SIRQCR4 8 H'FE3B LPC 8 2 SERIRQ control register 4 SIRQCR4 8 H'FE3B LPC 8 2 SERIRQ control register 4 SIRQCR4 8 H'FE3B LPC 8 2 SERIRQ control register 4 SIRQCR4 8 H'FE3B LPC 8 2 SERIRQ control register 4 SIRQCR4 8 H'FE3B LPC 8 2 SERIRQ control register 4 SIRQCR4 8 H'FE3B LPC 8 2 SERIRQ control register 4 SIRQCR4 8 H'FE3B LPC 8 2 SERIRQ control register 4 SIRQCR4 8 H'FE3B LPC 8 2 Status register 2 STR2 8 H'FE3B LPC 8 2 Status register 2 HISEL 8 H'FE3F LPC 8 2	Bidirectional data register 10	TWR10	8	H'FE2A	LPC	8	2
Bidirectional data register 13 TWR13 8 HFE2D LPC 8 2 Bidirectional data register 14 TWR14 8 HFE2E LPC 8 2 Bidirectional data register 15 TWR15 8 HFE2F LPC 8 2 Input data register 3 IDR3 8 HFE30 LPC 8 2 Output data register 3 ODR3 8 HFE31 LPC 8 2 Status register 3 STR3 8 HFE32 LPC 8 2 Host interface control register 5 HICR5 8 HFE33 LPC 8 2 LPC channel 3 address register H LADR3H 8 HFE34 LPC 8 2 LPC channel 3 address register L LADR3L 8 HFE35 LPC 8 2 SERIRQ control register 0 SIRQCR0 8 HFE36 LPC 8 2 Input data register 1 IDR1 8 HFE38 LPC 8 2 Output data register 1 ODR1 8 HFE38 LPC 8 2 Status register 1 STR1 8 HFE3A LPC 8 2 Status register 1 STR1 8 HFE3A LPC 8 2 SERIRQ control register 1 STR1 8 HFE38 LPC 8 2 Output data register 1 STR1 8 HFE3A LPC 8 2 Status register 1 STR1 8 HFE3A LPC 8 2 SERIRQ control register 4 SIRQCR4 8 HFE3B LPC 8 2 Output data register 2 IDR2 8 HFE3B LPC 8 2 SERIRQ control register 4 SIRQCR4 8 HFE3B LPC 8 2 SERIRQ control register 4 SIRQCR4 8 HFE3B LPC 8 2 Output data register 2 ODR2 8 HFE3B LPC 8 2 Status register 2 STR2 8 HFE3B LPC 8 2 Status register 2 STR2 8 HFE3F LPC 8 2 Host interface select register HISEL 8 HFE3F LPC 8 2	Bidirectional data register 11	TWR11	8	H'FE2B	LPC	8	2
Bidirectional data register 14 TWR14 8 H'FE2E LPC 8 2 Bidirectional data register 15 TWR15 8 H'FE2F LPC 8 2 Input data register 3 IDR3 8 H'FE30 LPC 8 2 Output data register 3 ODR3 8 H'FE31 LPC 8 2 Status register 3 STR3 8 H'FE32 LPC 8 2 Host interface control register 5 HICR5 8 H'FE33 LPC 8 2 LPC channel 3 address register H LADR3H 8 H'FE34 LPC 8 2 LPC channel 3 address register L LADR3L 8 H'FE35 LPC 8 2 LPC channel 3 address register L LADR3L 8 H'FE36 LPC 8 2 LPC channel 3 address register L LADR3L 8 H'FE36 LPC 8 2 SERIRQ control register 0 SIRQCR0 8 H'FE37 LPC	Bidirectional data register 12	TWR12	8	H'FE2C	LPC	8	2
Bidirectional data register 15 TWR15 8 H'FE2F LPC 8 2	Bidirectional data register 13	TWR13	8	H'FE2D	LPC	8	2
Input data register 3	Bidirectional data register 14	TWR14	8	H'FE2E	LPC	8	2
Output data register 3 ODR3 8 H'FE31 LPC 8 2 Status register 3 STR3 8 H'FE32 LPC 8 2 Host interface control register 5 HICR5 8 H'FE33 LPC 8 2 LPC channel 3 address register H LADR3H 8 H'FE34 LPC 8 2 LPC channel 3 address register L LADR3L 8 H'FE35 LPC 8 2 LPC channel 3 address register L LADR3L 8 H'FE35 LPC 8 2 LPC channel 3 address register L LADR3L 8 H'FE35 LPC 8 2 SERIRQ control register 0 SIRQCR0 8 H'FE36 LPC 8 2 SERIRQ control register 1 IDR1 8 H'FE37 LPC 8 2 Output data register 1 STR1 8 H'FE3A LPC 8 2 Input data register 2 IDR2 8 H'FE3C LPC 8 <td>Bidirectional data register 15</td> <td>TWR15</td> <td>8</td> <td>H'FE2F</td> <td>LPC</td> <td>8</td> <td>2</td>	Bidirectional data register 15	TWR15	8	H'FE2F	LPC	8	2
Status register 3 STR3 8 H'FE32 LPC 8 2 Host interface control register 5 HICR5 8 H'FE33 LPC 8 2 LPC channel 3 address register H LADR3H 8 H'FE34 LPC 8 2 LPC channel 3 address register L LADR3L 8 H'FE35 LPC 8 2 SERIRQ control register 0 SIRQCR0 8 H'FE36 LPC 8 2 SERIRQ control register 1 SIRQCR1 8 H'FE37 LPC 8 2 Input data register 1 IDR1 8 H'FE38 LPC 8 2 Status register 1 ODR1 8 H'FE39 LPC 8 2 Input data register 2 IDR2 8 H'FE3A LPC 8 2 SERIRQ control register 4 SIRQCR4 8 H'FE3B LPC 8 2 SERIRQ control register 2 ODR2 8 H'FE3B LPC 8 2 </td <td>Input data register 3</td> <td>IDR3</td> <td>8</td> <td>H'FE30</td> <td>LPC</td> <td>8</td> <td>2</td>	Input data register 3	IDR3	8	H'FE30	LPC	8	2
Host interface control register 5 HICR5	Output data register 3	ODR3	8	H'FE31	LPC	8	2
LPC channel 3 address register H LADR3H 8 H'FE34 LPC 8 2 LPC channel 3 address register L LADR3L 8 H'FE35 LPC 8 2 SERIRQ control register 0 SIRQCR0 8 H'FE36 LPC 8 2 SERIRQ control register 1 SIRQCR1 8 H'FE37 LPC 8 2 Input data register 1 IDR1 8 H'FE38 LPC 8 2 Output data register 1 ODR1 8 H'FE39 LPC 8 2 Status register 1 STR1 8 H'FE3A LPC 8 2 Input data register 2 IDR2 8 H'FE3C LPC 8 2 SERIRQ control register 4 SIRQCR4 8 H'FE3B LPC 8 2 Output data register 2 ODR2 8 H'FE3D LPC 8 2 Status register 2 STR2 8 H'FE3E LPC 8 2 Host interface select register HISEL 8 H'FE3F LPC 8 2	Status register 3	STR3	8	H'FE32	LPC	8	2
LPC channel 3 address register L LADR3L 8 H'FE35 LPC 8 2 SERIRQ control register 0 SIRQCR0 8 H'FE36 LPC 8 2 SERIRQ control register 1 SIRQCR1 8 H'FE37 LPC 8 2 Input data register 1 IDR1 8 H'FE38 LPC 8 2 Output data register 1 ODR1 8 H'FE39 LPC 8 2 Status register 1 STR1 8 H'FE3A LPC 8 2 Input data register 2 IDR2 8 H'FE3C LPC 8 2 SERIRQ control register 4 SIRQCR4 8 H'FE3B LPC 8 2 Output data register 2 ODR2 8 H'FE3D LPC 8 2 Status register 2 STR2 8 H'FE3F LPC 8 2 Host interface select register HISEL 8 H'FE3F LPC 8 2 <td>Host interface control register 5</td> <td>HICR5</td> <td>8</td> <td>H'FE33</td> <td>LPC</td> <td>8</td> <td>2</td>	Host interface control register 5	HICR5	8	H'FE33	LPC	8	2
SERIRQ control register 0 SIRQCR0 8 H'FE36 LPC 8 2 SERIRQ control register 1 SIRQCR1 8 H'FE37 LPC 8 2 Input data register 1 IDR1 8 H'FE38 LPC 8 2 Output data register 1 ODR1 8 H'FE39 LPC 8 2 Status register 1 STR1 8 H'FE3A LPC 8 2 Input data register 2 IDR2 8 H'FE3C LPC 8 2 SERIRQ control register 4 SIRQCR4 8 H'FE3B LPC 8 2 Output data register 2 ODR2 8 H'FE3D LPC 8 2 Status register 2 STR2 8 H'FE3F LPC 8 2 Host interface select register HISEL 8 H'FE3F LPC 8 2	LPC channel 3 address register H	LADR3H	8	H'FE34	LPC	8	2
SERIRQ control register 1 SIRQCR1 8 H'FE37 LPC 8 2 Input data register 1 IDR1 8 H'FE38 LPC 8 2 Output data register 1 ODR1 8 H'FE39 LPC 8 2 Status register 1 STR1 8 H'FE3A LPC 8 2 Input data register 2 IDR2 8 H'FE3C LPC 8 2 SERIRQ control register 4 SIRQCR4 8 H'FE3B LPC 8 2 Output data register 2 ODR2 8 H'FE3D LPC 8 2 Status register 2 STR2 8 H'FE3E LPC 8 2 Host interface select register HISEL 8 H'FE3F LPC 8 2	LPC channel 3 address register L	LADR3L	8	H'FE35	LPC	8	2
Input data register 1 IDR1 8 H'FE38 LPC 8 2 Output data register 1 ODR1 8 H'FE39 LPC 8 2 Status register 1 STR1 8 H'FE3A LPC 8 2 Input data register 2 IDR2 8 H'FE3C LPC 8 2 SERIRQ control register 4 SIRQCR4 8 H'FE3B LPC 8 2 Output data register 2 ODR2 8 H'FE3D LPC 8 2 Status register 2 STR2 8 H'FE3E LPC 8 2 Host interface select register HISEL 8 H'FE3F LPC 8 2	SERIRQ control register 0	SIRQCR0	8	H'FE36	LPC	8	2
Output data register 1 ODR1 8 H'FE39 LPC 8 2 Status register 1 STR1 8 H'FE3A LPC 8 2 Input data register 2 IDR2 8 H'FE3C LPC 8 2 SERIRQ control register 4 SIRQCR4 8 H'FE3B LPC 8 2 Output data register 2 ODR2 8 H'FE3D LPC 8 2 Status register 2 STR2 8 H'FE3E LPC 8 2 Host interface select register HISEL 8 H'FE3F LPC 8 2	SERIRQ control register 1	SIRQCR1	8	H'FE37	LPC	8	2
Status register 1 STR1 8 H'FE3A LPC 8 2 Input data register 2 IDR2 8 H'FE3C LPC 8 2 SERIRQ control register 4 SIRQCR4 8 H'FE3B LPC 8 2 Output data register 2 ODR2 8 H'FE3D LPC 8 2 Status register 2 STR2 8 H'FE3E LPC 8 2 Host interface select register HISEL 8 H'FE3F LPC 8 2	Input data register 1	IDR1	8	H'FE38	LPC	8	2
Input data register 2 IDR2 8 H'FE3C LPC 8 2 SERIRQ control register 4 SIRQCR4 8 H'FE3B LPC 8 2 Output data register 2 ODR2 8 H'FE3D LPC 8 2 Status register 2 STR2 8 H'FE3E LPC 8 2 Host interface select register HISEL 8 H'FE3F LPC 8 2	Output data register 1	ODR1	8	H'FE39	LPC	8	2
SERIRQ control register 4 SIRQCR4 8 H'FE3B LPC 8 2 Output data register 2 ODR2 8 H'FE3D LPC 8 2 Status register 2 STR2 8 H'FE3E LPC 8 2 Host interface select register HISEL 8 H'FE3F LPC 8 2	Status register 1	STR1	8	H'FE3A	LPC	8	2
Output data register 2 ODR2 8 H'FE3D LPC 8 2 Status register 2 STR2 8 H'FE3E LPC 8 2 Host interface select register HISEL 8 H'FE3F LPC 8 2	Input data register 2	IDR2	8	H'FE3C	LPC	8	2
Status register 2 STR2 8 H'FE3E LPC 8 2 Host interface select register HISEL 8 H'FE3F LPC 8 2	SERIRQ control register 4	SIRQCR4	8	H'FE3B	LPC	8	2
Host interface select register HISEL 8 H'FE3F LPC 8 2	Output data register 2	ODR2	8	H'FE3D	LPC	8	2
	Status register 2	STR2	8	H'FE3E	LPC	8	2
Host interface control register 0 HICR0 8 H'FE40 LPC 8 2	Host interface select register	HISEL	8	H'FE3F	LPC	8	2
	Host interface control register 0	HICR0	8	H'FE40	LPC	8	2

Register Name	Abbreviation	Number of Bits	Address	Module	Data Width	Access States
Host interface control register 1	HICR1	8	H'FE41	LPC	8	2
Host interface control register 2	HICR2	8	H'FE42	LPC	8	2
Host interface control register 3	HICR3	8	H'FE43	LPC	8	2
Wake-up event interrupt mask register L	WUEMRB	8	H'FE44	INT	8	2
Wake-up event interrupt mask register A	WUEMRA	8	H'FE45	INT	8	2
Host interface control register 6	HICR6	8	H'FE4C	LPC	8	2
Status register A	STRA	8	H'FE4D	LPC	8	2
SERIRQ control register 5	SIRQCR5	8	H'FE4E	LPC	8	2
Timer control register_0	TCR_0	8	H'FE50	TPU_0	8	2
Timer mode register_0	TMDR_0	8	H'FE51	TPU_0	8	2
Timer I/O control register H_0	TIORH_0	8	H'FE52	TPU_0	8	2
Timer I/O control register L_0	TIORL_0	8	H'FE53	TPU_0	8	2
Timer interrupt enable register_0	TIER_0	8	H'FE54	TPU_0	8	2
Timer status register_0	TSR_0	8	H'FE55	TPU_0	8	2
Timer counter_0	TCNT_0	16	H'FE56	TPU_0	16	2
Timer general register A_0	TGRA_0	16	H'FE58	TPU_0	16	2
Timer general register B_0	TGRB_0	16	H'FE5A	TPU_0	16	2
Timer general register C_0	TGRC_0	16	H'FE5C	TPU_0	16	2
Timer general register D_0	TGRD_0	16	H'FE5E	TPU_0	16	2
Timer control register_2	TCR_2	8	H'FE70	TPU_2	8	2
Timer mode register_2	TMDR_2	8	H'FE71	TPU_2	8	2
Timer I/O control register_2	TIOR_2	8	H'FE72	TPU_2	8	2
Timer interrupt enable register_2	TIER_2	8	H'FE74	TPU_2	8	2
Timer status register_2	TSR_2	8	H'FE75	TPU_2	8	2
Timer counter_2	TCNT_2	16	H'FE76	TPU_2	16	2
Timer general register A_2	TGRA_2	16	H'FE78	TPU_2	16	2
Timer general register B_2	TGRB_2	16	H'FE7A	TPU_2	16	2
Keyboard matrix interrupt mask register B	KMIMRB	8	H'FE81	INT	8	2

Register Name	Abbreviation	Number of Bits	Address	Module	Data Width	Access States
Keyboard matrix interrupt mask register A	KMIMRA	8	H'FE83	INT	8	2
Wake-up sense control register A	WUESCRA	8	H'FE84	INT	8	2
Wake-up input interrupt status register A	WUESRA	8	H'FE85	INT	8	2
Wake-up enable register	WUEER	8	H'FE86	INT	8	2
Interrupt control registers D	ICRD	8	H'FE87	INT	8	2
I ² C bus control register_2	ICCR_2	8	H'FE88	IIC2	8	2
I ² C bus status register_2	ICSR_2	8	H'FE89	IIC2	8	2
I ² C bus control initialization register_2	ICRES_2	8	H'FE8A	IIC2	8	2
I ² C bus clock selector register_2	ICCKR_2	8	H'FE8B	IIC2	8	2
I ² C bus extended control register_2	ICXR_2	8	H'FE8C	IIC2	8	2
Second slave address register_2	SARX_2	8	H'FE8E	IIC2	8	2
I ² C bus data register_2	ICDR_2	8	H'FE8E	IIC2	8	2
Slave address register_2	SAR_2	8	H'FE8F	IIC2	8	2
Slave address register_2	ICMR_2	8	H'FE8F	IIC2	8	2
Wake-up sense control register B	WUESCRB	8	H'FE96	INT	8	2
Wake-up input interrupt status register B	WUESRB	8	H'FE97	INT	8	2
Timer start register	TSTR	8	H'FEB0	TPU common	8	2
Timer synchro register	TSYR	8	H'FEB1	TPU common	8	2
Keyboard control register 1_0	KBCR1_0	8	H'FEC0	PS2_0	8	2
Keyboard buffer transmit data register_0	KBTR_0	8	H'FEC1	PS2_0	8	2
Keyboard control register 1_1	KBCR1_1	8	H'FEC2	PS2_1	8	2
Keyboard buffer transmit data register_1	KBTR_1	8	H'FEC3	PS2_1	8	2
Keyboard control register 1_2	KBCR1_2	8	H'FEC4	PS2_2	8	2
Keyboard buffer transmit data register_2	KBTR_2	8	H'FEC5	PS2_2	8	2

Register Name	Abbreviation	Number of Bits	Address	Module	Data Width	Access States
Timer XY control register	TCRXY	8	H'FEC6	TMR_X, TMR_Y	8	2
Timer control register_Y	TCR_Y	8	H'FEC8	TMR_Y	8	2
Timer control/status register_Y	TCSR_Y	8	H'FEC9	TMR_Y	8	2
Time constant register A_Y	TCORA_Y	8	H'FECA	TMR_Y	8	2
Time constant register B_Y	TCORB_Y	8	H'FECB	TMR_Y	8	2
Timer counter_Y	TCNT_Y	8	H'FECC	TMR_Y	8	2
I ² C bus control register_1	ICCR_1	8	H'FED0	IIC1	8	2
I ² C bus status register_1	ICSR_1	8	H'FED1	IIC1	8	2
I ² C bus control initialization register_1	ICRES_1	8	H'FED2	IIC1	8	2
I ² C bus clock selector register_1	ICCKR_1	8	H'FED3	IIC1	8	2
I ² C bus extended control register_1	ICXR_1	8	H'FED4	IIC1	8	2
Second slave address register_1	SARX_1	8	H'FED6	IIC1	8	2
I ² C bus data register_1	ICDR_1	8	H'FED6	IIC1	8	2
Slave address register_1	SAR_1	8	H'FED7	IIC1	8	2
I ² C bus mode register_1	ICMR_1	8	H'FED7	IIC1	8	2
Keyboard control state register_0	KBCRH_0	8	H'FED8	PS2_0	8	2
Keyboard receive control register_0	KBCRL_0	8	H'FED9	PS2_0	8	2
Keyboard receive data buffer register_0	KBBR_0	8	H'FEDA	PS2_0	8	2
Keyboard transmit count register_0	KBCR2_0	8	H'FEDB	PS2_0	8	2
Keyboard control register_1	KBCRH_1	8	H'FEDC	PS2_1	8	2
Keyboard receive control register _1	KBCRL_1	8	H'FEDD	PS2_1	8	2
Keyboard receive data buffer register_1	KBBR_1	8	H'FEDE	PS2_1	8	2
Keyboard transmit count register_1	KBCR2_1	8	H'FEDF	PS2_1	8	2
Keyboard control state register_2	KBCRH_2	8	H'FEE0	PS2_2	8	2
Keyboard receive control register_2	KBCRL_2	8	H'FEE1	PS2_2	8	2
Keyboard receive data buffer register_2	KBBR_2	8	H'FEE2	PS2_2	8	2
Keyboard transmit count register_2	KBCR2_2	8	H'FEE3	PS2_2	8	2

Register Name	Abbreviation	Number of Bits	Address	Module	Data Width	Access States
Interrupt control register A	ICRA	8	H'FEE8	INT	8	2
Interrupt control register B	ICRB	8	H'FEE9	INT	8	2
Interrupt control register C	ICRC	8	H'FEEA	INT	8	2
IRQ status register	ISR	8	H'FEEB	INT	8	2
IRQ sense control register H	ISCRH	8	H'FEEC	INT	8	2
IRQ sense control register L	ISCRL	8	H'FEED	INT	8	2
Address break control register	ABRKCR	8	H'FEF4	INT	8	2
Break address register A	BARA	8	H'FEF5	INT	8	2
Break address register B	BARB	8	H'FEF6	INT	8	2
Break address register C	BARC	8	H'FEF7	INT	8	2
IRQ enable register 16	IER16	8	H'FEF8	INT	8	2
IRQ status register 16	ISR16	8	H'FEF9	INT	8	2
IRQ sense control register 16H	ISCR16H	8	H'FEFA	INT	8	2
IRQ sense control register 16L	ISCR16L	8	H'FEFB	INT	8	2
IRQ sense port select register 16	ISSR16	8	H'FEFC	INT	8	2
IRQ sense port select register	ISSR	8	H'FEFD	INT	8	2
Serial mode register	SMR_1	8	H'FF88	SCI_1	8	2
Bit rate register	BRR_1	8	H'FF89	SCI_1	8	2
Serial control register	SCR_1	8	H'FF8A	SCI_1	8	2
Transmit data register	TDR_1	8	H'FF8B	SCI_1	8	2
Serial status register	SSR_1	8	H'FF8C	SCI_1	8	2
Receive data register	RDR_1	8	H'FF8D	SCI_1	8	2
Smart card mode register	SCMR_1	8	H'FF8E	SCI_1	8	2
Serial extended mode register	SEMR_1	8	H'FF8F	SCI_1	8	2
Mode control register	MDCR	8	H'FF90	SYSTEM	8	2
System control register	SYSCR1	8	H'FF91	SYSTEM	8	2
Standby control register	SBYCR	8	H'FF94	SYSTEM	8	2
Low power control register	LPWRCR	8	H'FF95	SYSTEM	8	2
Module stop control register H	MSTPCRH	8	H'FF96	SYSTEM	8	2
Module stop control register L	MSTPCRL	8	H'FF97	SYSTEM	8	2

Register Name	Abbreviation	Number of Bits	Address	Module	Data Width	Access States
Module stop control register A	MSTPCRA	8	H'FF98	SYSTEM	8	2
Module stop control register B	MSTPCRB	8	H'FF99	SYSTEM	8	2
Bus control register	BCR	8	H'FF9A	BSC	8	2
Wait state control register	WSCR	8	H'FF9B	BSC	8	2
Serial timer control register	STCR	8	H'FF9E	SYSTEM	8	2
Timer control/status register_0	TCSR_0	8	H'FFA8 (Write)	WDT_0	16	2
Timer control/status register_0	TCSR_0	8	H'FFA8 (Read)	WDT_0	16	2
Timer counter_0	TCNT_0	8	H'FFA8 (Write)	WDT_0	16	2
Timer counter_0	TCNT_0	8	H'FFA9 (Read)	WDT_0	8	2
IRQ enable register	IER	8	H'FFC2	INT	8	2
Timer control register_0	TCR_0	8	H'FFC8	TMR_0	8	2
Timer control register_1	TCR_1	8	H'FFC9	TMR_1	8	2
Timer control/status register_0	TCSR_0	8	H'FFCA	TMR_0	8	2
Timer control/status register_1	TCSR_1	8	H'FFCB	TMR_1	8	2
Time constant register A_0	TCORA_0	8	H'FFCC	TMR_0	16	2
Time constant register A_1	TCORA_1	8	H'FFCD	TMR_1	16	2
Time constant register B_0	TCORB_0	8	H'FFCE	TMR_0	16	2
Time constant register B_1	TCORB_1	8	H'FFCF	TMR_1	16	2
Timer counter_0	TCNT_0	8	H'FFD0	TMR_0	16	2
Timer counter_1	TCNT_1	8	H'FFD1	TMR_1	16	2
Timer clock selector register_0	TCKR_0	8	H'FFD2	TMR_0	8	2
Timer clock selector register_1	TCKR_1	8	H'FFD3	TMR_1	8	2
I ² C bus control register	ICCR_0	8	H'FFD8	IIC0	8	2
I ² C bus status register_0	ICSR_0	8	H'FFD9	IIC0	8	2
I ² C bus control initialization register_0	ICRES_0	8	H'FFDA	IIC0	8	2
I ² C bus clock selector register_0	ICCKR_0	8	H'FFDB	IIC0	8	2
I ² C bus extended control register_0	ICXR_0	8	H'FFDC	IIC0	8	2
I ² C bus data register_0	ICDR_0	8	H'FFDE	IIC0	8	2
Second slave address register_0	SARX_0	8	H'FFDE	IIC0	8	2

Register Name	Abbreviation	Number of Bits	Address	Module	Data Width	Access States
I ² C bus mode register_0	ICMR_0	8	H'FFDF	IIC0	8	2
Slave address register_0	SAR_0	8	H'FFDF	IIC0	8	2
Timer control/status register_1	TCSR_1	8	H'FFEA (Write)	WDT_1	16	2
Timer control/status register_1	TCSR_1	8	H'FFEA (Read)	WDT_1	8	2
Timer counter_1	TCNT_1	8	H'FFEA (Write)	WDT_1	16	2
Timer counter_1	TCNT_1	8	H'FFEB (Read)	WDT_1	8	2
Timer clock extended selector_1	TCSRE_1	8	H'FFEC (Write)	WDT_1	16	2
Timer clock extended selector_1	TCSRE_1	8	H'FFEC (Read)	WDT_1	8	2
Timer control register_X	TCR_X	8	H'FFF0	TMR_X	8	2
Timer control/status register_X	TCSR_X	8	H'FFF1	TMR_X	8	2
Input capture register R	TICRR	8	H'FFF2	TMR_X	8	2
Input capture register F	TICRF	8	H'FFF3	TMR_X	8	2
Timer counter_X	TCNT_X	8	H'FFF4	TMR_X	8	2
Time constant register A_X	TCORA_X	8	H'FFF6	TMR_X	8	2
Time constant register B_X	TCORB_X	8	H'FFF7	TMR_X	8	2
Timer connection register I	TCONRI	8	H'FFFC	TMR_X	8	2

Module

30.2 **Register Bits**

Register addresses and bit names of the on-chip peripheral modules are described below.

Each line covers eight bits, and 16-bit registers are shown as 2 lines.

Register		- 11. 6	-				-	-	
Abbreviation	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Modu
BBR0	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	BBR
BBR1	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
BBR2	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
BBR3	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
BBR4	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
BBR5	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
BBR6	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
BBR7	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
BBR8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
BBR9	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
BBR10	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
BBR11	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
BBR12	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
BBR13	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
BBR14	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
BBR15	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
BBR16	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
BBR17	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
BBR18	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
BBR19	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
BBR20	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
BBR21	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
BBR22	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
BBR23	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
BBR24	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
BBR25	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
BBR26	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	

Register Abbreviation	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module
BBR27	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	BBR
BBR28	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
BBR29	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
BBR30	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
BBR31	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
BBR32	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
BBR33	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
BBR34	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
BBR35	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
BBR36	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
BBR37	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
BBR38	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
BBR39	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
BBR40	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
BBR41	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
BBR42	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
BBR43	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
BBR44	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
BBR45	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
BBR46	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
BBR47	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
BBR48	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
BBR49	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
BBR50	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
BBR51	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
BBR52	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
BBR53	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
BBR54	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
BBR55	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
BBR56	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
BBR57	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
BBR58	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	

Register Abbreviation	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module
BBR59	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	BBR
BBR60	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	•
BBR61	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	•
BBR62	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	•
BBR63	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	•
BWPRT	DWP7	DWP6	DWP5	DWP4	DWP3	DWP2	DWP1	DWP0	•
P1DDR	P17DDR	P16DDR	P15DDR	P14DDR	P13DDR	P12DDR	P11DDR	P10DDR	PORT
P2DDR	P27DDR	P26DDR	P25DDR	P24DDR	P23DDR	P22DDR	P21DDR	P20DDR	•
P1ODR	P17ODR	P16ODR	P15ODR	P14ODR	P13ODR	P12ODR	P110DR	P100DR	•
P2ODR	P27ODR	P26ODR	P25ODR	P24ODR	P23ODR	P22ODR	P21ODR	P20ODR	•
P1PIN	P17PIN	P16PIN	P15PIN	P14PIN	P13PIN	P12PIN	P11PIN	P10PIN	•
P2PIN	P27PIN	P26PIN	P25PIN	P24PIN	P23PIN	P22PIN	P21PIN	P20PIN	•
P1PCR	P17PCR	P16PCR	P15PCR	P14PCR	P13PCR	P12PCR	P11PCR	P10PCR	
P2PCR	P27PCR	P26PCR	P25PCR	P24PCR	P23PCR	P22PCR	P21PCR	P20PCR	•
P3DDR	P37DDR	P36DDR	P35DDR	P34DDR	P33DDR	P32DDR	P31DDR	P30DDR	•
P4DDR	P47DDR	P46DDR	P45DDR	P44DDR	P43DDR	P42DDR	P41DDR	P40DDR	•
P3ODR	P37ODR	P36ODR	P35ODR	P34ODR	P33ODR	P32ODR	P31ODR	P30ODR	•
P4ODR	P47ODR	P46ODR	P45ODR	P44ODR	P43ODR	P42ODR	P41ODR	P40ODR	•
P3PIN	P37PIN	P36PIN	P35PIN	P34PIN	P33PIN	P32PIN	P31PIN	P30PIN	•
P4PIN	P47PIN	P46PIN	P45PIN	P44PIN	P43PIN	P42PIN	P41PIN	P40PIN	•
P3PCR	P37PCR	P36PCR	P35PCR	P34PCR	P33PCR	P32PCR	P31PCR	P30PCR	•
P4PCR	P47PCR	P46PCR	P45PCR	P44PCR	P43PCR	P42PCR	P41PCR	P40PCR	•
P4NCE	P47NCE	P46NCE	P45NCE	P44NCE	P43NCE	P42NCE	P41NCE	P40NCE	•
P4NCMC	P47NCMC	P46NCMC	P45NCMC	P44NCMC	P43NCMC	P42NCMC	P41NCMC	P40NCMC	
P4NCCS	_	_	_	_	_	P4NCCK2	P4NCCK1	P4NCCK0	
P5DDR	P57DDR	P56DDR	P55DDR	P54DDR	P53DDR	P52DDR	P51DDR	P50DDR	•
P6DDR	P67DDR	P66DDR	P65DDR	P64DDR	P63DDR	P62DDR	P61DDR	P60DDR	•
P5ODR	P57ODR	P56ODR	P55ODR	P54ODR	P53ODR	P52ODR	P51ODR	P50ODR	
P6ODR	P67ODR	P66ODR	P65ODR	P64ODR	P63ODR	P62ODR	P61ODR	P60ODR	
P5PIN	P57PIN	P56PIN	P55PIN	P54PIN	P53PIN	P52PIN	P51PIN	P50PIN	
P6PIN	P67PIN	P66PIN	P65PIN	P64PIN	P63PIN	P62PIN	P61PIN	P60PIN	

Register	Di+ 7	Di+ 6	Di+ E	Di+ 4	Bit 3	Di+ O	Di+ 1	Di+ 0	Mad.
Abbreviation		Bit 6	Bit 5	Bit 4		Bit 2	Bit 1	Bit 0	Modu POR
P5PCR P6PCR	P57PCR	P56PCR	P55PCR	P54PCR	P53PCR	P52PCR P62PCR	P51PCR	P50PCR P60PCR	PUR
-	P67PCR	P66PCR	P65PCR	P64PCR	P63PCR		P61PCR		-
P6NCE	P67NCE	P66NCE	P65NCE	P64NCE	P63NCE	P62NCE	P61NCE	P60NCE	-
P6NCMC	P6/NCMC	P66NCMC	P65NCMC	P64NCMC	P63NCMC				-
P6NCCS							P6NCCK1	P6NCCK0	-
P8DDR	P87DDR	P86DDR	P85DDR	P84DDR	P83DDR	P82DDR	P81DDR	P80DDR	-
P8ODR	P87ODR	P86ODR	P85ODR	P84ODR	P83ODR	P82ODR	P81ODR	P80ODR	_
P7PIN	P77PIN	P76PIN	P75PIN	P74PIN	P73PIN	P72PIN	P71PIN	P70PIN	-
P8PIN	P87PIN	P86PIN	P85PIN	P84PIN	P83PIN	P82PIN	P81PIN	P80PIN	_
P8PCR	P87PCR	P86PCR	P85PCR	P84PCR	P83PCR	P82PCR	P81PCR	P80PCR	_
P9DDR	P97DDR	P96DDR	P95DDR	P94DDR	P93DDR	P92DDR	P91DDR	P90DDR	_
P9ODR	P97ODR	P96ODR	P95ODR	P94ODR	P93ODR	P92ODR	P91ODR	P90ODR	_
P9PIN	P97PIN	P96PIN	P95PIN	P94PIN	P93PIN	P92PIN	P91PIN	P90PIN	_
P9PCR	P97PCR	P96PCR	P95PCR	P94PCR	P93PCR	P92PCR	P91PCR	P90PCR	_
PADDR	PA7DDR	PA6DDR	PA5DDR	PA4DDR	PA3DDR	PA2DDR	PA1DDR	PA0DDR	_
PBDDR	PB7DDR	PB6DDR	PB5DDR	PB4DDR	PB3DDR	PB2DDR	PB1DDR	PB0DDR	
PAODR	PA7ODR	PA6ODR	PA5ODR	PA4ODR	PA3ODR	PA2ODR	PA10DR	PA0ODR	•
PBODR	PB7ODR	PB6ODR	PB5ODR	PB4ODR	PB3ODR	PB2ODR	PB1ODR	PB0ODR	•
PAPIN	PA7PIN	PA6PIN	PA5PIN	PA4PIN	PA3PIN	PA2PIN	PA1PIN	PA0PIN	•
PBPIN	PB7PIN	PB6PIN	PB5PIN	PB4PIN	PB3PIN	PB2PIN	PB1PIN	PB0PIN	•
PBPCR	PB7PCR	PB6PCR	PB5PCR	PB4PCR	PB3PCR	PB2PCR	PB1PCR	PB0PCR	•
PANOCR	PA7NOC	PA6NOC	PA5NOC	PA4NOC	PA3NOC	PA2NOC	PA1NOC	PA0NOC	•
PCDDR	PC7DDR	PC6DDR	PC5DDR	PC4DDR	PC3DDR	PC2DDR	PC1DDR	PC0DDR	•
PDDDR	PD7DDR	PD6DDR	PD5DDR	PD4DDR	PD3DDR	PD2DDR	PD1DDR	PD0DDR	•
PCODR	PC7ODR	PC6ODR	PC5ODR	PC4ODR	PC3ODR	PC2ODR	PC10DR	PC0ODR	•
PDODR	PD70DR	PD6ODR	PD5ODR	PD4ODR	PD3ODR	PD2ODR	PD10DR	PD00DR	•
PCPIN	PC7PIN	PC6PIN	PC5PIN	PC4PIN	PC3PIN	PC2PIN	PC1PIN	PC0PIN	•
PDPIN	PD7PIN	PD6PIN	PD5PIN	PD4PIN	PD3PIN	PD2PIN	PD1PIN	PD0PIN	•
PCPCR	PC7PCR	PC6PCR	PC5PCR	PC4PCR	PC3PCR	PC2PCR	PC1PCR	PC0PCR	•
PDPCR	PD7PCR	PD6PCR	PD5PCR	PD4PCR	PD3PCR	PD2PCR	PD1PCR	PD0PCR	•
PCNOCR	PC7NOC	PC6NOC	PC5NOC	PC4NOC	PC3NOC	PC2NOC	PC1NOC	PC0NOC	•
PDNOCR	PD7NOC	PD6NOC	PD5NOC	PD4NOC	PD3NOC	PD2NOC	PD1NOC	PD0NOC	•

Register Abbreviation	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Mod
PCNCE	PC7CE	PC6NCE	PC5NCE	PC4NCE	PC3NCE	PC2NCE	PC1NCE	PCONCE	POF
PCNCMC	PC7CMC				PC3NCMC				-
PCNCCS	_	_	_	_	_	PCNCCK2	PCNCCK1	PCNCCK0	•
PEDDR	PE7DDR	PE6DDR	PE5DDR	PE4DDR	PE3DDR	PE2DDR	PE1DDR	PE0DDR	-
PFDDR	PF7DDR	PF6DDR	PF5DDR	PF4DDR	PF3DDR	PF2DDR	PF1DDR	PF0DDR	-
PEODR	PE7ODR	PE60DR	PE5ODR	PE4ODR	PE3ODR	PE2ODR	PE10DR	PE0ODR	-
PFODR	PF7ODR	PF6ODR	PF5ODR	PF4ODR	PF3ODR	PF2ODR	PF1ODR	PF0ODR	-
PEPIN	PE7PIN	PE6PIN	PE5PIN	PE4PIN	PE3PIN	PE2PIN	PE1PIN	PE0PIN	-
PFPIN	PF7PIN	PF6PIN	PF5PIN	PF4PIN	PF3PIN	PF2PIN	PF1PIN	PF0PIN	-
PEPCR	PE7PCR	PE6PCR	PE5PCR	PE4PCR	PE3PCR	PE2PCR	PE1PCR	PE0PCR	-
PFPCR	PF7PCR	PF6PCR	PF5PCR	PF4PCR	PF3PCR	PF2PCR	PF1PCR	PF0PCR	-
PENOCR	PE7NOC	PE6NOC	PE5NOC	PE4NOC	PE3NOC	PE2NOC	PE1NOC	PE0NOC	-
PFNOCR	PF7NOC	PF6NOC	PF5NOC	PF4NOC	PF3NOC	PF2NOC	PF1NOC	PF0NOC	-
PGDDR	PG7DDR	PG6DDR	PG5DDR	PG4DDR	PG3DDR	PG2DDR	PG1DDR	PG0DDR	-
PHDDR	PH7DDR	PH6DDR	PH5DDR	PH4DDR	PH3DDR	PH2DDR	PH1DDR	PH0DDR	-
PGODR	PG70DR	PG6ODR	PG5ODR	PG4ODR	PG3ODR	PG2ODR	PG10DR	PG00DR	-
PHODR	PH7ODR	PH6ODR	PH5ODR	PH4ODR	PH3ODR	PH2ODR	PH1ODR	PH0ODR	-
PGPIN	PG7PIN	PG6PIN	PG5PIN	PG4PIN	PG3PIN	PG2PIN	PG1PIN	PG0PIN	-
PHPIN	PH7PIN	PH6PIN	PH5PIN	PH4PIN	PH3PIN	PH2PIN	PH1PIN	PH0PIN	-
PHPCR	PH7PCR	PH6PCR	PH5PCR	PH4PCR	PH3PCR	PH2PCR	PH1PCR	PH0PCR	-
PGNOCR	PG7NOC	PG6NOC	PG5NOC	PG4NOC	PG3NOC	PG2NOC	PG1NOC	PG0NOC	-
PHNOCR	PH7NOC	PH6NOC	PH5NOC	PH4NOC	PH3NOC	PH2NOC	PH1NOC	PH0NOC	_
PGNCE	PG7NCE	PG6NCE	PG5NCE	PG4NCE	PG3NCE	PG2NCE	PG1NCE	PG0NCE	-
PGNCMC	PG7NCMC	PG6NCMC	PG5NCMC	PG4NCMC	PG3NCMC	PG2NCMC	PG1NCMC	PG0NCMC	_
PGNCCS	_	_	_	_	_	PGNCCK2	PGNCCK1	PGNCCK0	-
PIDDR	PI7DDR	PI6DDR	PI5DDR	PI4DDR	PI3DDR	PI2DDR	PI1DDR	PI0DDR	_
PJDDR	PJ7DDR	PJ6DDR	PJ5DDR	PJ4DDR	PJ3DDR	PJ2DDR	PJ1DDR	PJ0DDR	_
PIODR	PI7ODR	PI6ODR	PI5ODR	PI4ODR	PI3ODR	PI2ODR	PI1ODR	PI0ODR	_
PJODR	PJ7ODR	PJ6ODR	PJ5ODR	PJ4ODR	PJ3ODR	PJ2ODR	PJ10DR	PJ0ODR	_
PIPIN	PI7PIN	PI6PIN	PI5PIN	PI4PIN	PI3PIN	PI2PIN	PI1PIN	PIOPIN	_
PJPIN	PJ7PIN	PJ6PIN	PJ5PIN	PJ4PIN	PJ3PIN	PJ2PIN	PJ1PIN	PJ0PIN	

Register Abbreviation	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module
PINOCR	PI7NOC	PI6NOC	PI5NOC	PI4NOC	PI3NOC	PI2NOC	PI1NOC	PIONOC	PORT
PJNOCR	PJ7NOC	PJ6NOC	PJ5NOC	PJ4NOC	PJ3NOC	PJ2NOC	PJ1NOC	PJ0NOC	=
FLMCR1	_	_	_	_	FMLBE	FMWUS	_	FMCMDEN	ROM
DFPR	_	_	_	_	_	_	DBPT1	DBPT0	•
FLMSTR	_	_	_	_	_	_	FMDATRDY	FMRDY	•
FMATS	MS7	MS6	MS5	MS4	MS3	MS2	MS1	MS0	
RSTFR	_	_	_	PRST	_	LVD1RST	PORRST	WRST	SYSTEM
LD1CRH	VD1DF	VD1UF	_	_	_	VD1IRCS	VD1MS	VD1RE	
LD1CRL	VD1E	_	_	_	_	VD1LS2	VD1LS1	VD1LS0	
LD0CRH	_	_	_	_	_	_	_	_	
LD0CRL	_	_	_	_	_	_	_	VD0LS1	•
VDCPR	WRI	_	_	_	_	_	_	LDPRC	
PECR	PESRES	PECIE	ABTE	AWFCSE	STOPE	PEWFCEIE	PERFCEIE	PETEIE	PECI
PESTR	PEBUSY	WFCSER	RFCSER	PETEND	NEGA	NEGM	RDRF	PECIR	
PECNT0_ PRE	PECNT0_ PRE15	PECNT0_ PRE14	PECNT0_ PRE13	PECNT0_ PRE12	PECNT0_ PRE11	PECNT0_ PRE10	PECNT0_ PRE9	PECNTO_ PRE8	
	PECNT0_ PRE7	PECNTO_ PRE6	PECNT0_ PRE5	PECNT0_ PRE4	PECNT0_ PRE3	PECNT0_ PRE2	PECNT0_ PRE1	PECNTO_ PRE0	•
PECNT0_ GR	PECNT0_ GR15	PECNT0_ GR14	PECNT0_ GR13	PECNT0_ GR12	PECNT0_ GR11	PECNT0_ GR10	PECNT0_ GR9	PECNT0_ GR8	•
	PECNT0_ GR7	PECNT0_ GR6	PECNT0_ GR5	PECNT0_ GR4	PECNT0_ GR3	PECNT0_ GR2	PECNT0_ GR1	PECNT0_ GR0	•
PECNTO_ GRA	PECNT0_ GRA15	PECNT0_ GRA14	PECNT0_ GRA13	PECNT0_ GRA12	PECNT0_ GRA11	PECNT0_ GRA10	PECNT0_ GRA9	PECNT0_ GRA8	•
	PECNT0_ GRA7	PECNT0_ GRA6	PECNT0_ GRA5	PECNT0_ GRA4	PECNT0_ GRA3	PECNT0_ GRA2	PECNT0_ GRA1	PECNT0_ GRA0	
PEADD	PEADD7	PEADD6	PEADD5	PEADD4	PEADD3	PEADD2	PEADD1	PEADD0	=
PEWBNR	PEWBNR7	PEWBNR6	PEWBNR5	PEWBNR4	PEWBNR3	PEWBNR2	PEWBNR1	PEWBNR0	-
PERBNR	PERBNR7	PERBNR6	PERBNR5	PERBNR4	PERBNR3	PERBNR2	PERBNR1	PERBNR0	-
PECWFCSR	PECWFCSR7	PECWFCSR6	PECWFCSR5	PECWFCSR4	PECWFCSR3	PECWFCSR2	PECWFCSR1	PECWFCSR0	-
PECRFCSR	PECRFCSR7	PECRFCSR6	PECRFCSR5	PECRFCSR4	PECRFCSR3	PECRFCSR2	PECRFCSR1	PECRFCSR0	-
PEFIFO	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	•

Register Abbreviation	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module
TCMCNT_0	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	TCM_0
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	-
TCMMLCM_0	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	=
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	-
TCMICR_0	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	-
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TCMICRF_0	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	_
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TCMCSR_0	OVF	MAXOVF	CMF	CKSEG	ICPF	MINUDF	MCICTL	_	_
TCMCR_0	CST	POCTL	CPSPE	IEDG	TCMMDS	CKS2	CKS1	CKS0	_
TCMIER_0	OVIE	MAXOVIE	CMIE	TCMIPE	ICPIE	MINUDIE	CMMS	_	_
TCMMINCM_0	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	_
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	=
TCMCNT_1	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	TCM_1
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TCMMLCM_1	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	_
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	-
TCMICR_1	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	_
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TCMICRF_1	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	_
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TCMCSR_1	OVF	MAXOVF	CMF	CKSEG	ICPF	MINUDF	MCICTL	_	-
TCMCR_1	CST	POCTL	CPSPE	IEDG	FNIMDS	CKS2	CKS1	CKS0	-
TCMIER_1	OVIE	MAXOVIE	CMIE	TCMIPE	ICPIE	MINUDIE	CMMS	_	-
TCMMINCM_1	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	-
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_

Register Abbreviation	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module
TCMCNT_2	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	TCM_2
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	-
TCMMLCM_2	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	_
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	=
TCMICR_2	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	=
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TCMICRF_2	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	_
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	=
TCMCSR_2	OVF	MAXOVF	CMF	CKSEG	ICPF	MINUDF	MCICTL	_	=
TCMCR_2	CST	POCTL	CPSPE	IEDG	FNIMDS	CKS2	CKS1	CKS0	=
TCMIER_2	OVIE	MAXOVIE	CMIE	TCMIPE	ICPIE	MINUDIE	CMMS	_	-
TCMMINCM_2	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	_
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	=
ADDRA	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	A/D
	bit 1	bit 0	_	_	_	_	_	_	converter
ADDRB	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	=
	bit 1	bit 0	_	_	_	_	_	_	-
ADDRC	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	=
	bit 1	bit 0	_	_	_	_	_	_	=
ADDRD	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	_
	bit 1	bit 0	_	_	_	_	_	_	_
ADDRE	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	=
	bit 1	bit 0	_	_	_	_	_	_	=
ADDRF	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	_
	bit 1	bit 0	_	_	_	_	_	_	=
ADDRG	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	-
	bit 1	bit 0	_	_	_	_	_	_	-
ADDRH	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	-
	bit 1	bit 0	_	_	_	_	_	_	-
ADCSR	ADF	ADIE	ADST	EXCKS	СНЗ	CH2	CH1	CH0	-
ADCR	TRGS1	TRGS0	SCANE	SCANS	CKS1	CKS0	ADSTCLR	_	_

Register									
Abbreviation	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module
FRBR	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	SCIF
FTHR	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
FDLL	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
FIER	_	_	_	_	EDSSI	ELSI	ETBEI	ERBFI	_
FDLH	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
FIIR	FIFOE1	FIFOE0	_	_	INTID2	INTID1	INTID0	INTPEND	_
FFCR	RCVRTRIG1	RCVRTRIG0	_	_	DMAMODE	XMITFRST	RCVRFRST	FIFOE	
FLCR	DLAB	BREAK	STICKPARITY	EPS	PEN	STOP	CLS1	CLS0	_
FMCR	_	_	_	LOOPBACK	OUT2	OUT1	RTS	DTR	_
FLSR	RXFIFOERR	TEMT	THRE	BI	FE	PE	OE	DR	_
FMSR	DCD	RI	DSR	CTS	DDCD	TERI	DDSR	DCTS	-
FSCR	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	-
SCIFCR	SCIFOE1	SCIFOE0	_	OUT2LOOP	CKSEL1	CKSEL0	SCIFRST	REGRST	-
FSIHBARH	bit 31	bit 30	bit 29	bit 28	bit 27	bit 26	bit 25	bit 24	FSI
FSIHBARL	bit 23	bit 22	bit 21	bit 20	bit 19	bit 18	bit 17	bit 16	-
FSISR	_	_	_	_	_	_	FSIMS1	FSIMS0	-
CMDHBARH	bit 31	bit 30	bit 29	bit 28	bit 27	bit 26	bit 25	bit 24	-
CMDHBARL	bit 23	bit 22	bit 21	bit 20	bit 19	bit 18	bit 17	bit 16	-
FSICMDR	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	-
FSILSTR1	CMDBUSY	FSICMDI	FSIDMYE	FSIWBUSY	FSIWI	LFBUSY	BBUSY	_	-
FSIGPR1	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	-
FSIGPR2	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	-
FSIGPR3	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
FSIGPR4	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
FSIGPR5	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
FSIGPR6	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
FSIGPR7	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
FSIGPR8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
FSIGPR9	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	-
FSIGPRA	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	-
FSIGPRB	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	-
FSIGPRC	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
							-	-	

RENESAS

Register Abbreviation	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module
FSIGPRD	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	FSI
FSIGPRE	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	-
FSIGPRF	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	-
SLCR	FSILIE	FSICMDIE	FSIWIE	FLDCT	FLWAIT	DCE	_	_	-
FSIARH	bit 23	bit 22	bit 21	bit 20	bit 19	bit 18	bit 17	bit 16	-
FSIARM	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	-
FSIARL	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	=
FSIWDRHH	bit 31	bit 30	bit 29	bit 28	bit 27	bit 26	bit 25	bit 24	•
FSIWDRHL	bit 23	bit 22	bit 21	bit 20	bit 19	bit 18	bit 17	bit 16	•
FSIWDRLH	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	•
FSIWDRLL	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	•
FSILSTR2	_	SRDCBUSY	DCBYSY	FSIDWBUSY	FSIDRBUSY	SIZE2	SIZE1	SIZE0	•
SSCRH	MSS	BIDE	_	SOL	SOLP	SCKS	CSS1	CSS0	SSU
SSCRL	_	SSUMS	SRES	_	_	_	DATS1	DATS0	•
SSMR	MLS	CPOS	CPHS	_	_	CKS2	CKS1	CKS0	•
SSER	TE	RE	_	_	TEIE	TIE	RIE	CEIE	•
SSSR	_	ORER	_	_	TEND	TDRE	RDRF	CE	•
SSCR2	SDOS	SSCKOS	scsos	TENDSTS	SCSATS	SSODTS	_	_	•
SSTDR0	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	•
SSTDR1	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	•
SSTDR2	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	•
SSTDR3	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	•
SSRDR0	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	-
SSRDR1	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	-
SSRDR2	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	-
SSRDR3	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	

Register Abbreviation	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module
FSICR1	SRES	FSIE	FRDE	AAIE	CPHS	CPOS	_	CKSEL	FSI
FSICR2	TE	RE	FSITEIE	FSIRXIE	_	_	_	_	-
FSIBNR	TBN3	TBN2	TBN1	TBN0	_	RBN2	RBN1	RBN0	_
FSIINS	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
FSIRDINS	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
FSIPPINS	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
FSISTR	FSITEI	OBF	FSIRXI	_	_	_	_	_	_
FSITDR0	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
FSITDR1	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
FSITDR2	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
FSITDR3	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
FSITDR4	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
FSITDR5	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
FSITDR6	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
FSITDR7	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
FSIRDR	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
WRSRINS	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
RDSRINS	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
PWMREG0_A	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	PWMU_A
PWMPRE0_A	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	-
PWMREG1_A	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
PWMPRE1_A	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
PWMREG2_A	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
PWMPRE2_A	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
PWMREG3_A	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
PWMPRE3_A	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
PWMREG4_A	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	-
PWMPRE4_A	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
PWMREG5_A	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	-
PWMPRE5_A	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	-
PWMCKCR_A	CLK1	CLK0	_	_	_	_	_	_	-
PWMOUTCR_A	CNTMD45B	CNTMD23B	PWM5E	PWM4E	PWM3E	PWM2E	PWM1E	PWM0E	-

Register									
Abbreviation	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module
PWMMDCR_A	CNTMD01B	CNTMD01A	PWMSL5	PWMSL4	PWMSL3	PWMSL2	PWMSL1	PWMSL0	PWMU_A
PWMPCR_A	PH5S	PH4S	PH3S	PH2S	PH1S	PH0S	CNTMD45A	CNTMD23A	
PWMREG0_B	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	PWMU_B
PWMPRE0_B	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
PWMREG1_B	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	-
PWMPRE1_B	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	-
PWMREG2_B	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	-
PWMPRE2_B	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	-
PWMREG3_B	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	-
PWMPRE3_B	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	-
PWMREG4_B	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	='
PWMPRE4_B	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	-
PWMREG5_B	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	-
PWMPRE5_B	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	='
PWMCKCR_B	CLK1	CLK0	_	_	_	_	_	_	-
PWMOUTCR_B	CNTMD45B	CNTMD23B	PWM5E	PWM4E	PWM3E	PWM2E	PWM1E	PWM0E	-
PWMMDCR_B	CNTMD01B	CNTMD01A	PWMSL5	PWMSL4	PWMSL3	PWMSL2	PWMSL1	PWMSL0	-
PWMPCR_B	PH5S	PH4S	PH3S	PH2S	PH1S	PH0S	CNTMD45A	CNTMD23A	-
TCR_1	_	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0	TPU_1
TMDR_1	_	_	_	_	MD3	MD2	MD1	MD0	-
TIOR_1	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0	-
TIER_1	TTGE	_	TCIEU	TCIEV	_	_	TGIEB	TGIEA	-
TSR_1	TCFD	_	TCFU	TCFV	_	_	TGFB	TGFA	='
TCNT_1	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	-
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	-
TGRA_1	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	-
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	-
TGRB_1	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	-
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	-
PECX	PECX7	PECX6	PECX5	PECX4	PECX3	PECX2	PECX1	PECX0	SMBUS
PECY	PECY7	PECY6	PECY5	PECY4	PECY3	PECY2	PECY1	PECY0	-
									-

PECZ3

PECZ2

PECZ1

PECZ4

PECZ7

PECZ6

PECZ5

PECZ

PECZ0

Module

Register Abbreviation	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Modu
LADR1H	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	LPC
LADR1L	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
LADR2H	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	_
LADR2L	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
SCIFADRH	_	_	_	_	_	_	_	_	_
SCIFADRL	_	_	_	_	_	_	_	_	_
LADRAH	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	_
LADRAL	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
IDRA	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
ODRA	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
LADR4H	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	_
LADR4L	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
IDR4	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
ODR4	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
STR4*2	DBU47	DBU46	DBU45	DBU44	C/D4	DBU42	IBF4	OBF4	_
STR4*3	IBF4B	OBF4B	MWM4F	SWM4F	C/D4	DB42	IBF4	OBF4	_
HICR4	_	LPC4E	IBFIE4	TWDRE	_	_	_	_	_
SIRQCR2	IEDIR3	IEDIR4	IRQ11E4	IRQ10E4	IRQ9E4	IRQ6E4	SMIE4	_	_
SIRQCR3	SELIRQ15	SELIRQ14	SELIRQ13	SELIRQ8	SELIRQ7	SELIRQ5	SELIRQ4	SELIRQ3	_
CKRCR	CKREA	CKREB	_	_	_	_	_	_	_
TWDR0MW	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
TWDR0SW	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TWDR1	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
TWDR2	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TWDR3	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
TWDR4	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
TWDR5	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
TWDR6	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TWDR7	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TWDR8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TWDR9	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TWDR10	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_

Register Abbreviation	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module
TWDR11	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	LPC
TWDR12	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TWDR13	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TWDR14	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TWDR15	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TWDR16	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TWDR17	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TWDR18	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TWDR19	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TWDR20	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TWDR21	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TWDR22	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TWDR23	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TWDR24	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TWDR25	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TWDR26	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TWDR27	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TWDR28	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
TWDR29	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TWDR30	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TWDR31	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
PTCNT0	_	_	_	_	_	_	EXSCIFS	EXCLS	PORT
PTCNT1	IIC1BS	IIC1AS	_	_	_	_	_	_	_
PTCNT2	_	_	RxD1RS	TxD1RS	_	_	_	_	_
TWR0MW	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	LPC
TWR0SW	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TWR1	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TWR2	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
TWR3	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TWR4	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TWR5	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
TWR6	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	

Register Abbreviation	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module
TWR7	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	LPC
TWR8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TWR9	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TWR10	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	-
TWR11	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TWR12	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	=
TWR13	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	=
TWR14	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	=
TWR15	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
IDR3	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
ODR3	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
STR3* ⁴	IBF3B	OBF3B	MWMF	SWMF	C/D3	DBU32	IBF3A	OBF3A	_
STR3*5	DBU37	DBU36	DBU35	DBU34	C/D3	DBU32	IBF3	OBF3	_
HICR5	OBEIE	OBEI	_	_	SCIFE	_	_	_	_
LADR3H	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	_
LADR3L	bit 7	bit 6	bit 5	bit 4	bit 3	_	bit 1	TWRE	_
SIRQCR0	Q/C	SELREQ	IEDIR2	SMIE3B	SMIE3A	SMIE2	IRQ12EI	IRQ1E1	_
SIRQCR1	IRQ11E3	IRQ10E3	IRQ9E3	IRQ6E3	IRQ11E2	IRQ10E2	IRQ9E2	IRQ6E2	_
IDR1	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
ODR1	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
STR1	DBU17	DBU16	DBU15	DBU14	C/D1	DBU12	IBF1	OBF1	_
IDR2	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
SIRQCR4	TWSIRQ3	TWSIRQ2	TWSIRQ1	TWSIRQ0	SCSIRQ3	SCSIRQ2	SCSIRQ1	SCSIRQ0	_
ODR2	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
STR2	DBU27	DBU26	DBU25	DBU24	C/D2	DBU22	IBF2	OBF2	_
HISEL	SELSTR3	SELIRQ11	SELIRQ10	SELIRQ9	SELIRQ6	SE1SMI	SELIRQ12	SELIRQ1	_
HICR0	LPC3E	LPC2E	LPC1E	FGA20E	SDWNE	PMEE	LSMIE	LSCIE	_
HICR1	LPCBSY	CLKREQ	IRQBSY	LRSTB	SDWNB	PMEB	LSMIB	LSCIB	_
HICR2	GA20	LRST	SDWN	ABRT	IBFIE3	IBFIE2	IBFIE1	ERRIE	_
HICR3	LFRAME	CLKRUN	SERIRQ	LRESET	LPCPD	PME	LSMI	LSCI	
WUEMRB	WUEMR7	WUEMR6	WUEMR5	WUEMR4	WUEMR3	WUEMR2	WUEMR1	WUEMR0	INT
WUEMRA	WUEMR15	WUEMR14	WUEMR13	WUEMR12	WUEMR11	WUEMR10	WUEMR9	WUEMR8	

Register Abbreviation	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module
HICR6	LPCAE	ELPCAE	IBFIEA	_	_	_	_	_	LPC
STRA	DBUA7	DBUA6	DBUA5	DBUA4	C/DA	DBUA2	IBFA	OBFA	_
SIRQCR5	IRQE4B	_	_		_	_		_	_
TCR_0	CCLR2	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0	TPU_0
TMDR_0	_	_	BFB	BFA	MD3	MD2	MD1	MD0	
TIORH_0	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0	_
TIORL_0	IOD3	IOD2	IOD1	IOD0	IOC3	IOC2	IOC1	IOC0	_
TIER_0	TTGE	_	_	TCIEV	TGIED	TGIEC	TGIEB	TGIEA	_
TSR_0	_	_	_	TCFV	TGFD	TGFC	TGFB	TGFA	_
TCNT_0	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	_
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
TGRA_0	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TGRB_0	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	_
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
TGRC_0	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	_
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TGRD_0	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	_
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
TCR_2	_	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0	TPU_2
TMDR_2	_	_	_		MD3	MD2	MD1	MD0	
TIOR_2	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0	_
TIER_2	TTGE	_	TCIEU	TCIEV	_	_	TGIEB	TGIEA	_
TSR_2	TCFD	_	TCFU	TCFV	_	_	TGFB	TGFA	
TCNT_2	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TGRA_2	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
TGRB_2	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	_
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_

Register Abbreviation	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module
KMIMRB	KMIMR7	KMIMR6	KMIMR5	KMIMR4	KMIMR3	KMIMR2	KMIMR1	KMIMR0	INT
KMIMRA	KMIMR15	KMIMR14	KMIMR13	KMIMR12	KMIMR11	KMIMR10	KMIMR9	KMIMR8	_
WUESCRA	WUE15SC	WUE14SC	WUE13SC	WUE12SC	WUE11SC	WUE10SC	WUE9SC	WUE8SC	=
WUESRA	WUE15F	WUE14F	WUE13F	WUE12F	WUE11F	WUE10F	WUE9F	WUE8F	_
WUEER	WUEAE	WUEBE	_	_	_	_	_	_	=
ICRD	ICRD7	ICRD6	ICRD5	ICRD4	ICRD3	ICRD2	ICRD1	ICRD0	_
ICCR_2	ICE	IEIC	MST	TRS	ACKE	BBSY	IRIC	SCP	IIC2
ICSR_2	ESTP	STOP	IRTR	AASX	AL	AAS	ADZ	ACKB	_
ICRES_2	_	_	_	_	CLR3	CLR2	CLR1	CLR0	_
ICCKR_2	CHKSEL	_	_	_	CKS3	_	_	_	_
ICXR_2	STOPIM	HNDS	ICDRF	ICDRE	ALIE	ALSL	FNC1	FNC0	=
SARX_2	SVAX6	SVAX5	SVAX4	SVAX3	SVAX2	SVAX1	SVAX0	FSX	_
ICDR_2	ICDR7	ICDR6	ICDR5	ICDR4	ICDR3	ICDR2	ICDR1	ICDR0	_
SAR_2	SVA6	SVA5	SVA4	SVA3	SVA2	SVA1	SVA0	FS	=
ICMR_2	MLS	WAIT	CKS2	CKS1	CKS0	BC2	BC1	BC0	_
WUESCRB	WUE7SC	WUE6SC	WUE5SC	WUE4SC	WUE3SC	WUE2SC	WUE1SC	WUE0SC	INT
WUESRB	WUE7F	WUE6F	WUE5F	WUE4F	WUE3F	WUE2F	WUE1F	WUE0F	_
TSTR	_	_	_	_	_	CST2	CST1	CST0	TPU
TSYR	_	_	_	_	_	SYNC2	SYNC1	SYNC0	common
KBCR1_0	KBTS	PS	KCIE	KTIE	KNCE	KCIF	KBTE	KTER	PS2_0
KBTR_0	KBT7	KBT6	KBT5	KBT4	KBT3	KBT2	KBT1	KBT0	_
KBCR1_1	KBTS	PS	KCIE	KTIE	KNCE	KCIF	KBTE	KTER	PS2_1
KBTR_1	KBT7	KBT6	KBT5	KBT4	KBT3	KBT2	KBT1	KBT0	_
KBCR1_2	KBTS	PS	KCIE	KTIE	KNCE	KCIF	KBTE	KTER	PS2_2
KBTR_2	KBT7	KBT6	KBT5	KBT4	КВТ3	KBT2	KBT1	KBT0	_
TCRXY	_	_	CKSX	CKSY	_	_	_	_	TMR_X, TMR_Y
TCR_Y	CMIEB	CMIEA	OVIE	CCLR1	CCLR0	CKS2	CKS1	CKS0	TMR_Y
TCSR_Y	CMFB	CMFA	OVF	ICIE	OS3	OS2	OS1	OS0	_
TCORA_Y	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TCORB_Y	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TCNT_Y	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	=

Register Abbreviation	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module
ICCR_1	ICE	IEIC	MST	TRS	ACKE	BBSY	IRIC	SCP	IIC1
ICSR_1	ESTP	STOP	IRTR	AASX	AL	AAS	ADZ	ACKB	_
ICRES_1	_	_	_	_	CLR3	CLR2	CLR1	CLR0	_
ICCKR_1	CHKSEL	_	_	_	CKS3	_	_	_	-
ICXR_1	STOPIM	HNDS1	ICDRF	ICDRE	ALIE	ALSL	FNC1	FNC0	-
SARX_1	SVAX6	SVAX5	SVAX4	SVAX3	SVAX2	SVAX1	SVAX0	FSX	_
ICDR_1	ICDR7	ICDR6	ICDR5	ICDR4	ICDR3	ICDR2	ICDR1	ICDR0	=
SAR_1	SVA6	SVA5	SVA4	SVA3	SVA2	SVA1	SVA0	FS	_
ICMR_1	MLS	WAIT	CKS2	CKS1	CKS0	BC2	BC1	BC0	=
KBCRH_0	KBIOE	KCLKI	KDI	KBFSEL	KBIE	KBF	PER	KBS	PS2_0
KBCRL_0	KBE	KCLKO	KDO	_	RXCR3	RXCR2	RXCR1	RXCR0	=
KBBR_0	KB7	KB6	KB5	KB4	KB3	KB2	KB1	KB0	_
KBCR2_0	_	_	_	_	TXCR3	TXCR2	TXCR1	TXCR0	_
KBCRH_1	KBIOE	KCLKI	KDI	KBFSEL	KBIE	KBF	PER	KBS	PS2_1
KBCRL_1	KBE	KCLKO	KDO	_	RXCR3	RXCR2	RXCR1	RXCR0	_
KBBR_1	KB7	KB6	KB5	KB4	KB3	KB2	KB1	KB0	_
KBCR2_1	_	_	_	_	TXCR3	TXCR2	TXCR1	TXCR0	_
KBCRH_2	KBIOE	KCLKI	KDI	KBFSEL	KBIE	KBF	PER	KBS	PS2_2
KBCRL_2	KBE	KCLKO	KDO	_	RXCR3	RXCR2	RXCR1	RXCR0	_
KBBR_2	KB7	KB6	KB5	KB4	KB3	KB2	KB1	KB0	_
KBCR2_2	_	_	_	_	TXCR3	TXCR2	TXCR1	TXCR0	_
ICRA	ICRA7	ICRA6	ICRA5	ICRA4	ICRA3	ICRA2	ICRA1	ICRA0	INT
ICRB	ICRB7	ICRB6	ICRB5	ICRB4	ICRB3	ICRB2	ICRB1	ICRB0	_
ICRC	ICRC7	ICRC6	ICRC5	ICRC4	ICRC3	ICRC2	ICRC1	ICRC0	_
ISR	IRQ7F	IRQ6F	IRQ5F	IRQ4F	IRQ3F	IRQ2F	IRQ1F	IRQ0F	_
ISCRH	IRQ7SCB	IRQ7SCA	IRQ6SCB	IRQ6SCA	IRQ5SCB	IRQ5SCA	IRQ4SCB	IRQ4SCA	_
ISCRL	IRQ3SCB	IRQ3SCA	IRQ2SCB	IRQ2SCA	IRQ1SCB	IRQ1SCA	IRQ0SCB	IRQ0SCA	_
ABRKCR	CMF	_	_	_	_	_	_	BIE	_
BARA	A23	A22	A21	A20	A19	A18	A17	A16	_
BARB	A15	A14	A13	A12	A11	A10	A9	A8	_
BARC	A7	A6	A5	A4	A3	A2	A1	_	_
IER16	IRQ15E	IRQ14E	IRQ13E	IRQ12E	IRQ11E	IRQ10E	IRQ9E	IRQ8E	

Register Abbreviation	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module
ISR16	IRQ15F	IRQ14F	IRQ13F	IRQ12F	IRQ11F	IRQ10F	IRQ9F	IRQ8F	INT
ISCR16H	IRQ15SCB	IRQ15SCA	IRQ14SCB	IRQ14SCA	IRQ13SCB	IRQ13SCA	IRQ12SCB	IRQ12SCA	•
ISCR16L	IRQ11SCB	IRQ11SCA	IRQ10SCB	IRQ10SCA	IRQ9SCB	IRQ9SCA	IRQ8SCB	IRQ8SCA	•
ISSR16	ISS15	ISS14	ISS13	ISS12	ISS11	ISS10	ISS9	ISS8	
ISSR	ISS7	_	_	_	_	_	_	_	•
SMR_1*1	C/Ā (GM)	CHR (BLK)	PE (PE)	O/E (O/E)	STOP (BCP1)	MP (BCP0)	CKS1 (CKS1)	CKS0 (CKS0)	SCI_1
BRR_1	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	•
SCR_1*1	TIE (TIE)	RIE (RIE)	TE (TE)	RE (RE)	MPIE (MPIE)	TEIE (TEIE)	CKE1 (CKE1)	CKE0 (CKE0)	
TDR_1	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	•
SSR_1*1	TDRE (TDRE)	RDRF (RDRF)	ORER (ORER)	FER (ERS)	PER (PER)	TEND (TEND)	MPB (MPB)	MPBT (MPBT)	•
RDR_1	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	•
SCMR_1	BCP2	_	_	_	SDIR	SINV	_	SMIF	
SEMR_1	_	_	_	_	ABCS	_	_	_	
MDCR	EXPE	_	_	_	_	MDS2	MDS1	_	SYSTEM
SYSCR	_	_	INTM1	INTM0	XRST	NMIEG	_	RAME	
SBYCR	SSBY	STS2	STS1	STS0	_	SCK2	SCK1	SCK0	
LPWRCR	_	_	_	EXCLE	_	_	_	_	
MSTPCRH	MSTP15	MSTP14	MSTP13	MSTP12	MSTP11	MSTP10	MSTP9	MSTP8	
MSTPCRL	MSTP7	MSTP6	MSTP5	MSTP4	MSTP3	MSTP2	MSTP1	MST0	
MSTPCRA	MSTPA7	MSTPA6	MSTPA5	MSTPA4	MSTPA3	MSTPA2	MSTPA1	MSTA0	
MSTPCRB	MSTPB7	MSTPB6	MSTPB5	MSTPB4	MSTPB3	MSTPB2	MSTPB1	MSTB0	
BCR	_	ICIS0	BRSTRM	BRSTS1	BRSTS0	_	IOS1	IOS0	BSC
WSCR	_	_	ABW	AST	WMS1	WMS0	WC1	WC0	
STCR	IICX2	IICX1	IICX0				ICKS1	ICKS0	SYSTEM
TCSR_0	OVF	WT/ĪT	TME	_	RST/NMI	CKS2	CKS1	CKS0	WDT_0
TCNT_0	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
IER	IRQ7E	IRQ6E	IRQ5E	IRQ4E	IRQ3E	IRQ2E	IRQ1E	IRQ0E	INT

Register Abbreviation	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module
TCR_0	CMIEB	CMIEA	OVIE	CCLR1	CCLR0	CKS2	CKS1	CKS0	TMR_0,
TCR_1	CMIEB	CMIEA	OVIE	CCLR1	CCLR0	CKS2	CKS1	CKS0	TMR_1
TCSR_0	CMFB	CMFA	OVF	ADTE	OS3	OS2	OS1	OS0	_
TCSR_1	CMFB	CMFA	OVF		OS3	OS2	OS1	OS0	_
TCORA_0	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TCORA_1	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TCORB_0	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	=
TCORB_1	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	=
TCNT_0	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	=
TCNT_1	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TCKR_0	_	_	_	_	CKS3	_	_	_	=
TCKR_1	_	_	_	_	CKS3	_	_	_	_
ICCR_0	ICE	IEIC	MST	TRS	ACKE	BBSY	IRIC	SCP	IIC0
ICSR_0	ESTP	STOP	IRTR	AASX	AL	AAS	ADZ	ACKB	_
ICRES_0	_	_	_	_	CLR3	CLR2	CLR1	CLR0	_
ICCKR_0	CHKSEL	_	_	_	CKS3	_	_	_	_
ICXR_0	STOPIM	HNDS	ICDRF	ICDRE	ALIE	ALSL	FNC1	FNC0	_
ICDR_0	ICDR7	ICDR6	ICDR5	ICDR4	ICDR3	ICDR2	ICDR1	ICDR0	_
SARX_0	SVAX6	SVAX5	SVAX4	SVAX3	SVAX2	SVAX1	SVAX0	FSX	_
ICMR_0	MLS	WAIT	CKS2	CKS1	CKS0	BC2	BC1	BC0	_
SAR_0	SVA6	SVA5	SVA4	SVA3	SVA2	SVA1	SVA0	FS	
TCSR_1	OVF	WT/IT	TME	PSS	RST/NMI	CKS2	CKS1	CKS0	WDT_1
TCNT_1	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TCSRE_1	EXCNTE	_	_	_	CKS3	CKS2	CKS1	CKS0	
TCR_X	CMIEB	CMIEA	OVIE	CCLR1	CCLR0	CKS2	CKS1	CKS0	TMR_X
TCSR_X	CMFB	CMFA	OVF	ICF	OS3	OS2	OS1	OS0	_
TICRR	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	<u>-</u>
TICRF	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TCNT_X	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TCORA_X	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TCORB_X	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
TCONRI				ICST			_		

- Notes: 1. In normal mode and smart card interface mode, bit names differ in part.
 - (): Bit name in smart card interface mode.
 - 2. When TWDRE = 0.
 - 3. When TWDRE = 1.
 - 4. When TWRE = 1 or SELSTR3 = 0.
 - 5. When TWRE = 0 and SELSTR3 = 1.

Feb 14, 2013

30.3 **Register States in Each Operating Mode**

Register Abbreviation	Reset	High- Speed/ Medium Speed	Watch	Sleep	Module Stop	Software Standby	Module
BBR0	_	_	_	_	_	_	BBR
BBR1	_	_	_	_	_	_	_
BBR2	_	_	_	_	_	_	_
BBR3	_	_	_	_	_	_	_
BBR4	_	_	_	_	_	_	_
BBR5	_	_	_	_	_	_	_
BBR6	_	_	_	_	_	_	_
BBR7	_	_	_	_	_	_	_
BBR8	_	_	_	_	_	_	_
BBR9	_		_		_	_	_
BBR10	_	_	_	_	_	_	_
BBR11	_	_	_	_	_	_	_
BBR12	_	_	_	_	_	_	_
BBR13	_	_	_	_	_	_	_
BBR14	_	_	_	_	_	_	_
BBR15	_	_	_	_	_	_	_
BBR16	_	_	_	_	_	_	_
BBR17	_	_	_	_	_	_	_
BBR18	_	_	_	_	_	_	_
BBR19	_	_	_	_	_	_	_
BBR20	_	_	_	_	_	_	_
BBR21	_	_	_	_	_	_	_
BBR22	_	_	_	_	_	_	_
BBR23	_	_	_	_	_	_	_
BBR24	_	_	_	_	_	_	_
BBR25	_	_	_	_	_	_	_
BBR26	_	_	_	_	_	_	_

Register		High- Speed/ Medium			Module	Software	
Abbreviation	Reset	Speed	Watch	Sleep	Stop	Standby	Module
BBR27	_	_	_	_	_	_	BBR -
BBR28		_	_			_	_
BBR29	_	_	_	_	_	_	_
BBR30	_	_	_	_	_	_	_
BBR31	_	_	_	_	_	_	_
BBR32	_	_	_	_	_	_	
BBR33	_	_	_	_	_	_	_
BBR34	_	_	_	_	_	_	_
BBR35	_	_	_	_	_	_	_
BBR36	_	_	_	_	_	_	_
BBR37	_	_	_	_	_	_	_
BBR38	_	_	_	_	_	_	_
BBR39	_	_	_	_	_	_	_
BBR40	_	_	_	_	_	_	_
BBR41	_	_	_	_	_	_	_
BBR42	_	_	_	_	_	_	_
BBR43	_	_	_	_	_	_	_
BBR44	_	_	_	_	_	_	_
BBR45	_	_	_	_	_	_	_
BBR45	_	_	_	_	_	_	_
BBR46	_	_	_	_	_	_	_
BBR47	_	_	_	_	_	_	_
BBR48	_	_	_	_	_	_	_
BBR49	_	_	_	_	_	_	_
BBR50	_	_	_	_	_	_	_
BBR51	_	_	_	_	_	_	_
BBR52	_	_	_	_	_	_	_
BBR53	_	_	_	_	_	_	_

Register Abbreviation	Reset	High- Speed/ Medium Speed	Watch	Sleep	Module Stop	Software Standby	Module
BBR54	_	_	_	_	_	_	BBR
BBR55	_	_	_	_	_	_	_
BBR56	_	_	_	_	_	_	_
BBR57	_	_	_	_	_	_	_
BBR58	_	_	_	_	_	_	_
BBR59	_	_	_	_	_	_	_
BBR60	_	_	_	_	_	_	_
BBR61	_	_	_	_	_	_	_
BBR62	_	_	_	_	_	_	_
BBR63	_	_	_	_	_	_	_
RSTFRB	_	_	_	_	_	_	_
BWPRT	Initialized	_	_	_	_	_	_
P1DDR	Initialized	_	_	_	_	_	PORT
P2DDR	Initialized	_	_	_	_	_	_
P1ODR	Initialized	_	_	_	_	_	_
P2ODR	Initialized	_	_	_	_	_	_
P1PIN	_	_	_	_	_	_	_
P2PIN	_	_	_	_	_	_	_
P1PCR	Initialized	_	_	_	_	_	_
P2PCR	Initialized	_	_	_	_	_	_
P3DDR	Initialized	_	_	_	_	_	_
P4DDR	Initialized	_	_	_	_	_	_
P3ODR	Initialized	_	_	_	_	_	_
P4ODR	Initialized	_	_	_	_	_	_
P3PIN	_	_	_	_	_	_	_
P4PIN	_	_	_	_	_	_	_
P3PCR	Initialized	_	_	_	_	_	_
P4PCR	Initialized	_	_	_	_		

Register Abbreviation	Reset	High- Speed/ Medium Speed	Watch	Sleep	Module Stop	Software Standby	Module
P4NCE	Initialized	_	_	_	_	_	PORT
P4NCMC	Initialized	_	_	_	_	_	_
P4NCCS	Initialized	_	_	_	_	_	_
P5DDR	Initialized	_	_	_	_	_	_
P6DDR	Initialized	_	_	_	_	_	_
P5ODR	Initialized	_	_	_	_	_	_
P6ODR	Initialized	_	_	_	_	_	_
P5PIN	_	_	_	_	_	_	_
P6PIN	_	_	_	_	_	_	_
P5PCR	Initialized	_	_	_	_	_	_
P6PCR	Initialized	_	_	_	_	_	_
P6NCE	Initialized	_	_	_	_	_	_
P6NCMC	Initialized	_	_	_	_	_	_
P6NCCS	Initialized	_	_	_	_	_	_
P8DDR	Initialized	_	_	_	_	_	_
P8ODR	Initialized	_	_	_	_	_	_
P7PIN	Initialized	_	_	_	_	_	_
P8PIN	Initialized	_	_	_	_	_	_
P8PCR	Initialized	_	_	_	_	_	_
P9DDR	Initialized	_	_	_	_	_	_
P9ODR	Initialized	_	_	_	_	_	_
P9PIN	_	_	_	_	_	_	_
P9PCR	Initialized	_	_	_	_	_	_
PADDR	Initialized	_	_	_	_	_	_
PBDDR	Initialized	_	_	_	_	_	_
PAODR	Initialized	_				_	_
PBODR	Initialized	_					_
PAPIN	_	_	_	_	_	_	_

Register Abbreviation	Reset	High- Speed/ Medium Speed	Watch	Sleep	Module Stop	Software Standby	Module
PBPIN	_	_	_	_	_	_	PORT
PBPCR	Initialized	_	_	_	_	_	_
PANOCR	Initialized	_	_	_	_	_	_
PCDDR	Initialized	_	_	_	_	_	_
PDDDR	Initialized	_	_	_	_	_	_
PCODR	Initialized	_	_	_	_	_	_
PDODR	Initialized	_	_	_	_	_	_
PCPIN	_	_	_	_	_	_	_
PDPIN	_	_	_	_	_	_	_
PCPCR	Initialized	_	_	_	_	_	_
PDPCR	Initialized	_	_	_	_	_	_
PCNOCR	Initialized	_	_	_	_	_	_
PDNOCR	Initialized	_	_	_	_	_	_
PCNCE	Initialized	_	_	_	_	_	
PCNCMC	Initialized	_	_	_	_	_	_
PCNCCS	Initialized	_	_	_	_	_	_
PEDDR	Initialized	_	_	_	_	_	_
PFDDR	Initialized	_	_	_	_	_	
PEODR	Initialized	_	_	_	_	_	_
PFODR	Initialized	_	_	_	_	_	_
PEPIN	_	_	_	_	_	_	
PFPIN	_	_	_	_	_	_	_
PEPCR	Initialized	_	_	_	_	_	_
PFPCR	Initialized	_	_		_		_
PENOCR	Initialized	_	_	_	_	_	_
PFNOCR	Initialized	_					_
PGDDR	Initialized						_
PHDDR	Initialized	_	_	_	_	_	

Register Abbreviation	Reset	High- Speed/ Medium Speed	Watch	Sleep	Module Stop	Software Standby	Module
PGODR	Initialized	_	_	_	_	_	PORT
PHODR	Initialized	_	_	_	_	_	_
PGPIN	_	_	_	_	_	_	_
PHPIN	_	_	_	_	_	_	_
PHPCR	Initialized	_	_	_	_	_	_
PGNOCR	Initialized	_	_	_	_	_	_
PHNOCR	Initialized	_	_	_	_	_	_
PGNCE	Initialized	_	_	_	_	_	_
PGNCMC	Initialized	_	_	_	_	_	_
PGNCCS	Initialized	_	_	_	_	_	_
PIDDR	Initialized	_	_	_	_	_	_
PJDDR	Initialized	_	_	_	_	_	_
PIODR	Initialized	_	_	_	_	_	_
PJODR	Initialized	_	_	_	_	_	_
PIPIN	_	_	_	_	_	_	_
PJPIN	_	_	_	_	_	_	_
PINOCR	Initialized	_	_	_	_	_	_
PJNOCR	Initialized	_	_	_	_	_	_
FLMCR1	Initialized	_	_	_	_	_	ROM
DFPR	Initialized	_	_	_	_	_	_
FLMSTR	Initialized	_	_	_	_	_	_
FMATS	Initialized	_	_	_	_	_	_
RSTFR	Initialized	_	_	_	_	_	SYSTEM
LD1CRH	Initialized	_	_	_	_	_	_
LD1CRL	Initialized	_	_	_	_	_	_
LD0CRH	Initialized	_	_	_	_	_	_
LD0CRL	Initialized	_	_	_	_	_	_
VDCPR	Initialized	_					

Register Abbreviation	Reset	High- Speed/ Medium Speed	Watch	Sleep	Module Stop	Software Standby	Module
PECR	Initialized	_	_	_	_	_	PECI
PESTR	Initialized	_	_	_	_	_	_
PECNT0_PRE	Initialized	_	_	_	_	_	_
PECNT0_GR	Initialized	_	_	_	_	_	_
PECNT0_GRA	Initialized	_	_	_	_	_	_
PEADD	Initialized	_	_	_	_	_	_
PEWBNR	Initialized	_	_	_	_	_	_
PERBNR	Initialized	_	_	_	_	_	_
PECWFCSR	Initialized	_	_	_	_	_	_
PECRFCSR	Initialized	_	_	_	_	_	_
PEFIFO	Initialized	_	_	_	_	_	_
TCMCNT_0	Initialized	_	_	_	_	_	TCM_0
TCMMLCM_0	Initialized	_	_	_	_	_	_
TCMICR_0	Initialized	_	_	_	_	_	_
TCMICRF_0	Initialized	_	_	_	_	_	_
TCMCSR_0	Initialized	_	_	_	_	_	_
TCMCR_0	Initialized	_	_	_	_	_	_
TCMIER_0	Initialized	_	_	_	_	_	_
TCMMINCM_0	Initialized	_	_	_	_	_	_
TCMCNT_1	Initialized	_	_	_	_	_	TCM_1
TCMMLCM_1	Initialized	_	_	_	_	_	_
TCMICR_1	Initialized	_	_	_	_	_	_
TCMICRF_1	Initialized	_	_	_	_	_	_
TCMCSR_1	Initialized	_	_	_	_	_	_
TCMCR_1	Initialized	_	_	_	_	_	_
TCMIER_1	Initialized	_	_	_	_	_	_

Register Abbreviation	Reset	High- Speed/ Medium Speed	Watch	Sleep	Module Stop	Software Standby	Module
TCMMINCM_1	Initialized	_	_	_	_	_	TCM_1
TCMCNT_2	Initialized	_	_	_	_	_	TCM_2
TCMMLCM_2	Initialized	_	_	_	_	_	_
TCMICR_2	Initialized	_	_	_	_	_	_
TCMICRF_2	Initialized	_	_	_	_	_	_
TCMCSR_2	Initialized	_	_	_	_	_	_
TCMCR_2	Initialized	_	_	_	_	_	_
TCMIER_2	Initialized	_	_	_	_	_	_
TCMMINCM_2	Initialized	_	_	_	_	_	_
ADDRA_0	Initialized	_	_	_	_	_	A/D
ADDRB_0	Initialized	_	_	_	_	_	converter
ADDRBL	Initialized	_	_	_	_	_	_
ADDRC	Initialized	_	_	_	_	_	_
ADDRD	Initialized	_	_	_	_	_	_
ADDRE	Initialized	_	_	_	_	_	_
ADDRF	Initialized	_	_	_	_	_	_
ADDRG	Initialized	_	_	_	_	_	_
ADDRH	Initialized	_	_	_	_	_	_
ADCSR	Initialized	_	_	_	_	_	_
ADCR	Initialized	_	_	_	_	_	_
FRBR	Initialized	_	Initialized	_	Initialized	Initialized	SCIF
FTHR	Initialized	_	Initialized	_	Initialized	Initialized	_
FDLL	Initialized	_	Initialized	_	Initialized	Initialized	_
FIER	Initialized	_	Initialized	_	Initialized	Initialized	_
FDLH	Initialized	_	Initialized	_	Initialized	Initialized	_
FIIR	Initialized	_	Initialized	_	Initialized	Initialized	_
FFCR	Initialized	_	Initialized	_	Initialized	Initialized	_
FLCR	Initialized		Initialized		Initialized	Initialized	_

Register Abbreviation	Reset	High- Speed/ Medium Speed	Watch	Sleep	Module Stop	Software Standby	Module
FMCR	Initialized	_	Initialized	_	Initialized	Initialized	SCIF
FLSR	Initialized	_	Initialized	_	Initialized	Initialized	_
FMSR	Initialized	_	Initialized	_	Initialized	Initialized	_
FSCR	Initialized	_	Initialized	_	Initialized	Initialized	_
SCIFCR	Initialized	_	Initialized	_	Initialized	Initialized	_
FSIHBARH	Initialized	_	_	_	_	_	FSI
FSIHBARL	Initialized	_	_	_	_	_	_
FSISR	Initialized	_	_	_	_	_	_
CMDHBARH	Initialized	_	_	_		_	_
CMDHBARL	Initialized	_	_	_	_	_	_
FSICMDR	Initialized	_	_	_	_	_	_
FSILSTR1	Initialized	_	_	_	_	_	_
FSIGPR1	Initialized	_	_	_		_	_
FSIGPR2	Initialized	_	_	_		_	_
FSIGPR3	Initialized	_	_	_		_	_
FSIGPR4	Initialized	_	_	_		_	_
FSIGPR5	Initialized	_	_	_		_	_
FSIGPR6	Initialized	_	_	_		_	_
FSIGPR7	Initialized	_	_	_	_	_	_
FSIGPR8	Initialized	_	_	_		_	_
FSIGPR9	Initialized	_	_	_		_	_
FSIGPRA	Initialized	_	_	_	_	_	_
FSIGPRB	Initialized	_	_	_	_	_	_
FSIGPRC	Initialized	_	_	_	_	_	_
FSIGPRD	Initialized	_	_	_	_	_	_
FSIGPRE	Initialized	_	_	_	_	_	_
FSIGPRF	Initialized	_	_	_	_	_	_
SLCR	Initialized	_	_	_	_	_	_

Register Abbreviation	Reset	High- Speed/ Medium Speed	Watch	Sleep	Module Stop	Software Standby	Module
FSIARH	Initialized	_	_	_	_	_	FSI
FSIARM	Initialized	_	_	_	_	_	_
FSIARL	Initialized	_	_	_	_	_	_
FSIWDRHH	Initialized	_	_	_	_	_	_
FSIWDRHL	Initialized	_	_	_	_	_	_
FSIWDRLH	Initialized	_	_	_	_	_	_
FSIWDRLL	Initialized	_	_	_	_	_	_
FSILSTR2	Initialized	_	_	_	_	_	_
SSCRH	Initialized	_	_	_	_	_	SSU
SSCRL	Initialized	_	_	_	_	_	_
SSMR	Initialized	_	_	_	_	_	_
SSER	Initialized	_	_	_	_	_	_
SSSR	Initialized	_	_	_	_	_	_
SSCR2	Initialized	_	_	_	_	_	_
SSTDR0	Initialized	_	_	_	_	_	_
SSTDR1	Initialized	_	_	_	_	_	_
SSTDR2	Initialized	_	_	_	_	_	_
SSTDR3	Initialized	_	_	_	_	_	_
SSRDR0	Initialized	_	_	_	_	_	_
SSRDR1	Initialized	_	_	_	_	_	_
SSRDR2	Initialized	_	_	_	_	_	_
SSRDR3	Initialized	_	_	_	_	_	_
FSICR1	Initialized	_	_	_	_	_	FSI
FSICR2	Initialized	_	_	_	_	_	_
FSIBNR	Initialized	_	_	_	_	_	_
FSIINS	Initialized	_	_	_	_	_	_
FSIRDINS	Initialized	_	_	_	_	_	_
FSIPPINS	Initialized	_	_	_	_	_	_

Register Abbreviation	Reset	High- Speed/ Medium Speed	Watch	Sleep	Module Stop	Software Standby	Module
FSISTR	Initialized	_	_	_	_	_	FSI
FSITDR0	Initialized	_	_	_	_	_	-
FSITDR1	Initialized	_	_	_	_	_	_
FSITDR2	Initialized	_	_	_	_	_	_
FSITDR3	Initialized	_	_	_	_	_	_
FSITDR4	Initialized	_	_	_	_	_	_
FSITDR5	Initialized	_	_	_	_	_	_
FSITDR6	Initialized	_	_	_	_	_	_
FSITDR7	Initialized	_	_	_	_	_	_
FSIRDR	Initialized	_	_	_	_	_	_
WRSRINS	Initialized	_	_	_	_	_	_
RDSRINS	Initialized	_	_	_	_	_	_
PWMREG0_A	Initialized	_	Initialized	_	Initialized	Initialized	PWMU_A
PWMPRE0_A	Initialized	_	Initialized	_	Initialized	Initialized	_
PWMREG1_A	Initialized	_	Initialized	_	Initialized	Initialized	_
PWMPRE1_A	Initialized	_	Initialized	_	Initialized	Initialized	_
PWMREG2_A	Initialized	_	Initialized	_	Initialized	Initialized	_
PWMPRE2_A	Initialized	_	Initialized	_	Initialized	Initialized	_
PWMREG3_A	Initialized	_	Initialized	_	Initialized	Initialized	
PWMPRE3_A	Initialized	_	Initialized	_	Initialized	Initialized	_
PWMREG4_A	Initialized	_	Initialized	_	Initialized	Initialized	_
PWMPRE4_A	Initialized	_	Initialized		Initialized	Initialized	_
PWMREG5_A	Initialized	_	Initialized	_	Initialized	Initialized	_
PWMPRE5_A	Initialized	_	Initialized	_	Initialized	Initialized	_
PWMCKCR_A	Initialized	_	Initialized	_	Initialized	Initialized	_
PWMOUTCR_A	Initialized		Initialized	_	Initialized	Initialized	_
PWMMDCR_A	Initialized		Initialized		Initialized	Initialized	_
PWMPCR_A	Initialized	_	Initialized	_	Initialized	Initialized	

Register Abbreviation	Reset	High- Speed/ Medium Speed	Watch	Sleep	Module Stop	Software Standby	Module
PWMREG0_B	Initialized	_	Initialized		Initialized	Initialized	PWMU_B
PWMPRE0_B	Initialized	_	Initialized	_	Initialized	Initialized	
PWMREG1_B	Initialized	_	Initialized	_	Initialized	Initialized	_
PWMPRE1_B	Initialized	_	Initialized	_	Initialized	Initialized	_
PWMREG2_B	Initialized	_	Initialized	_	Initialized	Initialized	_
PWMPRE2_B	Initialized	_	Initialized	_	Initialized	Initialized	_
PWMREG3_B	Initialized	_	Initialized	_	Initialized	Initialized	_
PWMPRE3_B	Initialized		Initialized		Initialized	Initialized	_
PWMREG4_B	Initialized		Initialized		Initialized	Initialized	_
PWMPRE4_B	Initialized	_	Initialized	_	Initialized	Initialized	_
PWMREG5_B	Initialized	_	Initialized	_	Initialized	Initialized	_
PWMPRE5_B	Initialized	_	Initialized	_	Initialized	Initialized	_
PWMCKCR_B	Initialized	_	Initialized	_	Initialized	Initialized	_
PWMOUTCR_B	Initialized	_	Initialized	_	Initialized	Initialized	_
PWMMDCR_B	Initialized	_	Initialized	_	Initialized	Initialized	_
PWMPCR_B	Initialized	_	Initialized	_	Initialized	Initialized	_
TCR_1	Initialized	_	_	_	_	_	TPU_1
TMDR_1	Initialized	_	_	_	_	_	_
TIOR_1	Initialized	_	_	_	_	_	_
TIER_1	Initialized	_	_	_	_	_	- _
TSR_1	Initialized	_	_	_	_	_	_
TCNT_1	Initialized	_	_	_	_	_	
TGRA_1	Initialized	_	_	_	_	_	<u> </u>
TGRB_1	Initialized	_	_	_	_	_	
PECX	Initialized	_	_	_	_	_	SMBUS
PECY	Initialized	_	_	_	_	_	_
PECZ	Initialized	_	_	_	_	_	_
LADR1H	Initialized	_	_	_	_	_	LPC
LADR1L	Initialized						

Register Abbreviation	Reset	High- Speed/ Medium Speed	Watch	Sleep	Module Stop	Software Standby	Module
LADR2H	Initialized	_	_	_	_	_	LPC
LADR2L	Initialized	_	_	_	_	_	_
SCIFADRH	Initialized	_	_	_	_	_	_
SCIFADRL	Initialized	_	_	_	_	_	_
LADRAH	Initialized	_	_	_	_	_	_
LADRAL	Initialized	_	_	_	_	_	_
IDRA	Initialized	_	_	_	_	_	_
ODRA	Initialized	_	_	_	_	_	_
LADR4H	Initialized	_	_	_	_	_	_
LADR4L	Initialized	_	_	_	_	_	_
IDR4	Initialized	_	_	_	_	_	_
ODR4	Initialized	_	_	_	_	_	_
STR4	Initialized	_	_	_	_	_	_
HICR4	Initialized	_	_	_	_	_	_
SIRQCR2	Initialized	_	_	_	_	_	_
SIRQCR3	Initialized	_	_	_	_	_	_
CKRCR	Initialized	_	_	_	_	_	_
TWDR0MW	Initialized	_	_	_	_	_	_
TWDR0SW	Initialized	_	_	_	_	_	_
TWDR1	Initialized	_	_	_	_	_	_
TWDR2	Initialized	_	_	_	_	_	_
TWDR3	Initialized	_	_	_	_	_	_
TWDR4	Initialized	_	_	_	_	_	_
TWDR5	Initialized	_	_	_	_	_	_
TWDR6	Initialized	_	_	_	_	_	_
TWDR7	Initialized	_	_	_	_	_	_
TWDR8	Initialized	_	_	_	_	_	_
TWDR9	Initialized	_	_	_	_	_	_

Register Abbreviation	Reset	High- Speed/ Medium Speed	Watch	Sleep	Module Stop	Software Standby	Module
TWDR10	Initialized	_	_	_	_	_	LPC
TWDR11	Initialized	_	_	_	_	_	_
TWDR12	Initialized	_	_	_	_	_	_
TWDR13	Initialized	_	_	_	_	_	_
TWDR14	Initialized	_	_	_	_	_	_
TWDR15	Initialized	_	_	_	_	_	_
TWDR16	Initialized	_	_	_	_	_	_
TWDR17	Initialized	_	_	_	_	_	_
TWDR18	Initialized	_	_	_	_	_	_
TWDR19	Initialized	_	_	_	_	_	_
TWDR20	Initialized	_	_	_	_	_	_
TWDR21	Initialized	_	_	_	_	_	_
TWDR22	Initialized	_	_	_	_	_	_
TWDR23	Initialized	_	_	_	_	_	_
TWDR24	Initialized	_	_	_	_	_	_
TWDR25	Initialized	_	_	_	_	_	_
TWDR26	Initialized	_	_	_	_	_	_
TWDR27	Initialized	_	_	_	_	_	_
TWDR28	Initialized	_	_	_	_	_	_
TWDR29	Initialized	_	_	_	_	_	_
TWDR30	Initialized	_	_	_	_	_	_
TWDR31	Initialized	_	_	_	_	_	_
PTCNT0	Initialized	_	_	_	_	_	PORT
PTCNT1	Initialized	_	_	_	_	_	_
PTCNT2	Initialized	_	_	_	_	_	_
TWR0MW	Initialized	_	_	_	_	_	LPC
TWR0SW	Initialized	_	_	_	_	_	_
TWR0	Initialized						

Register Abbreviation	Reset	High- Speed/ Medium Speed	Watch	Sleep	Module Stop	Software Standby	Module
TWR1	Initialized	_	_	_	_	_	LPC
TWR2	Initialized	_	_	_	_	_	_
TWR3	Initialized	_	_	_	_	_	_
TWR4	Initialized	_	_	_	_	_	_
TWR5	Initialized	_	_	_	_	_	_
TWR6	Initialized	_	_	_	_	_	_
TWR7	Initialized	_	_	_	_	_	_
TWR8	Initialized	_	_	_	_	_	_
TWR9	Initialized	_	_	_	_	_	_
TWR10	Initialized	_	_	_	_	_	_
TWR11	Initialized	_	_	_	_	_	_
TWR12	Initialized	_	_	_	_	_	_
TWR13	Initialized	_	_	_	_	_	_
TWR14	Initialized	_	_	_	_	_	_
TWR15	Initialized	_	_	_	_	_	_
IDR3	Initialized	_	_	_	_	_	_
ODR3	Initialized	_	_	_	_	_	_
STR3	Initialized	_	_	_	_	_	_
HICR5	Initialized	_	_	_	_	_	_
LADR3H	Initialized	_	_	_	_	_	_
LADR3L	Initialized	_	_	_	_	_	_
SIRQCR0	Initialized	_	_	_	_	_	_
SIRQCR1	Initialized	_	_	_	_	_	_
IDR1	Initialized	_	_	_	_	_	_
ODR1	Initialized	_	_	_	_	_	_
STR1	Initialized	_	_	_	_	_	_
IDR2	Initialized	_	_	_	_	_	_
SIRQCR4	Initialized	_	_	_	_	_	=

Register Abbreviation	Reset	High- Speed/ Medium Speed	Watch	Sleep	Module Stop	Software Standby	Module
ODR2	Initialized	_	_	_	_	_	LPC
STR2	Initialized	_	_	_	_	_	_
HISEL	Initialized	_	_	_	_	_	_
HICR0	Initialized	_	_	_	_	_	_
HICR1	Initialized	_	_	_	_	_	_
HICR2	Initialized	_	_	_	_	_	_
HICR3	Initialized	_	_	_	_	_	_
WUEMRB	Initialized	_	_	_	_	_	INT
WUEMRA	Initialized	_	_	_	_	_	_
HICR6	Initialized	_	_	_	_	_	LPC
STRA	Initialized	_	_	_	_	_	_
SIRQCR5	Initialized	_	_	_	_	_	_
TCR_0	Initialized	_	_	_	_	_	TPU_0
TMDR_0	Initialized	_	_	_	_	_	_
TIORH_0	Initialized	_	_	_	_	_	_
TIORL_0	Initialized	_	_	_	_	_	_
TIER_0	Initialized	_	_	_	_	_	_
TSR_0	Initialized	_	_	_	_	_	_
TCNT_0	Initialized	_	_	_	_	_	_
TGRA_0	Initialized	_	_	_	_	_	_
TGRB_0	Initialized	_	_	_	_	_	_
TGRC_0	Initialized	_	_	_	_	_	_
TGRD_0	Initialized	_	_	_	_	_	_
TCR_2	Initialized	_	_	_	_	_	TPU_2
TMDR_2	Initialized	_	_	_	_	_	_
TIOR_2	Initialized	_	_	_	_	_	_
TIER_2	Initialized	_		_	_		_
TSR_2	Initialized	_	_		_	_	_
TPCNT_2	Initialized	_	_	_	_	_	

Register Abbreviation	Reset	High- Speed/ Medium Speed	Watch	Sleep	Module Stop	Software Standby	Module
TPGRA_2	Initialized	_	_	_	_	_	TPU_2
TPGRB_2	Initialized	_	_	_	_	_	_
KMIMRB	Initialized	_	_	_	_	_	INT
KMIMRA	Initialized	_	_	_	_	_	_
WUESCRA	Initialized	_	_	_	_	_	_
WUESRA	Initialized	_	_	_	_	_	_
WUEER	Initialized	_	_	_	_	_	_
ICRD	Initialized	_	_	_	_	_	_
ICCR_2	Initialized	_	_	_	_	_	IIC2
ICSR_2	Initialized	_	_	_	_	_	_
ICRES_2	Initialized	_	_	_	_	_	_
ICCKR_2	Initialized	_	_	_	_	_	_
ICXR_2	Initialized	_	_	_	_	_	_
SARX_2	Initialized	_	_	_	_	_	_
ICDR_2	Initialized	_	_	_	_	_	_
SAR_2	Initialized	_	_	_	_	_	_
ICMR_2	Initialized	_	_	_	_	_	_
WUESCRB	Initialized	_	_	_	_	_	INT
WUESRB	Initialized	_	_	_	_	_	_
TSTR	Initialized	_	_	_	_	_	TPU
TSYR	Initialized	_	_	_	_	_	common
KBCR1_0	Initialized	_	_	_	_	_	PS2_0
KBTR_0	Initialized	_	_	_	_	_	_
KBCR1_1	Initialized	_	_	_	_	_	PS2_1
KBTR_1	Initialized	_	_	_	_	_	_
KBCR1_2	Initialized	_	_	_	_	_	PS2_2
KBTR_2	Initialized	_	_	_	_	_	_
TCRXY	Initialized	_	_	_	_	_	TMR_X, TMR_Y

Register Abbreviation	Reset	High- Speed/ Medium Speed	Watch	Sleep	Module Stop	Software Standby	Module
TCR_Y	Initialized	_	_	_	_	_	TMR_Y
TCSR_Y	Initialized	_	_	_	_	_	_
TCORA_Y	Initialized	_	_	_	_	_	_
TCORB_Y	Initialized	_	_	_	_	_	_
TCNT_Y	Initialized	_	_	_	_	_	_
ICCR_1	Initialized	_	_	_	_	_	IIC1
ICSR_1	Initialized	_	_	_	_	_	
ICRES_1	Initialized	_	_	_	_	_	_
ICCKR_1	Initialized	_	_	_	_	_	_
ICXR_1	Initialized	_	_	_	_	_	_
SARX_1	Initialized	_	_	_	_	_	_
ICDR_1	Initialized	_	_	_	_	_	_
SAR_1	Initialized	_	_	_	_	_	_
ICMR_1	Initialized	_	_	_	_	_	_
KBCRH_0	Initialized	_	_	_	_	_	PS2_0
KBCRL_0	Initialized	_	_	_	_	_	_
KBBR_0	Initialized	_	_	_	_	_	_
KBCR2_0	Initialized	_	_	_	_	_	_
KBCRH_1	Initialized	_	_	_	_	_	PS2_1
KBCRL_1	Initialized	_	_	_	_	_	_
KBBR_1	Initialized	_	_	_	_	_	_
KBCR2_1	Initialized	_	_	_	_	_	_
KBCRH_2	Initialized	_				_	PS2_2
KBCRL_2	Initialized	_	_	_	_	_	<u>_</u>
KBBR_2	Initialized	_					_
KBCR2_2	Initialized	_	_	_	_	_	

ICRA	Register Abbreviation	Reset	High- Speed/ Medium Speed	Watch	Sleep	Module Stop	Software Standby	Module
ICRC	ICRA	Initialized	_	_	_	_	_	INT
ISR Initialized — <	ICRB	Initialized	_	_	_	_	_	_
ISCRH	ICRC	Initialized	_	_	_	_	_	_
ISCRL	ISR	Initialized	_	_	_	_	_	_
ABRKCR Initialized —	ISCRH	Initialized	_	_	_	_	_	_
BARA Initialized —	ISCRL	Initialized	_	_	_	_	_	_
BARB Initialized —	ABRKCR	Initialized	_	_	_	_	_	_
BARC Initialized —	BARA	Initialized	_	_	_	_	_	_
IER16	BARB	Initialized	_	_	_	_	_	-
ISR16 Initialized —	BARC	Initialized	_	_	_	_	_	_
ISCR16H	IER16	Initialized	_	_	_	_	_	_
ISCR16L	ISR16	Initialized	_	_	_	_	_	_
ISSR Initialized —	ISCR16H	Initialized	_	_	_	_	_	_
ISSR Initialized —	ISCR16L	Initialized	_	_	_	_	_	_
SMR_1 Initialized —	ISSR16	Initialized	_	_	_	_	_	_
BRR_1 Initialized —	ISSR	Initialized	_	_	_	_	_	_
SCR_1 Initialized —	SMR_1	Initialized	_	_	_	_	_	SCI_1
TDR_1 Initialized Initialized Initialized Initialized SSR_1 Initialized Initialized Initialized Initialized RDR_1 Initialized Initialized Initialized Initialized SCMR_1 Initialized — — — SEMR_1 Initialized — — — SYSTEM MDCR Initialized — — — SYSTEM SYSCR Initialized — — — — SBYCR Initialized — — — — LPWRCR Initialized — — — — — MSTPCRH Initialized — — — — —	BRR_1	Initialized	_	_	_	_	_	_
SSR_1 Initialized Initialized Initialized Initialized RDR_1 Initialized — Initialized Initialized SCMR_1 Initialized — — — SEMR_1 Initialized — — — MDCR Initialized — — — SYSTEM SYSCR Initialized — — — — SBYCR Initialized — — — — LPWRCR Initialized — — — — MSTPCRH Initialized — — — —	SCR_1	Initialized	_	_	_	_	_	_
RDR_1 Initialized Initialized <td< td=""><td>TDR_1</td><td>Initialized</td><td>_</td><td>Initialized</td><td>_</td><td>Initialized</td><td>Initialized</td><td>-</td></td<>	TDR_1	Initialized	_	Initialized	_	Initialized	Initialized	-
SCMR_1 Initialized —	SSR_1	Initialized	_	Initialized	_	Initialized	Initialized	_
SEMR_1 Initialized — — — — — SYSTEM MDCR Initialized — — — — SYSTEM SYSCR Initialized — — — — — SBYCR Initialized — — — — — LPWRCR Initialized — — — — — MSTPCRH Initialized — — — — —	RDR_1	Initialized	_	Initialized	_	Initialized	Initialized	-
MDCR Initialized — — — SYSTEM SYSCR Initialized — — — — SBYCR Initialized — — — — LPWRCR Initialized — — — — MSTPCRH Initialized — — — —	SCMR_1	Initialized	_	_	_	_	_	_
SYSCR Initialized — — — SBYCR Initialized — — — LPWRCR Initialized — — — MSTPCRH Initialized — — —	SEMR_1	Initialized	_	_	_	_	_	_
SBYCR Initialized — — — LPWRCR Initialized — — — MSTPCRH Initialized — — —	MDCR	Initialized	_	_	_	_	_	SYSTEM
LPWRCR Initialized — — — — MSTPCRH Initialized — — — —	SYSCR	Initialized	_	_	_	_	_	_
MSTPCRH Initialized — — — —	SBYCR	Initialized	_	_	_	_	_	_
	LPWRCR	Initialized	_	_	_	_	_	_
MSTPCRL Initialized — — — — —	MSTPCRH	Initialized	_	_	_	_	_	_
	MSTPCRL	Initialized	_	_	_	_	_	_

Register Abbreviation	Reset	High- Speed/ Medium Speed	Watch	Sleep	Module Stop	Software Standby	Module
MSTPCRA	Initialized	_	_	_	_	_	SYSTEM
MSTPCRB	Initialized	_	_	_	_	_	
BCR	Initialized		_	_	_	_	BSC
WSCR	Initialized	_	_	_	_	_	_
STCR	Initialized	_	_	_	_	_	SYSTEM
TCSR_0	Initialized	_	_	_	_	_	WDT_0
TCNT_0	Initialized	_	_	_	_	_	_
IER	Initialized	_	_	_	_	_	INT
TCR_0	Initialized	_	_	_	_	_	TMR_0,
TCR_1	Initialized	_	_	_	_	_	 TMR_1
TCSR_0	Initialized	_	_	_	_	_	_
TCSR_1	Initialized	_	_	_	_	_	_
TCORA_0	Initialized	_	_	_	_	_	_
TCORA_1	Initialized	_	_	_	_	_	
TCORB_0	Initialized	_	_	_	_	_	_
TCORB_1	Initialized	_	_	_	_	_	_
TCNT_0	Initialized	_	_	_	_	_	TMR_0,
TCNT_1	Initialized	_	_	_	_	_	TMR_1
TCKR_0	Initialized	_	_	_	_	_	_
TCKR_1	Initialized	_	_	_	_	_	_
ICCR_0	Initialized	_	_	_	_	_	IIC0
ICSR_0	Initialized	_	_	_	_	_	_
ICRES_0	Initialized	_	_	_	_	_	_
ICCKR_0	Initialized	_	_	_	_	_	_
ICXR_0	Initialized	_	_	_	_	_	_
ICDR_0	Initialized	_	_	_	_	_	_
SARX_0	Initialized	_	_	_	_	_	
ICMR_0	Initialized	_	_	_	_	_	
SAR_0	Initialized	_			_	_	_

Register Abbreviation	Reset	High- Speed/ Medium Speed	Watch	Sleep	Module Stop	Software Standby	Module
TCSR_1	Initialized	_	_	_	_	_	WDT_1
TCNT_1	Initialized	_	_	_	_	_	_
TCSRE_1	Initialized	_	_	_	_	_	_
TCR_X	Initialized	_	_	_	_	_	TMR_X
TCSR_X	Initialized	_	_	_	_	_	_
TICRR	Initialized	_	_	_	_	_	_
TICRF	Initialized	_	_	_	_	_	_
TCNT_X	Initialized	_	_	_	_	_	_
TCORA_X	Initialized	_	_	_	_	_	_
TCORB_X	Initialized	_	_	_	_	_	_
TCONRI	Initialized	_	_	_	_	_	_

30.4 Register Selection Condition

Lower Address	Register Abbreviation	Register Selection Condition	Module
H'F800	BBR0	MSTP13 = 0	BBR
H'F801	BBR1	_	
H'F802	BBR2	_	
H'F803	BBR3	_	
H'F804	BBR4	_	
H'F805	BBR5	_	
H'F806	BBR6	_	
H'F807	BBR7	_	
H'F808	BBR8	_	
H'F809	BBR9	_	
H'F80A	BBR10	_	
H'F80B	BBR11	_	
H'F80C	BBR12	_	
H'F80D	BBR13	_	
H'F80E	BBR14	_	
H'F80F	BBR15	_	
H'F810	BBR16	_	
H'F811	BBR17	_	
H'F812	BBR18	_	
H'F813	BBR19	_	
H'F814	BBR20	_	
H'F815	BBR21	_	
H'F816	BBR22	_	
H'F817	BBR23	_	
H'F818	BBR24	_	
H'F819	BBR25	_	
H'F81A	BBR26	_	
H'F81B	BBR27	_	

Lower Address	Register Abbreviation	Register Selection Condition	Module
H'F81C	BBR28	MSTP13 = 0	BBR
H'F81D	BBR29	-	
H'F81E	BBR30	-	
H'F81F	BBR31	_	
H'F820	BBR32	_	
H'F821	BBR33	_	
H'F822	BBR34	_	
H'F823	BBR35	_	
H'F824	BBR36	No condition	BBR
H'F825	BBR37	_	
H'F826	BBR38	_	
H'F827	BBR39	_	
H'F828	BBR40	_	
H'F829	BBR41	_	
H'F82A	BBR42	_	
H'F82B	BBR43	_	
H'F82C	BBR44	_	
H'F82D	BBR45	_	
H'F82E	BBR46	_	
H'F82F	BBR47	_	
H'F830	BBR48	_	
H'F831	BBR49	_	
H'F832	BBR50	_	
H'F833	BBR51	_	
H'F834	BBR52	_	
H'F835	BBR53	_	
H'F836	BBR54	-	
H'F837	BBR55	_	
H'F838	BBR56	_	
H'F839	BBR57	_	

Lower Address	Register Abbreviation	Register Selection Condition	Module
H'F83A	BBR58	No condition	BBR
H'F83B	BBR59	_	
H'F83C	BBR60	_	
H'F83D	BBR61	_	
H'F83E	BBR62	_	
H'F83F	BBR63	_	
H'F840	RSTFRB	_	
H'F841	BWPRT	_	
H'F900	P1DDR	No condition	PORT
H'F901	P2DDR	_	
H'F902	P1ODR	_	
H'F903	P2ODR	_	
H'F904	P1PIN	_	
H'F905	P2PIN	_	
H'F906	P1PCR	_	
H'F907	P2PCR	_	
H'F910	P3DDR	_	
H'F911	P4DDR	_	
H'F912	P3ODR	_	
H'F913	P4ODR	_	
H'F914	P3PIN	_	
H'F915	P4PIN	_	
H'F916	P3PCR	_	
H'F917	P4PCR	_	
H'F91B	P4NCE	_	
H'F91D	P4NCMC	_	
H'F91F	P4NCCS	_	
H'F920	P5DDR	_	
H'F921	P6DDR	_	
H'F922	P5ODR	_	

Lower Address	Register Abbreviation	Register Selection Condition	Module
H'F923	P6ODR	No condition	PORT
H'F924	P5PIN	_	
H'F925	P6PIN	_	
H'F926	P5PCR	_	
H'F927	P6PCR	_	
H'F92B	P6NCE	_	
H'F92D	P6NCMC	_	
H'F92F	P6NCCS	_	
H'F931	P8DDR	_	
H'F933	P8ODR	_	
H'F934	P7PIN	_	
H'F935	P8PIN	_	
H'F937	P8PCR	_	
H'F940	P9DDR	_	
H'F942	P9ODR	_	
H'F944	P9PIN	_	
H'F946	P9PCR	_	
H'F950	PADDR	_	
H'F951	PBDDR	_	
H'F952	PAODR	_	
H'F953	PBODR	_	
H'F954	PAPIN	_	
H'F955	PBPIN	_	
H'F957	PBPCR	_	
H'F958	PANOCR	_	
H'F960	PCDDR	_	
H'F961	PDDDR	_	
H'F962	PCODR	_	
H'F963	PDODR	_	
H'F964	PCPIN	_	

Lower Address	Register Abbreviation	Register Selection Condition	Module
H'F965	PDPIN	No condition	PORT
H'F966	PCPCR	_	
H'F967	PDPCR	_	
H'F968	PCNOCR	_	
H'F969	PDNOCR	_	
H'F96A	PCNCE	_	
H'F96C	PCNCMC	_	
H'F96E	PCNCCS	_	
H'F970	PEDDR	_	
H'F971	PFDDR	_	
H'F972	PEODR	_	
H'F973	PFODR	_	
H'F974	PEPIN	_	
H'F975	PFPIN	_	
H'F976	PEPCR	_	
H'F977	PFPCR	_	
H'F978	PENOCR	_	
H'F979	PFNOCR	_	
H'F980	PGDDR	_	
H'F981	PHDDR	_	
H'F982	PGODR	_	
H'F983	PHODR	_	
H'F984	PGPIN	_	
H'F985	PHPIN	_	
H'F986	PGPCR	_	
H'F987	PHPCR	_	
H'F988	PGNOCR	_	
H'F989	PHNOCR	_	
H'F98A	PGNCE	_	
H'F98C	PGNCMC		

Lower Address	Register Abbreviation	Register Selection Condition	Module
H'F98E	PGNCCS	No condition	PORT
H'F990	PIDDR	_	
H'F991	PJDDR	_	
H'F992	PIODR	_	
H'F993	PJODR	_	
H'F994	PIPIN	_	
H'F995	PJPIN	_	
H'F998	PINOCR	_	
H'F999	PJNOCR	_	
H'FB20	FLMCR1	_	ROM
H'FB22	DFPR	_	
H'FB23	FLMSTR	_	
H'FB25	FMATS	_	
H'FB40	RSTFR	_	SYSTEM
H'FB44	LD1CRH	_	
H'FB45	LD1CRL	_	
H'FB46	LD0CRH	_	
H'FB47	LD0CRL	_	
H'FB49	VDCPR	_	
H'FBA0	PECR	MSTPA7 = 0	PECI
H'FBA1	PESTR	_	
H'FBA2	PENCNT0_PRE	_	
H'FBA4	PENCNT0_GR	_	
H'FBA6	PENCNT0_GRA	_	
H'FBA8	PEADD	_	
H'FBA9	PEWBNE	_	
H'FBAA	PERBNR	_	
H'FBAD	PECWFCSR	_	
H'FBAE	PECRFCSR	_	
H'FBAF	PEFIFO	_	
-		i	•

Lower Address	Register Abbreviation	Register Selection Condition	Module
H'FBC0	TCMCNT_0	MSTPB1 = 0	TCM_0
H'FBC2	TCMMLCM_0	_	
H'FBC4	TCMICR_0	_	
H'FBC6	TCMICRF_0	_	
H'FBC8	TCMCSR_0	_	
H'FBC9	TCMCR_0	_	
H'FBCA	TCMIER_0	_	
H'FBCC	TCMMINCM_0	_	
H'FBD0	TCMCNT_1	MSTPB1 = 0	TCM_1
H'FBD2	TCMMLCM_1	_	
H'FBD4	TCMICR_1	_	
H'FBD6	TCMICRF_1	_	
H'FBD8	TCMCSR_1	_	
H'FBD9	TCMCR_1	_	
H'FBDA	TCMIER_1	_	
H'FBDC	TCMMINCM_1	_	
H'FBE0	TCMCNT_2	MSTPB2 = 0	TCM_2
H'FBE2	TCMMLCM_2	_	
H'FBE4	TCMICR_2	_	
H'FBE6	TCMICRF_2	_	
H'FBE8	TCMCSR_2	_	
H'FBE9	TCMCR_2	_	
H'FBEA	TCMIER_2	_	
H'FBEC	TCMMINCM_2	_	
H'FC00	ADDRA	MSTP9 = 0	A/D converter
H'FC02	ADDRB	_	
H'FC04	ADDRC	_	
H'FC06	ADDRD	_	
H'FC08	ADDRE	_	_

Lower Address	Register Abbreviation	Register Selection Condition	Module
H'FC0A	ADDRF	MSTP9 = 0	A/D converter
H'FC0C	ADDRG	_	
H'FC0E	ADDRH	_	
H'FC10	ADCSR	_	
H'FC11	ADCR	_	
H'FC20	FRBR	MSTPB3 = 0	SCIF
H'FC20	FTHR	_	
H'FC20	FDLL	_	
H'FC21	FIER	_	
H'FC21	FDLH	_	
H'FC22	FIIR	_	
H'FC22	FFCR	_	
H'FC23	FLCR	_	
H'FC24	FMCR	_	
H'FC25	FLSR	_	
H'FC26	FMSR	_	
H'FC27	FSCR	_	
H'FC28	SCIFCR	_	
H'FC50	FSIHBARH	MSTP0 = 0	FSI
H'FC51	FSIHBARL	MSTPA2 = 0	
H'FC52	FSISR	_	
H'FC53	CMDHBARH	_	
H'FC54	CMDHBARL	_	
H'FC55	FSICMDR	_	
H'FC56	FSILSTR1	_	
H'FC57	FSIGPR1	_	
H'FC58	FSIGPR2	_	
H'FC59	FSIGPR3	_	
H'FC5A	FSIGPR4	_	
H'FC5B	FSIGPR5	_	

Lower Address	Register Abbreviation	Register Selection Condition	Module
H'FC5C	FSIGPR6	MSTP0 = 0	FSI
H'FC5D	FSIGPR7	MSTPA2 = 0	
H'FC5E	FSIGPR8	_	
H'FC5F	FSIGPR9	_	
H'FC60	FSIGPRA	_	
H'FC61	FSIGPRB	_	
H'FC62	FSIGPRC	_	
H'FC63	FSIGPRD	_	
H'FC64	FSIGPRE	_	
H'FC65	FSIGPRF	_	
H'FC66	SLCR	_	
H'FC67	FSIARH	_	
H'FC68	FSIARM	_	
H'FC69	FSIARL	_	
H'FC6A	FSIWDRHH	_	
H'FC6B	FSIWDRHL	_	
H'FC6C	FSIWDRLH	_	
H'FC6D	FSIWDRLL	_	
H'FC6E	FSILSTR2	_	
H'FC80	SSCRH	MSTPB7 = 0	SSU
H'FC81	SSCRL	_	
H'FC82	SSMR	_	
H'FC83	SSER	_	
H'FC84	SSSR	_	
H'FC85	SSCR2	_	
H'FC86	SSTDR0	_	
H'FC87	SSTDR1	_	
H'FC88	SSTDR2	_	
H'FC89	SSTDR3	_	
H'FC8A	SSRDR0	_	

Lower Address	Register Abbreviation	Register Selection Condition	Module
H'FC8B	SSRDR1	MSTPB7 = 0	SSU
H'FC8C	SSRDR2	_	
H'FC8D	SSRDR3	_	
H'FC90	FSICR1	MSTP0 = 0	FSI
H'FC91	FSICR2	MSTPA2 = 0	
H'FC92	FSIBNR	_	
H'FC93	FSIINS	_	
H'FC94	FSIRDINS	_	
H'FC95	FSIPPINS	_	
H'FC96	FSISTR	_	
H'FC98	FSITDR0	_	
H'FC99	FSITDR1	_	
H'FC9A	FSITDR2	_	
H'FC9B	FSITDR3	_	
H'FC9C	FSITDR4	_	
H'FC9D	FSITDR5	_	
H'FC9E	FSITDR6	_	
H'FC9F	FSITDR7	_	
H'FCA0	FSIRDR	_	
H'FCA4	WRSRINS	_	
H'FCA5	RDSRINS	_	
H'FCE0	PWMREG0_A	MSTPB0 = 0	PWMU_A
H'FCE1	PWMPRE0_A	_	
H'FCE2	PWMREG1_A	_	
H'FCE3	PWMPRE1_A	_	
H'FCE4	PWMREG2_A	_	
H'FCE5	PWMPRE2_A	_	
H'FCE6	PWMREG3_A	_	
H'FCE7	PWMPRE3_A	_	
H'FCE8	PWMREG4_A	_	

Lower Address	Register Abbreviation	Register Selection Condition	Module
H'FCE9	PWMPRE4_A	MSTPB0 = 0	PWMU_A
H'FCEA	PWMREG5_A	_	
H'FCEB	PWMPRE5_A	_	
H'FCEC	PWMCKCR_A	_	
H'FCED	PWMOUTCR_A	_	
H'FCEE	PWMMDCR_A	-	
H'FCEF	PWMPCR_A	-	
H'FD10	PWMREG0_B	MSTPB0 = 0	PWMU_B
H'FD11	PWMPRE0_B	-	
H'FD12	PWMREG1_B	-	
H'FD13	PWMPRE1_B	-	
H'FD14	PWMREG2_B	-	
H'FD15	PWMPRE2_B	-	
H'FD16	PWMREG3_B	-	
H'FD17	PWMPRE3_B	-	
H'FD18	PWMREG4_B	-	
H'FD19	PWMPRE4_B	-	
H'FD1A	PWMREG5_B	-	
H'FD1B	PWMPRE5_B	-	
H'FD1C	PWMCKCR_B	-	
H'FD1D	PWMOUTCR_B	-	
H'FD1E	PWMMDCR_B	-	
H'FD1F	PWMPCR_B	-	
H'FD40	TCR_1	-	
H'FD41	TMDR_1	-	
H'FD42	TIOR_1	-	
H'FD44	TIER_1	_	
H'FD45	TSR_1	_	
H'FD46	TCNT_1	_	
H'FD48	TGRA_1		

Lower Address	Register Abbreviation	Register Selection Condition	Module
H'FD4A	TGRB_1	MSTPB0 = 0	PWMU_B
H'FD60	PECX	MSTP4 = 0	SMBUS
H'FD61	PECY	_	
H'FD63	PECZ	_	
H'FDC0	LADR1H	MSTP0 = 0	LPC
H'FDC1	LADR1L	_	
H'FDC2	LADR2H	_	
H'FDC3	LADR2L	_	
H'FDC4	SCIFADRH	_	
H'FDC5	SCIFADRL	_	
H'FDD0	LADRAH	_	
H'FDD1	LADRAL	_	
H'FDD2	IDRA	_	
H'FDD3	ODRA	_	
H'FDD4	LADR4H	_	
H'FDD5	LADR4L	_	
H'FDD6	IDR4	_	
H'FDD7	ODR4	_	
H'FDD8	STR4	_	
H'FDD9	HICR4	_	
H'FDDA	SIRQCR2	_	
H'FDDB	SIRQCR3	_	
H'FDDF	CKRCR	_	
H'FDE0	TWDR0MW	_	
H'FDE0	TWDR0SW	_	
H'FDE1	TWDR1	_	
H'FDE2	TWDR2	_	
H'FDE3	TWDR3	_	
H'FDE4	TWDR4	_	
H'FDE5	TWDR5	_	

Lower Address	Register Abbreviation	Register Selection Condition	Module
H'FDE6	TWDR6	MSTP0 = 0	LPC
H'FDE7	TWDR7	_	
H'FDE8	TWDR8	_	
H'FDE9	TWDR9	_	
H'FDEA	TWDR10	_	
H'FDEB	TWDR11	_	
H'FDEC	TWDR12	_	
H'FDED	TWDR13	_	
H'FDEE	TWDR14	_	
H'FDEF	TWDR15	_	
H'FDF0	TWDR16	_	
H'FDF1	TWDR17	_	
H'FDF2	TWDR18	_	
H'FDF3	TWDR19	_	
H'FDF4	TWDR20	_	
H'FDF5	TWDR21	_	
H'FDF6	TWDR22	_	
H'FDF7	TWDR23	_	
H'FDF8	TWDR24	_	
H'FDF9	TWDR25	_	
H'FDFA	TWDR26	_	
H'FDFB	TWDR27	_	
H'FDFC	TWDR28	_	
H'FDFD	TWDR29	_	
H'FDFE	TWDR30	_	
H'FDFF	TWDR31	_	
H'FE10	PTCNT0	No condition	PORT
H'FE11	PTCNT1	_	
H'FE12	PTCNT2	_	

Lower Address	Register Abbreviation	Register Selection Condition	Module
H'FE20	TWR0MW	MSTP0 = 0	LPC
H'FE20	TWR0SW	-	
H'FE20	TWR0	-	
H'FE21	TWR1	-	
H'FE22	TWR2	-	
H'FE23	TWR3	-	
H'FE24	TWR4	_	
H'FE25	TWR5	-	
H'FE26	TWR6	-	
H'FE27	TWR7	-	
H'FE28	TWR8	_	
H'FE29	TWR9	-	
H'FE2A	TWR10	-	
H'FE2B	TWR11	-	
H'FE2C	TWR12	-	
H'FE2D	TWR13	-	
H'FE2E	TWR14	-	
H'FE2F	TWR15	_	
H'FE30	IDR3	_	
H'FE31	ODR3	_	
H'FE32	STR3	_	
H'FE33	HICR5	_	
H'FE34	LADR3H	_	
H'FE35	LADR3L	-	
H'FE36	SIRQCR0	-	
H'FE37	SIRQCR1	-	
H'FE38	IDR1	_	
H'FE39	ODR1	_	
H'FE3A	STR1	_	
H'FE3C	IDR2		

H'FE3B SIRQCR4 MSTP0 = 0 LPC H'FE3D ODR2 H'FE3E STR2 H'FE3F HISEL HICR0 H'FE40 HICR0 HICR1 H'FE41 HICR2 HICR2 H'FE43 HICR3 No condition INT H'FE45 WUEMRH No condition INT	
H'FE3E STR2 H'FE3F HISEL H'FE40 HICR0 H'FE41 HICR1 H'FE42 HICR2 H'FE43 HICR3 H'FE44 WUEMRL No condition INT	
H'FE3F HISEL H'FE40 HICR0 H'FE41 HICR1 H'FE42 HICR2 H'FE43 HICR3 H'FE44 WUEMRL No condition INT	
H'FE40 HICR0 H'FE41 HICR1 H'FE42 HICR2 H'FE43 HICR3 H'FE44 WUEMRL No condition INT	
H'FE41 HICR1 H'FE42 HICR2 H'FE43 HICR3 H'FE44 WUEMRL No condition INT	
H'FE42 HICR2 H'FE43 HICR3 H'FE44 WUEMRL No condition INT	
H'FE43 HICR3 H'FE44 WUEMRL No condition INT	
H'FE44 WUEMRL No condition INT	
H'FE45 WUEMRH	
H'FE50 TCR_0 MSTP1 = 0 TPU_0	
H'FE51 TMDR_0	
H'FE52 TIORH_0	
H'FE53 TIORL_0	
H'FE54 TIER_0	
H'FE4C HICR6	
H'FE4D STRA	
H'FE4E SIRQCR5	
H'FE55 TSR_0	
H'FE56 TCNT_0	
H'FE58 TGRA_0	
H'FE5A TGRB_0	
H'FE5C TGRC_0	
H'FE5E TGRD_0	
H'FE70 TCR_2 TPU_2	
H'FE71 TMDR_2	
H'FE72 TIOR_2	
H'FE74 TIER_2	
H'FE75 TSR_2	
H'FE76 TCNT_2	

Lower Address	Register Abbreviation	Register Se	lection Condition	Module
H'FE78	TGRA_2	MSTP1 = 0		TPU_2
H'FE7A	TGRB_2	_		
H'FE81	KMIMRB	No condition		INT
H'FE83	KMIMRA	_		
H'FE84	WUESCRA	_		
H'FE85	WUESRA	_		
H'FE86	WUEER	_		
H'FE87	ICRD	_		
H'FE88	ICCR_2	MSTPB4 = 0		IIC_2
H'FE89	ICSR_2	_		
H'FE8A	ICRES_2	_		
H'FE8B	ICCKR_2	_		
H'FE8C	ICXR_2	_		_
H'FE8E	SARX_2	_	ICCR_2 in ICE = 0	
H'FE8E	ICDR_2	_	ICCR_2 in ICE = 1	
H'FE8F	SAR_2	<u> </u>	ICCR_2 in ICE = 0	
H'FE8F	ICMR_2		ICCR_2 in ICE = 1	
H'FE96	WUESCRB	No condition		INT
H'FE97	WUESRB			
H'FEB0	TSTR	MSTP1 = 0		TPU common
H'FEB1	TSYR	_		
H'FEC0	KBCR1_0	MSTP2 = 0		PS2_0
H'FEC1	KBTR_0	_		
H'FEC2	KBCR1_1	- _		PS2_1
H'FEC3	KBTR_1	_		
H'FEC4	KBCR1_2	_		PS2_2
H'FEC5	KBTR_2			

Lower Address	Register Abbreviation	Register Se	lection Condition	Module
H'FEC6	TCRXY	MSTP8 = 0		TMR_X, TMR_Y
H'FEC8	TCR_Y	_		TMR_Y
H'FEC9	TCSR_Y	_		
H'FECA	TCORA_Y	_		
H'FECB	TCORB_Y	_		
H'FECC	TCNT_Y			
H'FED0	ICCR_1	MSTP3 = 0		IIC1
H'FED1	ICSR_1			
H'FED2	ICRES_1			
H'FED3	ICCKR_2	_		
H'FED4	ICXR_1	_		
H'FED6	SARX_1		ICCR_1 in ICE = 0	-
H'FED6	ICDR_1	_	ICCR_1 in ICE = 1	
H'FED7	SAR_1	MSTP3 = 0	ICCR_1 in ICE = 0	IIC1
H'FED7	ICMR_1		ICCR_1 in ICE = 1	-
H'FED8	KBCRH_0	MSTP2 = 0		PS2_0
H'FED9	KBCRL_0			
H'FEDA	KBBR_0	_		
H'FEDB	KBCR2_0			
H'FEDC	KBCRH_1			PS2_1
H'FEDD	KBCRL_1			
H'FEDE	KBBR_1			
H'FEDF	KBCR2_1			
H'FEE0	KBCRH_2			PS2_2
H'FEE1	KBCRL_2	-		
H'FEE2	KBBR_2			
H'FEE3	KBCR2_2			

Lower Address	Register Abbreviation	Register Selection Condition	Module
H'FEE8	ICRA	No condition	INT
H'FEE9	ICRB	_	
H'FEEA	ICRC	_	
H'FEF7	ISR	_	
H'FEEC	ISCRH	_	
H'FEED	ISCRL	_	
H'FEF4	ABRKCR	_	
H'FEF5	BARA		
H'FEF6	BARB	_	
H'FEF7	BARC	_	
H'FEF8	IER16	_	
H'FEF9	ISR16	_	
H'FEFA	ISCR16H	_	
H'FEFB	ISCR16L	_	
H'FEFC	ISSR16	_	
H'FEFD	ISSR	_	
H'FF88	SMR_1	MSTP6 = 0	SCI_1
H'FF89	BRR_1	_	
H'FF8A	SCR_1	_	
H'FF8B	TDR_1	_	
H'FF8C	SSR_1	_	
H'FF8D	RDR_1	_	
H'FF8E	SCMR_1	_	
H'FF8F	SEMR_1	_	
H'FF90	MDCR	No condition	SYSTEM
H'FF91	SYSCR1	_	
H'FF94	SBYCR	_	
H'FF95	LPWRCR	_	
H'FF96	MSTPCRH	_	
H'FF97	MSTPCRL	_	
H'FF98	MSTPCRA	_	
H'FF99	MSTPCRB	_	

Lower Address	Register Abbreviation	Register Selection Condition	Module
H'FF9A	BCR	No condition	BUSC
H'FF9B	WSCR	-	
H'FF9E	STCR	Bit 7: MSTPB4 = 0 Bit 6: MSTP3 = 0 Bit 5: MSTP4 = 0 Bits 4 to 2: No condition Bits 1 and 0: MSTP12 = 0	SYSTEM
H'FFA8	TCSR_0	No condition	WDT_0
H'FFA8 (Write)	TCNT_0	_	
H'FFAA	TCSRE_0	-	
H'FFC2	IER	No condition	SYSTEM
H'FFC8	TCR_0	MSTP12 = 0	TMR_0, TMR_1
H'FFC9	TCR_1	_	
H'FFCA	TCSR_0	_	
H'FFCB	TCSR_1	_	
H'FFCC	TCORA_0	-	
H'FFCD	TCORA_1	_	
H'FFCE	TCORB_0	_	
H'FFCF	TCORB_1	_	
H'FFD0	TCNT_0	_	
H'FFD1	TCNT_1	_	
H'FFD2	TCKR0	_	
H'FFD3	TCKR1		
H'FFD8	ICCR_0	MSTPB4 = 0	IIC0
H'FFD9	ICSR_0	_	
H'FFDA	ICRES_0	_	
H'FFDB	ICCKR_0	_	
H'FFDC	ICXR_0	_	
H'FFDE	ICDR_0	ICCR_0 in ICE = 0	_
H'FFDE	SARX_0	ICCR_0 in ICE = 1	_
H'FFDF	ICMR_0	ICCR_0 in ICE = 0	-
H'FFDF	SAR_0	ICCR_0 in ICE = 1	

Lower Address	Register Abbreviation	Register Selection Condition	Module
H'FFEA	TCSR_1	No condition	WDT_1
H'FFFA (Write)	TCNT_1	_	
H'FFEC	TCSRE_1	_	
H'FFF0	TCR_X	MSTP8 = 0	TMR_X
H'FFF1	TCSR_X	_	
H'FFF2	TICRR	_	
H'FFF3	TICRF	_	
H'FFF4	TCNT_X	_	
H'FFF6	TCORA_X	_	
H'FFF7	TCORB_X	_	
H'FFFC	TCONRI	_	

30.5 Register Addresses (Classification by Type of Module)

Module	Register Abbreviation	Number of Bits	Address	Data Bus Width	Access States
INT	WUEMRB	8	H'FE44	8	2
INT	WUEMRA	8	H'FE45	8	2
INT	KMIMRB	8	H'FE81	8	2
INT	KMIMRA	8	H'FE83	8	2
INT	WUESCRA	8	H'FE84	8	2
INT	WUESRA	8	H'FE85	8	2
INT	WUEER	8	H'FE86	8	2
INT	ICRD	8	H'FE87	8	2
INT	WUESCRB	8	H'FE96	8	2
INT	WUESRB	8	H'FE97	8	2
INT	ICRA	8	H'FEE8	8	2
INT	ICRB	8	H'FEE9	8	2
INT	ICRC	8	H'FEEA	8	2
INT	ISR	8	H'FEEB	8	2
INT	ISCRH	8	H'FEEC	8	2
INT	ISCRL	8	H'FEED	8	2
INT	ABRKCR	8	H'FEF4	8	2
INT	BARA	8	H'FEF5	8	2
INT	BARB	8	H'FEF6	8	2
INT	BARC	8	H'FEF7	8	2
INT	IER16	8	H'FEF8	8	2
INT	ISR16	8	H'FEF9	8	2
INT	ISCR16H	8	H'FEFA	8	2
INT	ISCR16L	8	H'FEFB	8	2
INT	ISSR16	8	H'FEFC	8	2
INT	ISSR	8	H'FEFD	8	2
INT	IER	8	H'FFC2	8	2
BSC	BCR	8	H'FF8A	8	2

Module	Register Abbreviation	Number of Bits	Address	Data Bus Width	Access States
BSC	WSCR	8	H'FF8B	8	2
BSC	BBR0	8	H'F800	8	2
BSC	BBR1	8	H'F801	8	2
BSC	BBR2	8	H'F802	8	2
BSC	BBR3	8	H'F803	8	2
BSC	BBR4	8	H'F804	8	2
BSC	BBR5	8	H'F805	8	2
BSC	BBR6	8	H'F806	8	2
BSC	BBR7	8	H'F807	8	2
BSC	BBR8	8	H'F808	8	2
BSC	BBR9	8	H'F809	8	2
BSC	BBR10	8	H'F80A	8	2
BSC	BBR11	8	H'F80B	8	2
BSC	BBR12	8	H'F80C	8	2
BSC	BBR13	8	H'F80D	8	2
BSC	BBR14	8	H'F80E	8	2
BSC	BBR15	8	H'F80F	8	2
BSC	BBR16	8	H'F810	8	2
BSC	BBR17	8	H'F811	8	2
BSC	BBR18	8	H'F812	8	2
BSC	BBR19	8	H'F813	8	2
BSC	BBR20	8	H'F814	8	2
BSC	BBR21	8	H'F815	8	2
BSC	BBR22	8	H'F816	8	2
BSC	BBR23	8	H'F817	8	2
BSC	BBR24	8	H'F818	8	2
BSC	BBR25	8	H'F819	8	2
BSC	BBR26	8	H'F81A	8	2
BSC	BBR27	8	H'F81B	8	2
BSC	BBR28	8	H'F81C	8	2

Module	Register Abbreviation	Number of Bits	Address	Data Bus Width	Access States
BSC	BBR29	8	H'F81D	8	2
BSC	BBR30	8	H'F81E	8	2
BSC	BBR31	8	H'F81F	8	2
BSC	BBR32	8	H'F820	8	2
BSC	BBR33	8	H'F821	8	2
BSC	BBR34	8	H'F822	8	2
BSC	BBR35	8	H'F823	8	2
BSC	BBR36	8	H'F824	8	2
BSC	BBR37	8	H'F825	8	2
BSC	BBR38	8	H'F826	8	2
BSC	BBR39	8	H'F827	8	2
BSC	BBR40	8	H'F828	8	2
BSC	BBR41	8	H'F829	8	2
BSC	BBR42	8	H'F82A	8	2
BSC	BBR43	8	H'F82B	8	2
BSC	BBR44	8	H'F82C	8	2
BSC	BBR45	8	H'F82D	8	2
BSC			H'F82E	8	2
	BBR46	8			
BSC	BBR47	8	H'F82F	8	2
BSC	BBR48	8	H'F830	8	2
BSC	BBR49	8	H'F831	8	2
BSC	BBR50	8	H'F832	8	2
BSC	BBR51	8	H'F833	8	2
BSC	BBR52	8	H'F834	8	2
BSC	BBR53	8	H'F835	8	2
BSC	BBR54	8	H'F836	8	2
BSC	BBR55	8	H'F837	8	2
BSC	BBR56	8	H'F838	8	2
BSC	BBR57	8	H'F839	8	2
BSC	BBR58	8	H'F83A	8	2

Module	Register Abbreviation	Number of Bits	Address	Data Bus Width	Access States
BSC	BBR59	8	H'F83B	8	2
BSC	BBR60	8	H'F83C	8	2
BSC	BBR61	8	H'F83D	8	2
BSC	BBR62	8	H'F83E	8	2
BSC	BBR63	8	H'F83F	8	2
BSC	BWPRT	8	H'F841	8	2
PORT	P1DDR	8	H'F900	8	2
PORT	P2DDR	8	H'F901	8	2
PORT	P1ODR	8	H'F902	8	2
PORT	P2ODR	8	H'F903	8	2
PORT	P1PIN	8	H'F904	8	2
PORT	P2PIN	8	H'F905	8	2
PORT	P1PCR	8	H'F906	8	2
PORT	P2PCR	8	H'F907	8	2
PORT	P3DDR	8	H'F910	8	2
PORT	P4DDR	8	H'F911	8	2
PORT	P3ODR	8	H'F912	8	2
PORT	P4ODR	8	H'F913	8	2
PORT	P3PIN	8	H'F914	8	2
PORT	P4PIN	8	H'F915	8	2
PORT	P3PCR	8	H'F916	8	2
PORT	P4PCR	8	H'F917	8	2
PORT	P4NCE	8	H'F91B	8	2
PORT	P4NCMC	8	H'F91D	8	2
PORT	P4NCCS	8	H'F91F	8	2
PORT	P5DDR	8	H'F920	8	2
PORT	P6DDR	8	H'F921	8	2
PORT	P5ODR	8	H'F922	8	2
PORT	P6ODR	8	H'F923	8	2
PORT	P5PIN	8	H'F924	8	2

Module	Register Abbreviation	Number of Bits	Address	Data Bus Width	Access States
PORT	P6PIN	8	H'F925	8	2
PORT	P5PCR	8	H'F926	8	2
PORT	P6PCR	8	H'F927	8	2
PORT	P6NCE	8	H'F92B	8	2
PORT	P6NCMC	8	H'F92D	8	2
PORT	P6NCCS	8	H'F92F	8	2
PORT	P8DDR	8	H'F931	8	2
PORT	P8ODR	8	H'F933	8	2
PORT	P7PIN	8	H'F934	8	2
PORT	P8PIN	8	H'F935	8	2
PORT	P8PCR	8	H'F937	8	2
PORT	P9DDR	8	H'F940	8	2
PORT	P9ODR	8	H'F942	8	2
PORT	P9PIN	8	H'F944	8	2
PORT	P9PCR	8	H'F946	8	2
PORT	PADDR	8	H'F950	8	2
PORT	PBDDR	8	H'F951	8	2
PORT	PAODR	8	H'F952	8	2
PORT	PBODR	8	H'F953	8	2
PORT	PAPIN	8	H'F954	8	2
PORT	PBPIN	8	H'F955	8	2
PORT	PBPCR	8	H'F957	8	2
PORT	PANOCR	8	H'F958	8	2
PORT	PCDDR	8	H'F960	8	2
PORT	PDDDR	8	H'F961	8	2
PORT	PCODR	8	H'F962	8	2
PORT	PDODR	8	H'F963	8	2
PORT	PCPIN	8	H'F964	8	2
PORT	PDPIN	8	H'F965	8	2
PORT	PCPCR	8	H'F966	8	2

Module	Register Abbreviation	Number of Bits	Address	Data Bus Width	Access States
PORT	PDPCR	8	H'F967	8	2
PORT	PCNOCR	8	H'F968	8	2
PORT	PDNOCR	8	H'F969	8	2
PORT	PCNCE	8	H'F96A	8	2
PORT	PCNCMC	8	H'F96C	8	2
PORT	PCNCCS	8	H'F96E	8	2
PORT	PEDDR	8	H'F970	8	2
PORT	PFDDR	8	H'F971	8	2
PORT	PEODR	8	H'F972	8	2
PORT	PFODR	8	H'F973	8	2
PORT	PEPIN	8	H'F974	8	2
PORT	PFPIN	8	H'F975	8	2
PORT	PEPCR	8	H'F976	8	2
PORT	PFPCR	8	H'F977	8	2
PORT	PENOCR	8	H'F978	8	2
PORT	PFNOCR	8	H'F979	8	2
PORT	PGDDR	8	H'F980	8	2
PORT	PHDDR	8	H'F981	8	2
PORT	PGODR	8	H'F982	8	2
PORT	PHODR	8	H'F983	8	2
PORT	PGPIN	8	H'F984	8	2
PORT	PHPIN	8	H'F985	8	2
PORT	PGPCR	8	H'F986	8	2
PORT	PHPCR	8	H'F987	8	2
PORT	PGNOCR	8	H'F988	8	2
PORT	PHNOCR	8	H'F989	8	2
PORT	PGNCE	8	H'F98A	8	2
PORT	PGNCMC	8	H'F98C	8	2
PORT	PGNCCS	8	H'F98E	8	2
PORT	PIDDR	8	H'F990	8	2

Module	Register Abbreviation	Number of Bits	Address	Data Bus Width	Access States
PORT	PJDDR	8	H'F991	8	2
PORT	PIODR	8	H'F992	8	2
PORT	PJODR	8	H'F993	8	2
PORT	PIPIN	8	H'F994	8	2
PORT	PJPIN	8	H'F995	8	2
PORT	PINOCR	8	H'F998	8	2
PORT	PJNOCR	8	H'F999	8	2
PORT	PTCNT0	8	H'FE10	8	2
PORT	PTCNT1	8	H'FE11	8	2
PORT	PTCNT2	8	H'FE12	8	2
TCM_0	TCMCNT_0	16	H'FBC0	16	2
TCM_0	TCMMLCM_0	16	H'FBC2	16	2
TCM_0	TCMICR_0	16	H'FBC4	16	2
TCM_0	TCMICRF_0	16	H'FBC6	16	2
TCM_0	TCMCSR_0	8	H'FBC8	8	2
TCM_0	TCMCR_0	8	H'FBC9	8	2
TCM_0	TCMIER_0	8	H'FBCA	8	2
TCM_0	TCMMINCM_0	16	H'FBCC	16	2
TCM_1	TCMCNT_1	16	H'FBD0	16	2
TCM_1	TCMMLCM_1	16	H'FBD2	16	2
TCM_1	TCMICR_1	16	H'FBD4	16	2
TCM_1	TCMICRF_1	16	H'FBD6	16	2
TCM_1	TCMCSR_1	8	H'FBD8	8	2
TCM_1	TCMCR_1	8	H'FBD9	8	2
TCM_1	TCMIER_1	8	H'FBDA	8	2
TCM_1	TCMMINCM_1	16	H'FBDC	16	2
TCM_2	TCMCNT_2	16	H'FBE0	16	2
TCM_2	TCMMLCM_2	16	H'FBE2	16	2
TCM_2	TCMICR_2	16	H'FBE4	16	2
TCM_2	TCMICRF_2	16	H'FBE6	16	2

Module	Register Abbreviation	Number of Bits	Address	Data Bus Width	Access States
TCM_2	TCMCSR_2	8	H'FBE8	8	2
TCM_2	TCMCR_2	8	H'FBE9	8	2
TCM_2	TCMIER_2	8	H'FBEA	8	2
TCM_2	TCMMINCM_2	16	H'FBEC	16	2
FSI	FSIHBARH	8	H'FC50	8	2
FSI	FSIHBARL	8	H'FC51	8	2
FSI	FSISR	8	H'FC52	8	2
FSI	CMDHBARH	8	H'FC53	8	2
FSI	CMDHBARL	8	H'FC54	8	2
FSI	FSICMDR	8	H'FC55	8	2
FSI	FSILSTR1	8	H'FC56	8	2
FSI	FSIGPR1	8	H'FC57	8	2
FSI	FSIGPR2	8	H'FC58	8	2
FSI	FSIGPR3	8	H'FC59	8	2
FSI	FSIGPR4	8	H'FC5A	8	2
FSI	FSIGPR5	8	H'FC5B	8	2
FSI	FSIGPR6	8	H'FC5C	8	2
FSI	FSIGPR7	8	H'FC5D	8	2
FSI	FSIGPR8	8	H'FC5E	8	2
FSI	FSIGPR9	8	H'FC5F	8	2
FSI	FSIGPRA	8	H'FC60	8	2
FSI	FSIGPRB	8	H'FC61	8	2
FSI	FSIGPRC	8	H'FC62	8	2
FSI	FSIGPRD	8	H'FC63	8	2
FSI	FSIGPRE	8	H'FC64	8	2
FSI	FSIGPRF	8	H'FC65	8	2
FSI	SLCR	8	H'FC66	8	2
FSI	FSIARH	8	H'FC67	8	2
FSI	FSIARM	8	H'FC68	8	2
FSI	FSIARL	8	H'FC69	8	2

Module	Register Abbreviation	Number of Bits	Address	Data Bus Width	Access States
FSI	FSIWDRHH	8	H'FC6A	8	2
FSI	FSIWDRHL	8	H'FC6B	8	2
FSI	FSIWDRLH	8	H'FC6C	8	2
FSI	FSIWDRLL	8	H'FC6D	8	2
FSI	FSILSTR2	8	H'FC6E	8	2
FSI	FPICR1	8	H'FC90	8	2
FSI	FSICR2	8	H'FC91	8	2
FSI	FSIBNR	8	H'FC92	8	2
FSI	FSIINS	8	H'FC93	8	2
FSI	FSIRDINS	8	H'FC94	8	2
FSI	FSIPPINS	8	H'FC95	8	2
FSI	FSISTR	8	H'FC96	8	2
FSI	FSITDR0	8	H'FC98	8	2
FSI	FSITDR1	8	H'FC99	8	2
FSI	FSITDR2	8	H'FC9A	8	2
FSI	FSITDR3	8	H'FC9B	8	2
FSI	FSITDR4	8	H'FC9C	8	2
FSI	FSITDR5	8	H'FC9D	8	2
FSI	FSITDR6	8	H'FC9E	8	2
FSI	FSITDR7	8	H'FC9F	8	2
FSI	FSIRDR	8	H'FCA0	8	2
FSI	WRSRINS	8	H'FCA4	8	2
FSI	RDSRINS	8	H'FCA5	8	2
PWMU_A	PWMREG0_A	8	H'FD00	8	2
PWMU_A	PWMPRE0_A	8	H'FD01	8	2
PWMU_A	PWMREG1_A	8	H'FD02	8	2
PWMU_A	PWMPRE1_A	8	H'FD03	8	2
PWMU_A	PWMREG2_A	8	H'FD04	8	2
PWMU_A	PWMPRE2_A	8	H'FD05	8	2
PWMU_A	PWMREG3_A	8	H'FD06	8	2

Module	Register Abbreviation	Number of Bits	Address	Data Bus Width	Access States
PWMU_A	PWMPRE3_A	8	H'FD07	8	2
PWMU_A	PWMREG4_A	8	H'FD08	8	2
PWMU_A	PWMPRE4_A	8	H'FD09	8	2
PWMU_A	PWMREG5_A	8	H'FD0A	8	2
PWMU_A	PWMPRE5_A	8	H'FD0B	8	2
PWMU_A	PWMCKCR_A	8	H'FD0C	8	2
PWMU_A	PWMOUTCR_A	8	H'FD0D	8	2
PWMU_A	PWMMDCR_A	8	H'FD0E	8	2
PWMU_A	PWMPCR_A	8	H'FD0F	8	2
PWMU_B	PWMREG0_B	8	H'FD10	8	2
PWMU_B	PWMPRE0_B	8	H'FD11	8	2
PWMU_B	PWMREG1_B	8	H'FD12	8	2
PWMU_B	PWMPRE1_B	8	H'FD13	8	2
PWMU_B	PWMREG2_B	8	H'FD14	8	2
PWMU_B	PWMPRE2_B	8	H'FD15	8	2
PWMU_B	PWMREG3_B	8	H'FD16	8	2
PWMU_B	PWMPRE3_B	8	H'FD17	8	2
PWMU_B	PWMREG4_B	8	H'FD18	8	2
PWMU_B	PWMPRE4_B	8	H'FD19	8	2
PWMU_B	PWMREG5_B	8	H'FD1A	8	2
PWMU_B	PWMPRE5_B	8	H'FD1B	8	2
PWMU_B	PWMCKCR_B	8	H'FD1C	8	2
PWMU_B	PWMOUTCR_B	8	H'FD1D	8	2
PWMU_B	PWMMDCR_B	8	H'FD1E	8	2
PWMU_B	PWMPCR_B	8	H'FD1F	8	2
TPU_0	TCR_0	8	H'FE50	8	2
TPU_0	TMDR_0	8	H'FE51	8	2
TPU_0	TIORH_0	8	H'FE52	8	2
TPU_0	TIORL_0	8	H'FE53	8	2
TPU_0	TIER_0	8	H'FE54	8	2

Module	Register Abbreviation	Number of Bits	Address	Data Bus Width	Access States
TPU_0	TSR_0	8	H'FE55	8	2
TPU_0	TCNT_0	16	H'FE56	16	2
TPU_0	TGRA_0	16	H'FE58	16	2
TPU_0	TGRB_0	16	H'FE5A	16	2
TPU_0	TGRC_0	16	H'FE5C	16	2
TPU_0	TGRD_0	16	H'FE5E	16	2
TPU_1	TCR_1	8	H'FD40	8	2
TPU_1	TMDR_1	8	H'FD41	8	2
TPU_1	TIOR_1	8	H'FD42	8	2
TPU_1	TIER_1	8	H'FD44	8	2
TPU_1	TSR_1	8	H'FD45	8	2
TPU_1	TCNT_1	16	H'FD46	16	2
TPU_1	TGRA_1	16	H'FD48	16	2
TPU_1	TGRB_1	16	H'FD4A	16	2
TPU_2	TCR_2	8	H'FE70	8	2
TPU_2	TMDR_2	8	H'FE71	8	2
TPU_2	TIOR_2	8	H'FE72	8	2
TPU_2	TIER_2	8	H'FE74	8	2
TPU_2	TSR_2	8	H'FE75	8	2
TPU_2	TCNT_2	16	H'FE76	16	2
TPU_2	TGRA_2	16	H'FE78	16	2
TPU_2	TGRB_2	16	H'FE7A	16	2
TPU common	TSTR	8	H'FEB0	8	2
TPU common	TSYR	8	H'FEB1	8	2
TMR_0	TCR_0	8	H'FFC8	8	2
TMR_0	TCSR_0	8	H'FFCA	8	2
TMR_0	TCORA_0	8	H'FFCC	16	2
TMR_0	TCORB_0	8	H'FFCE	16	2
TMR_0	TCNT_0	8	H'FFD0	16	2
TMR_0	TCKR_0	8	H'FFD2	8	2

Module	Register Abbreviation	Number of Bits	Address	Data Bus Width	Access States
TMR_1	TCR_1	8	H'FFC9	8	2
TMR_1	TCSR_1	8	H'FFCB	8	2
TMR_1	TCORA_1	8	H'FFCD	16	2
TMR_1	TCORB_1	8	H'FFCF	16	2
TMR_1	TCNT_1	8	H'FFD1	16	2
TMR_1	TCKR_1	8	H'FFD3	8	2
TMR_X	TCR_X	8	H'FFF0	8	2
TMR_X	TCSR_X	8	H'FFF1	8	2
TMR_X	TICRR	8	H'FFF2	8	2
TMR_X	TICRF	8	H'FFF3	8	2
TMR_X	TCNT_X	8	H'FFF4	8	2
TMR_X	TCORA_X	8	H'FFF6	8	2
TMR_X	TCORB_X	8	H'FFF7	8	2
TMR_X	TCONRI	8	H'FFFC	8	2
TMR_Y	TCR_Y	8	H'FEC8	8	2
TMR_Y	TCSR_Y	8	H'FEC9	8	2
TMR_Y	TCORA_Y	8	H'FECA	8	2
TMR_Y	TCORB_Y	8	H'FECB	8	2
TMR_Y	TCNT_Y	8	H'FECC	8	2
TMR_X, TMR_Y	TCRXY	8	H'FEC6	8	2
WDT_0	TCSR_0	8	H'FFA8 (Write)	16	2
WDT_0	TCSR_0	8	H'FFA8 (Read)	16	2
WDT_0	TCNT_0	8	H'FFA8 (Write)	16	2
WDT_0	TCNT_0	8	H'FFA9 (Read)	8	2
WDT_1	TCSR_1	8	H'FFEA (Write)	16	2
WDT_1	TCSR_1	8	H'FFEA (Read)	8	2
WDT_1	TCNT_1	8	H'FFEA (Write)	16	2
WDT_1	TCNT_1	8	H'FFEB (Read)	8	2

Module	Register Abbreviation	Number of Bits	Address	Data Bus Width	Access States
WDT_1	TCSRE_1	8	H'FFEC (Write)	16	2
WDT_1	TCSRE_1	8	H'FFEC (Read)	8	2
SCI_1	SMR_1	8	H'FF88	8	2
SCI_1	BRR_1	8	H'FF89	8	2
SCI_1	SCR_1	8	H'FF8A	8	2
SCI_1	TDR_1	8	H'FF8B	8	2
SCI_1	SSR_1	8	H'FF8C	8	2
SCI_1	RDR_1	8	H'FF8D	8	2
SCI_1	SCMR_1	8	H'FF8E	8	2
SCI_1	SEMR_1	8	H'FF8F	8	2
IIC0	ICCR_0	8	H'FFD8	8	2
IIC0	ICSR_0	8	H'FFD9	8	2
IIC0	ICRES_0	8	H'FFDA	8	2
IIC0	ICCKR_0	8	H'FFDB	8	2
IIC0	ICXR_0	8	H'FFDC	8	2
IIC0	ICDR_0	8	H'FFDE	8	2
IIC0	SARX_0	8	H'FFDE	8	2
IIC0	ICMR_0	8	H'FFDF	8	2
IIC0	SAR_0	8	H'FFDF	8	2
IIC1	ICCR_1	8	H'FED0	8	2
IIC1	ICSR_1	8	H'FED1	8	2
IIC1	ICRES_1	8	H'FED2	8	2
IIC1	ICCKR_1	8	H'FED3	8	2
IIC1	ICXR_1	8	H'FED4	8	2
IIC1	SARX_1	8	H'FED6	8	2
IIC1	ICDR_1	8	H'FED6	8	2
IIC1	SAR_1	8	H'FED7	8	2
IIC1	ICMR_1	8	H'FED7	8	2
IIC2	ICCR_2	8	H'FE88	8	2
IIC2	ICSR_2	8	H'FE89	8	2

Module	Register Abbreviation	Number of Bits	Address	Data Bus Width	Access States
IIC2	ICRES_2	8	H'FE8A	8	2
IIC2	ICCKR_2	8	H'FE8B	8	2
IIC2	ICXR_2	8	H'FE8C	8	2
IIC2	SARX_2	8	H'FE8E	8	2
IIC2	ICDR_2	8	H'FE8E	8	2
IIC2	SAR_2	8	H'FE8F	8	2
IIC2	ICMR_2	8	H'FE8F	8	2
PS2_0	KBCR1_0	8	H'FEC0	8	2
PS2_0	KBTR_0	8	H'FEC1	8	2
PS2_0	KBCRH_0	8	H'FED8	8	2
PS2_0	KBCRL_0	8	H'FED9	8	2
PS2_0	KBBR_0	8	H'FEDA	8	2
PS2_0	KBCR2_0	8	H'FEDB	8	2
PS2_1	KBCR1_1	8	H'FEC2	8	2
PS2_1	KBTR_1	8	H'FEC3	8	2
PS2_1	KBCRH_1	8	H'FEDC	8	2
PS2_1	KBCRL_1	8	H'FEDD	8	2
PS2_1	KBBR_1	8	H'FEDE	8	2
PS2_1	KBCR2_1	8	H'FEDF	8	2
PS2_2	KBCR1_2	8	H'FEC4	8	2
PS2_2	KBTR_2	8	H'FEC5	8	2
PS2_2	KBCRH_2	8	H'FEE0	8	2
PS2_2	KBCRL_2	8	H'FEE1	8	2
PS2_2	KBBR_2	8	H'FEE2	8	2
PS2_2	KBCR2_2	8	H'FEE3	8	2
LPC	LADR1H	8	H'FDC0	8	2
LPC	LADR1L	8	H'FDC1	8	2
LPC	LADR2H	8	H'FDC2	8	2
LPC	LADR2L	8	H'FDC3	8	2
LPC	SCIFADRH	8	H'FDC4	8	2

Module	Register Abbreviation	Number of Bits	Address	Data Bus Width	Access States
LPC	SCIFADRL	8	H'FDC5	8	2
LPC	LADRAH	8	H'FDD0	8	2
LPC	LADRAL	8	H'FDD1	8	2
LPC	IDRA	8	H'FDD2	8	2
LPC	ODRA	8	H'FDD3	8	2
LPC	LADR4H	8	H'FDD4	8	2
LPC	LADR4L	8	H'FDD5	8	2
LPC	IDR4	8	H'FDD6	8	2
LPC	ODR4	8	H'FDD7	8	2
LPC	STR4	8	H'FDD8	8	2
LPC	HICR4	8	H'FDD9	8	2
LPC	SIRQCR2	8	H'FDDA	8	2
LPC	SIRQCR3	8	H'FDDB	8	2
LPC	CKRCR	8	H'FDDF	8	2
LPC	TWDR0MW	8	H'FDE0	8	2
LPC	TWDR0SW	8	H'FDE0	8	2
LPC	TWDR1	8	H'FDE1	8	2
LPC	TWDR2	8	H'FDE2	8	2
LPC	TWDR3	8	H'FDE3	8	2
LPC	TWDR4	8	H'FDE4	8	2
LPC	TWDR5	8	H'FDE5	8	2
LPC	TWDR6	8	H'FDE6	8	2
LPC	TWDR7	8	H'FDE7	8	2
LPC	TWDR8	8	H'FDE8	8	2
LPC	TWDR9	8	H'FDE9	8	2
LPC	TWDR10	8	H'FDEA	8	2
LPC	TWDR11	8	H'FDEB	8	2
LPC	TWDR12	8	H'FDEC	8	2
LPC	TWDR13	8	H'FDED	8	2
LPC	TWDR14	8	H'FDEE	8	2

Module	Register Abbreviation	Number of Bits	Address	Data Bus Width	Access States
LPC	TWDR15	8	H'FDEF	8	2
LPC	TWDR16	8	H'FDF0	8	2
LPC	TWDR17	8	H'FDF1	8	2
LPC	TWDR18	8	H'FDF2	8	2
LPC	TWDR19	8	H'FDF3	8	2
LPC	TWDR20	8	H'FDF4	8	2
LPC	TWDR21	8	H'FDF5	8	2
LPC	TWDR22	8	H'FDF6	8	2
LPC	TWDR23	8	H'FDF7	8	2
LPC	TWDR24	8	H'FDF8	8	2
LPC	TWDR25	8	H'FDF9	8	2
LPC	TWDR26	8	H'FDFA	8	2
LPC	TWDR27	8	H'FDFB	8	2
LPC	TWDR28	8	H'FDFC	8	2
LPC	TWDR29	8	H'FDFD	8	2
LPC	TWDR30	8	H'FDFE	8	2
LPC	TWDR31	8	H'FDFF	8	2
LPC	TWR0MW	8	H'FE20	8	2
LPC	TWR0SW	8	H'FE20	8	2
LPC	TWR0	8	H'FE20	8	2
LPC	TWR1	8	H'FE21	8	2
LPC	TWR2	8	H'FE22	8	2
LPC	TWR3	8	H'FE23	8	2
LPC	TWR4	8	H'FE24	8	2
LPC	TWR5	8	H'FE25	8	2
LPC	TWR6	8	H'FE26	8	2
LPC	TWR7	8	H'FE27	8	2
LPC	TWR8	8	H'FE28	8	2
LPC	TWR9	8	H'FE29	8	2
LPC	TWR10	8	H'FE2A	8	2

Module	Register Abbreviation	Number of Bits	Address	Data Bus Width	Access States
LPC	TWR11	8	H'FE2B	8	2
LPC	TWR12	8	H'FE2C	8	2
LPC	TWR13	8	H'FE2D	8	2
LPC	TWR14	8	H'FE2E	8	2
LPC	TWR15	8	H'FE2F	8	2
LPC	IDR3	8	H'FE30	8	2
LPC	ODR3	8	H'FE31	8	2
LPC	STR3	8	H'FE32	8	2
LPC	HICR5	8	H'FE33	8	2
LPC	LADR3H	8	H'FE34	8	2
LPC	LADR3L	8	H'FE35	8	2
LPC	SIRQCR0	8	H'FE36	8	2
LPC	SIRQCR1	8	H'FE37	8	2
LPC	IDR1	8	H'FE38	8	2
LPC	ODR1	8	H'FE39	8	2
LPC	STR1	8	H'FE3A	8	2
LPC	IDR2	8	H'FE3C	8	2
LPC	SIRQCR4	8	H'FE3B	8	2
LPC	ODR2	8	H'FE3D	8	2
LPC	STR2	8	H'FE3E	8	2
LPC	HISEL	8	H'FE3F	8	2
LPC	HICR0	8	H'FE40	8	2
LPC	HICR1	8	H'FE41	8	2
LPC	HICR2	8	H'FE42	8	2
LPC	HICR3	8	H'FE43	8	2
LPC	HICR6	8	H'FE4C	8	2
LPC	STRA	8	H'FE4D	8	2
LPC	SIRQCR5	8	H'FE4E	8	2

Module	Register Abbreviation	Number of Bits	Address	Data Bus Width	Access States
PECI	PECR	8	H'FBA0	8	2
PECI	PESTR	8	H'FBA1	8	2
PECI	PECNT0_PRE	16	H'FBA2	16	2
PECI	PECNT0_GR	16	H'FBA4	16	2
PECI	PECNT0_GRA	16	H'FBA6	16	2
PECI	READD	8	H'FBA8	8	2
PECI	PEWBNR	8	H'FBA9	8	2
PECI	PERBNR	8	H'FBAA	8	2
PECI	PECWFCSR	8	H'FBAD	8	2
PECI	PECRFCSR	8	H'FBAE	8	2
PECI	PEFIFO	8	H'FBAF	8	2
A/D converter	ADDRA	16	H'FC00	16	2
A/D converter	ADDRB	16	H'FC02	16	2
A/D converter	ADDRC	16	H'FC04	16	2
A/D converter	ADDRD	16	H'FC06	16	2
A/D converter	ADDRE	16	H'FC08	16	2
A/D converter	ADDRF	16	H'FC0A	16	2
A/D converter	ADDRG	16	H'FC0C	16	2
A/D converter	ADDRH	16	H'FC0E	16	2
A/D converter	ADCSR	8	H'FC10	8	2
A/D converter	ADCR	8	H'FC11	8	2
SCIF	FRBR	8	H'FC20	8	2
SCIF	FTHR	8	H'FC20	8	2
SCIF	FDLL	8	H'FC20	8	2
SCIF	FIER	8	H'FC21	8	2
SCIF	FDLH	8	H'FC21	8	2
SCIF	FIIR	8	H'FC22	8	2
SCIF	FFCR	8	H'FC22	8	2
SCIF	FLCR	8	H'FC23	8	2
SCIF	FMCR	8	H'FC24	8	2

Module	Register Abbreviation	Number of Bits	Address	Data Bus Width	Access States
SCIF	FLSR	8	H'FC25	8	2
SCIF	FMSR	8	H'FC26	8	2
SCIF	FSCR	8	H'FC27	8	2
SCIF	SCIFCR	8	H'FC28	8	2
SSU	SSCRH	8	H'FC80	8	2
SSU	SSCRL	8	H'FC81	8	2
SSU	SSMR	8	H'FC82	8	2
SSU	SSER	8	H'FC83	8	2
SSU	SSSR	8	H'FC84	8	2
SSU	SSCR2	8	H'FC85	8	2
SSU	SSTDR0	8	H'FC86	8	2
SSU	SSTDR1	8	H'FC87	8	2
SSU	SSTDR2	8	H'FC88	8	2
SSU	SSTDR3	8	H'FC89	8	2
SSU	SSRDR0	8	H'FC8A	8	2
SSU	SSRDR1	8	H'FC8B	8	2
SSU	SSRDR2	8	H'FC8C	8	2
SSU	SSRDR3	8	H'FC8D	8	2
SMBUS	PECX	8	H'FD60	8	2
SMBUS	PECY	8	H'FD61	8	2
SMBUS	PECZ	8	H'FD63	8	2
ROM	FLMCR1	8	H'FB20	8	2
ROM	DFPR	8	H'FB22	8	2
ROM	FLMSTR	8	H'FB23	8	2
ROM	FMATS	8	H'FB25	8	2
SYSTEM	RSTFR	8	H'FB40	8	2
SYSTEM	LD1CRH	8	H'FB44	8	2
SYSTEM	LD1CRL	8	H'FB45	8	2
SYSTEM	LD0CRH	8	H'FB46	8	2
SYSTEM	LD0CRL	8	H'FB47	8	2

Module	Register Abbreviation	Number of Bits	Address	Data Bus Width	Access States
SYSTEM	VDCPR	8	H'FB49	8	2
SYSTEM	MDCR	8	H'FF90	8	2
SYSTEM	SYSCR1	8	H'FF91	8	2
SYSTEM	SBYCR	8	H'FF94	8	2
SYSTEM	LPWRCR	8	H'FF95	8	2
SYSTEM	MSTPCRH	8	H'FF96	8	2
SYSTEM	MSTPCRL	8	H'FF97	8	2
SYSTEM	MSTPCRA	8	H'FF98	8	2
SYSTEM	MSTPCRB	8	H'FF99	8	2
SYSTEM	STCR	8	H'FF9E	8	2

Section 31 Electrical Characteristics

31.1 Absolute Maximum Ratings

Table 31.1 lists the absolute maximum ratings.

Table 31.1 Absolute Maximum Ratings

Item	Symbol	Value	Unit
Power supply voltage*	V _{cc}	-0.3 to +4.3	V
Input voltage (except ports 7, A, G, I, J, P52, and P97)	V _{in}	-0.3 to $V_{cc} + 0.3$	_
Input voltage (ports A, G, I, J, P52, and P97)	V _{in}	-0.3 to V_{cc} + 0.3 (V_{cc} = -0.3 to + 3.0) -0.3 to +7.0 (V_{cc} = 3.0 to 4.3)	_
Input voltage (port 7)	V _{in}	-0.3 to AV _{cc} + 0.3	_
Reference power supply voltage	AVref	-0.3 to AV _{cc} + 0.3	
Analog power supply voltage	AV _{cc}	-0.3 to +4.3	_
Analog input voltage (AN input is selected for port 7)	$V_{\scriptscriptstyle AN}$	-0.3 to AV _{cc} + 0.3	_
Analog input voltage (AN input is selected for PD3 to PD0)	V_{AN}	–0.3 to $V_{\rm cc}$ +0.3 or –0.3 to $AV_{\rm cc}$ +0.3 whichever is lower	_
BBR power supply voltage	$V_{\scriptscriptstyle BAT}$	-0.3 to +4.3	_
PECI power supply voltage (PEVref)	V _{tt}	-0.3 to +1.8	_
PECI input voltage (PECI)	V _{in}	-0.3 to V ₁₁ +0.3	_
Operating temperature	T_{opr}	-20 to +75	°C
Operating temperature (when flash memory is programmed or erased)	T_{opr}	0 to +75	_
Storage temperature	T _{stg}	-55 to +125	=

Caution: Permanent damage to this LSI may result if absolute maximum ratings are exceeded.

Make sure the applied power supply does not exceed 4.3 V.

Note: * Voltage applied to the VCC pin.

Make sure power is not applied to the VCL pin.

31.2 DC Characteristics

Table 31.2 lists the DC characteristics. Table 31.3 lists the permissible output currents. Table 31.4 lists the bus drive characteristics.

Table 31.2 DC Characteristics (1)

Conditions:
$$V_{cc} = 3.0 \text{ V to } 3.6 \text{ V}, \text{ AV}_{cc}^{*^1} = 3.0 \text{ V to } 3.6 \text{ V}, \text{ AVref}^{*^1} = 3.0 \text{ V to } \text{AV}_{cc}, V_{ss} = \text{AV}_{ss}^{*^1} = 0 \text{ V}, V_{bat} = 3.0 \text{ V to } 3.6 \text{ V}^{*^4}$$

Item			Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Schmitt trigger	ĪRQ15 to ĪRQ0,	(1)	V _T -	$V_{cc} \times 0.2$	_	_	V	
input voltage	KIN15 to KINO, WUE15 to WUE0		V _T *	_	_	$V_{cc} \times 0.7$	_	
WOL 13 to WOLO	W021010 W020		$V_{\scriptscriptstyle T}^{\scriptscriptstyle +} - V_{\scriptscriptstyle T}^{\scriptscriptstyle -}$	$V_{cc} \times 0.05$	_	_	_	
Input high voltage	Port 7	(2)	V _{IH}	$AV_{cc} \times 0.7$	_	AV _{cc} + 0.3	_	
	Ports A, G, I, J, P52, and P97			$V_{cc} \times 0.7$	_	5.5	_	
	Input pins other than (1) and (2 above	2)	•	V _{cc} × 0.7	_	V _{cc} + 0.3	=	
Input low voltage	Input pins other than (1) above)	V _{IL}	-0.3	_	$V_{cc} \times 0.2$	_	
Output high	All output pins		V _{OH}	V _{cc} - 0.5	_	_	_	$I_{OH} = -200 \ \mu A$
voltage				V _{cc} - 1.0	_	_	_	I _{OH} = -1 mA
Output low	All output pins*2		$V_{\scriptscriptstyle OL}$	_	_	0.4	-	I _{oL} = 1.6 mA
voltage	Ports 1, 2, 3, C, and D		-	_	_	1.0	_	I _{oL} = 5 mA
Input leakage current	All output pins (except port 7)		I _{in}	_	_	1.0	μА	$V_{in} = 0.5 \text{ to}$ $V_{cc} - 0.5 \text{V}$
	Port 7		•	_		1.0	=	$V_{in} = 0.5 \text{ to}$ $AV_{CC} - 0.5V$
Three-state leakage current (off state)	All output pins		I _{TSI}	_	_	1.0	_	$V_{in} = 0.5 \text{ to}$ $V_{cc} - 0.5 \text{V}$

Table 31.2 DC Characteristics (2)

Conditions: $V_{cc} = 3.0 \text{ V}$ to 3.6 V, $AV_{cc}^{*1} = 3.0 \text{ V}$ to 3.6 V, $AVref^{*1} = 3.0 \text{ V}$ to AV_{cc} , $V_{ss} = AV_{ss}^{*1} = 0 \text{ V}$, $V_{BAT} = 3.0 \text{ V}$ to 3.6 V^{*4}

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Input pull-up MOS current	Ports 1 to 3, 6, 9, B to F, and H	- I _p	10	_	150	μА	$V_{in} = 0 V$
Input	All pins	C _{in}	_	_	10	pF	$V_{in} = 0 V$
capacitance							f = 1 MHz
							T _a = 25 °C
Supply current*3	oply current* ³ Normal operation I _{cc} — 20 30 mA		mA	V _{cc} = 3.0 V to 3.6 V f = 20 MHz, all modules operating, high-speed mode			
	Sleep mode	_	_	15	25		V _{cc} = 3.0 V to 3.6 V
							f = 20 MHz
	Standby mode	_	_	5	40	μА	Ta ≤ 50 °C
			_	_	120		Ta > 50 °C
Analog power	During A/D conversion	Al _{cc}	_	1	2	mA	AV _{cc} = 3.0 V to 3.6 V
supply current	A/D conversion standby		_	0.01	5	μΑ	_
Reference	During A/D conversion	Al_{ref}	_	1	2	mA	AVref = 3.0 V to AV _{cc}
power supply current	A/D conversion standby	_	_	0.01	5	μА	_
BBR standby voltage BBR standby current		$V_{\scriptscriptstyle BBR}$	2.0	_	3.6	V	During RAM data retention
		I _{BBR}		1	5	μΑ	_
VCC start voltage	Э	VCC _{START}	_	0	0.5	V	
VCC rising edge		SVCC	_	_	10	ms/V	

- Notes: 1. Do not leave the AVCC, AVref, and AVSS pins open even if the A/D converter is not used.
 - Even if the A/D converter is not used, apply a voltage in the range from 3.0 V to 3.6 V to the AVCC and AVref pins by connecting to the power supply (V_{cc}). The relationship between these two pins should be AVref \leq AV_{cc}.
 - 2. Indicates values when ICE = 0 and KBIOE = 0. Low level output when the bus drive function is selected is indicated separately.
 - 3. Supply current values are for $V_{\text{\tiny IH}}$ min = $V_{\text{\tiny CC}}$ 0.2 V and $V_{\text{\tiny IL}}$ max = 0.2 V with all output pins unloaded and the on-chip pull-up MOS in the off state.
 - 4. Do not leave the VBAT pin open even if the BBR is not used. Apply a voltage in the range from 3.0 V to 3.6 V to the VBAT pin by connecting to the power supply (V_{cc}).

Table 31.2 DC Characteristics (3) Using LPC Function

Conditions: $V_{cc} = 3.0 \text{ V}$ to 3.6 V, $V_{ss} = 0 \text{ V}$

Item		Symbol	Min.	Max.	Unit	Test Conditions
Input high voltage	P37 to P30, P83 to P80, PB1, PB0	V _{IH}	$V_{cc} \times 0.5$	_	V	
Input low voltage	P37 to P30, P83 to P80, PB1, PB0	V _{IL}	_	$V_{cc} \times 0.3$	V	
Output high voltage	P37, P33 to P30, P82 to P80, PB1, PB0	V _{OH}	$V_{cc} \times 0.9$	_	V	I _{OH} = - 0.5 mA
Output low voltage	P37, P33 to P30, P82 to P80, PB1, PB0	V _{oL}	_	V _{cc} ×0.1	V	I _{OL} = 1.5 mA

Table 31.2 DC Characteristics (4) Using FSI Function

Conditions: $V_{cc} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}, V_{ss} = 0 \text{ V}$

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Input high voltage	PB7 to PB4	V _{IH}	$V_{cc} \times 0.7$	_	V _{cc} + 0.3	V	_
Input low voltage		V _{IL}	- 0.3	_	$V_{\text{cc}} \times 0.2$	_	_
Output high		V _{OH}	$V_{\text{cc}} - 0.5$	_	_	_	$I_{OH} = -200 \mu A$
voltage	_		V _{cc} - 1.0	_	_		$I_{OH} = -1 \text{ mA}$
Output low voltage		V _{OL}	_	_	0.4	_	I _{OL} = 1.6 mA
Input pull-up MOS current		- I _p	10	_	150	μΑ	V _{lin} = 0 V
Input capacitance		C _{in}	_	_	10	pF	$V_{lin} = 0 \text{ V},$ $f = 1 \text{ MHz},$ $T_a = 25 ^{\circ}\text{C}$

Table 31.2 DC Characteristics (5) Using PECI Function

Conditions: $V_{cc} = 3.0 \text{ V}$ to 3.6 V, $V_{ss} = 0 \text{ V}$

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Input voltage rating	V_{in}	-0.3	_	V _{tt} + 0.3	V	_
Schmitt trigger input voltage	V _n	$V_{tt} \times 0.25$	_	_		_
	V _p	_	_	$V_{_{tt}} \times 0.75$	_	_
	V _{hysteresis}	$V_{tt} \times 0.05$	_	_	_	_
High-level output source current	source	-6.0	_	_	mA	$V_{OH} = V_{tt} \times 0.75$
Low-level output sink current	sink	0.5	_	1.0	_	$V_{OL} = V_{tt} \times 0.25$
Input leak current (+)	leak+	_	_	50	μΑ	PECI to V _{tt}
Input leak current (-)	l _{leak} -	_	_	10	_	PECI to GND
Input capacitance	C _{bus}	_	_	10	pF	_

Table 31.3 Permissible Output Currents

Conditions: $V_{cc} = 3.0 \text{ V}$ to 3.6 V, $V_{ss} = 0 \text{ V}$

Item		Symbol	Min.	Тур.	Max.	Unit
Permissible output low current (per pin)	SCL0, SDA0, SCL1, SDA1, SCLA to SCLD, SDAA to SDAD, PS2AC to PS2CC, and PS2AD to PS2CD	I _{oL}	_	_	8	mA
	Ports 1, 2, 3, C, and D	_	_	_	5	='
	Other output pins	_	_	_	2	_
Permissible output low	Total of ports 1, 2, 3, C, and D	$\Sigma I_{\scriptscriptstyle{ m OL}}$	_	_	40	_
current (total)	Total of all output pins, including the above	_	_	_	60	_
Permissible output high current (per pin)	All output pins	-I _{OH}	_	_	2	_
Permissible output high current (total)	Total of all output pins	Σ — I_{OH}		_	30	_

Notes: 1. To ensure the reliability of the LSI, the output current values should not exceed the values in table 31.3.

2. When directly driving a Darlington transistor or LED, always insert a current-limiting resistor in the output line, as show in figures 31.1 and 31.2.

Table 31.4 Bus Drive Characteristics

Conditions: $V_{cc} = 3.0 \text{ V}$ to 3.6V, $V_{ss} = 0 \text{ V}$

Applicable pins: SCL0, SDA0, SCL1, SDA1, SCLA to SCLD, SDAA to SDAD

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Input high voltage	V _{IH}	$V_{cc} \times 0.7$	_	5.5		
Input low voltage	V _{IL}	-0.5	_	$V_{\text{cc}} \times 0.3$	_	
Output low voltage	V _{oL}		_	0.5	_	I _{OL} = 8 mA
		_	_	0.4	=	I _{oL} = 3 mA
Input capacitance	C_{in}	_	_	10	pF	$V_{in} = 0 \text{ V, } f = 1 \text{ MHz,}$ Ta = 25 °C
Three-state leakage current (off state)	I _{TSI}	_	_	1.0	μΑ	$V_{in} = 0.5 \text{ to } V_{cc} - 0.5 \text{ V}$

Conditions: $V_{CC} = 3.0 \text{ V}$ to 3.6V, $V_{SS} = 0 \text{ V}$

Applicable pins: PS2AC to PS2CC and PS2AD to PS2CD

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Output low voltage	V _{oL}	_	_	1.0	V	I _{oL} = 8 mA
		_	_	0.4		I _{oL} = 3 mA

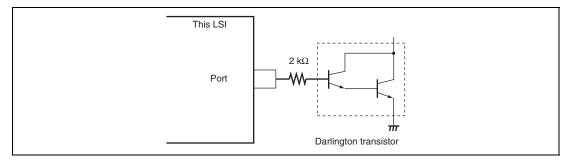


Figure 31.1 Darlington Transistor Drive Circuit (Example)

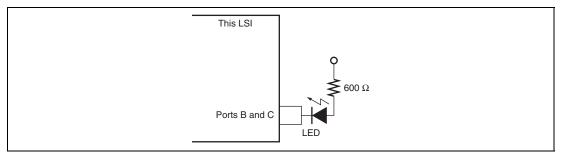


Figure 31.2 LED Drive Circuit (Example)

AC Characteristics 31.3

Figure 31.3 shows the test conditions for the AC characteristics.

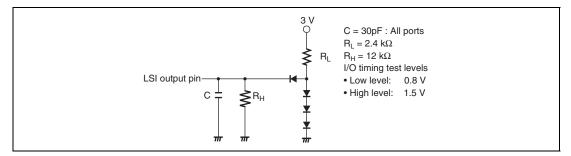


Figure 31.3 Output Load Circuit

31.3.1 Clock Timing

Table 31.5 shows the clock timing. The clock timing specified here covers clock output (φ) and oscillation stabilization times of the clock pulse generator (crystal) and external clock input (EXTAL pin). For details of external clock input (EXTAL pin and EXCL pin) timing, see section 28, Clock Pulse Generator.

Table 31.5 Clock Timing

Condition A: $V_{cc} = 3.0 \text{ V}$ to 3.6 V, $V_{ss} = 0 \text{ V}$, $\phi = 8 \text{ MHz}$ to 10 MHz

Condition B: $V_{cc} = 3.0 \text{ V}$ to 3.6 V, $V_{ss} = 0 \text{ V}$, $\phi = 10 \text{ MHz}$ to 20 MHz

		Cor	dition A	Cor	dition B		
Item	Symbol	Min.	Max.	Min.	Max.	Unit	Reference
Clock cycle time	t _{cyc}	100	125	50	100	ns	Figure 31.4
Clock high pulse width	t _{ch}	30	_	15	_	_	
Clock low pulse width	t _{CL}	30	_	15	_	_	
Clock rise time	t _{Cr}	_	20	_	5	_	
Clock fall time	t _{Cf}	_	20	_	5	_	
Reset oscillation stabilization (crystal)	t _{osc1}	20	_	20	_	ms	Figure 31.5
Software standby oscillation stabilization time (crystal)	t _{osc2}	8	_	8	_	_	Figure 31.6
External clock output stabilization delay time	t _{DEXT}	500	_	500	_	μs	Figure 31.5

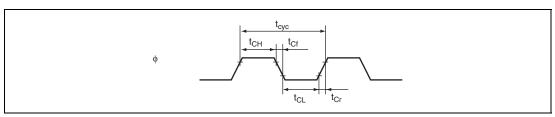


Figure 31.4 System Clock Timing

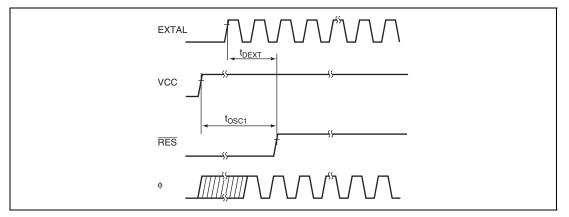


Figure 31.5 Oscillation Stabilization Timing

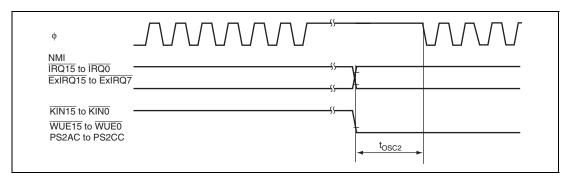


Figure 31.6 Oscillation Stabilization Timing (Returning from Software Standby Mode)

31.3.2 Control Signal Timing

Table 31.6 shows the control signal timing. Only external interrupts NMI, IRQ15 to IRQ0, ExIRQ15 to ExIRQ7, KIN15 to KIN0, WUE15 to WUE0, and PS2AC to PS2CC can be operated based on the subclock (ϕ = 32.768 kHz).

Table 31.6 Control Signal Timing

Conditions: $V_{cc} = 3.0 \text{ V}$ to 3.6 V, $V_{ss} = 0 \text{ V}$, $\phi = 32.768 \text{ kHz}$, 8 MHz to maximum operating

frequency

Item	Symbol	Min.	Max.	Unit	Test Conditions
RES setup time	t _{ress}	800	_	ns	Figure 31.7
RES pulse width	t _{RESW}	20	_	t _{cyc}	
NMI setup time	t _{nmis}	150	_	ns	Figure 31.8
NMI hold time	t _{nmih}	10	_	_	
NMI pulse width (on returning from the software standby mode)	t _{NMIW}	200	_	_	
IRQ setup time (IRQ15 to IRQ0, ExIRQ15 to EXIRQ7, KIN15 to KIN0, WUE15 to WUE0)	t _{IRQS}	150	_		
IRQ hold time (IRQ15 to IRQ0, EXIRQ15 to EXIRQ7, KIN15 to KIN0, WUE15 to WUE0)	t _{IRQH}	10	_		
IRQ pulse width (IRQ15 to IRQ0, ExIRQ15 to ExIRQ7, KIN15 to KIN0, WUE15 to WUE0) (on returning from the software standby mode)	t _{IROW}	200	_		



Figure 31.7 Reset Input Timing

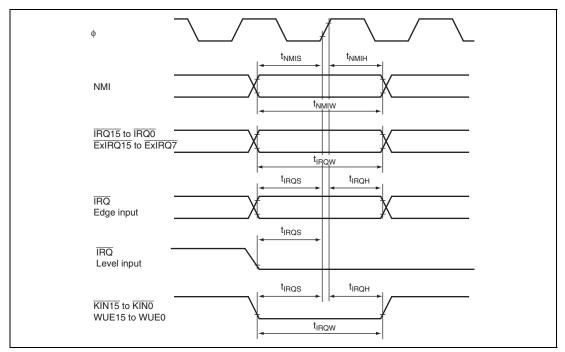


Figure 31.8 Interrupt Input Timing

31.3.3 Timing of On-Chip Peripheral Modules

Tables 31.7 to 31.9 show the on-chip peripheral module timing. The on-chip peripheral modules that can be operated by the subclock (ϕ = 32.768 kHz) are I/O ports, external interrupts (NMI, IRQ15 to IRQ0, ExIRQ15 to ExIRQ7, KIN15 to KIN0, WUE15 to WUE0, PS2AC to PS2CC) and watchdog timer (WDT-1) only. The system clock or LCLK operation can be used in the FSI.

Table 31.7 Timing of On-Chip Peripheral Modules

Conditions: $V_{cc} = 3.0 \text{ V}$ to 3.6 V, $V_{ss} = 0 \text{ V}$, $\phi = 32.768 \text{ kHz}^*$, $\phi = 8 \text{ MHz}$ to maximum

operating frequency, FSICK = 8 MHz to maximum operating frequency or LCLK

(33 MHz)

Item			Symbol	Min.	Max.	Unit	Test Conditions
I/O ports	Output data de	Output data delay time		_	50	ns	Figure 31.9
	Input data setu	p time	t _{PRS}	30	_		
	Input data hold	time	t _{PRH}	30	_		
TPU	Timer output de	elay time	t _{TOCD}	_	50	ns	Figure 31.10
	Timer input set	Timer input setup time		30	_		
	Timer clock input setup time		t _{TICS}	30	_		Figure 31.11
	Timer clock	Single edge	t _{тскwн}	1.5	_	t _{cyc}	_
	pulse width	Both edges	t _{TCKWL}	2.5	_		
TMR	Timer output de	Timer output delay time		_	50	ns	Figure 31.12
	Timer reset inp	Timer reset input setup time		30	_		Figure 31.14
	Timer clock inp	out setup time	t _{TMRS}	30	_		Figure 31.13
	Timer clock	Single edge	t _{mcwh}	1.5	_	t _{cyc}	_
	pulse width	Both edges	t _{mcwl}	2.5	_		
TCM	TCM input setu	ıp time	t _{TCMS}	30	_	ns	Figure 31.15
	TCM clock inpu	TCM clock input setup time		30	_		Figure 31.16
	TCM clock puls	TCM clock pulse width		1.5	_	t _{cyc}	_
PWMU	Pulse output de	elay time	t _{TCMCKW}	_	50	ns	Figure 31.17

Item			Symbol	Min.	Max.	Unit	Test Conditions
SCI	Input clock cycle	Asynchronous	t _{scyc}	4	_	t _{cyc}	Figure 31.18
		Synchronous		6	_		
	Input clock pulse	width	t _{sckw}	0.4	0.6	t _{scyc}	
	Input clock rise tir	ne	t _{scKr}	_	1.5	t _{cyc}	
	Input clock fall tim	Input clock fall time			1.5		
	Transmit data del	Transmit data delay time (synchronous)			50	ns	Figure 31.19
Receive data setup time (synchronous)		t _{RXS}	50	_			
	Receive data hold time (synchronous)		t _{rxh}	50	_		
FSI	Clock cycle	Clock cycle		30	_	ns	Figure 31.20
	Clock pulse width	Clock pulse width (H)		13	_		
	Clock pulse width	(L)	t _{ckl}	13	_		
	SS signal rise del	SS signal rise delay time			_		
	SS signal fall dela	SS signal fall delay time		12	_		
	Transmit signal de	Transmit signal delay time		_	12		
	Receive signal se	Receive signal setup time		5	_		
	Receive signal ho	ld time	t _{rxh}	5	_		

Note: Applied only for the peripheral modules that are available during subclock operation.

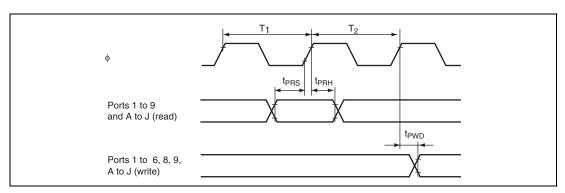


Figure 31.9 I/O Port Input/Output Timing

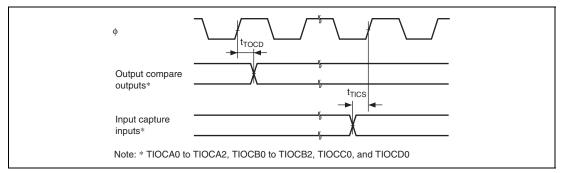


Figure 31.10 TPU Input/Output Timing

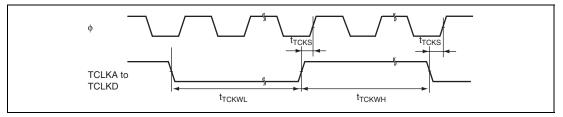


Figure 31.11 TPU Clock Input Timing

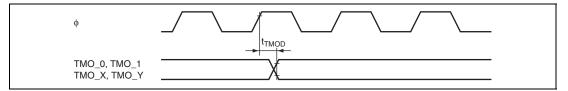


Figure 31.12 8-Bit Timer Output Timing

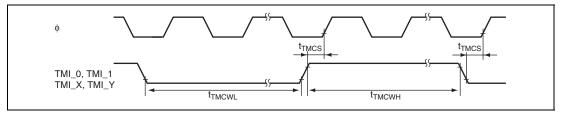


Figure 31.13 8-Bit Timer Clock Input Timing

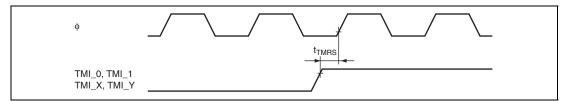


Figure 31.14 8-Bit Timer Reset Input Timing

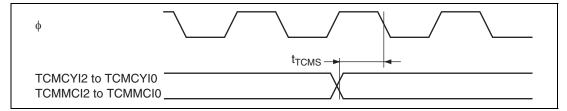


Figure 31.15 TCM Input Setup Time

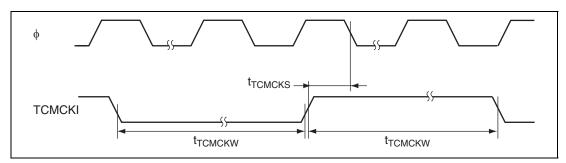


Figure 31.16 TCM Clock Input Timing

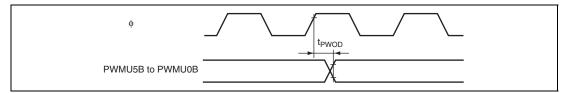


Figure 31.17 PWMU Output Timing

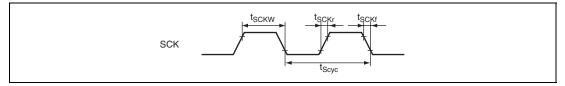


Figure 31.18 SCK Clock Input Timing

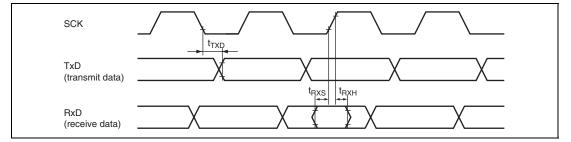


Figure 31.19 SCI Input/Output Timing (Clock Synchronous Mode)

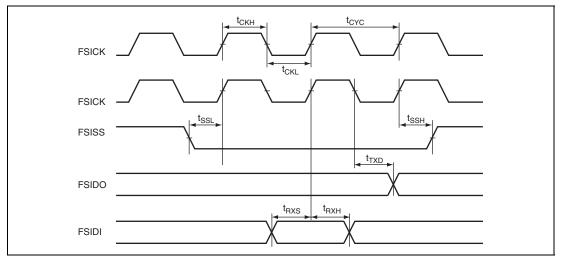


Figure 31.20 FSI Input/Output Timing

Table 31.8 PS2 Timing

Conditions: $V_{cc} = 3.0 \text{ V}$ to 3.6 V, $V_{ss} = 0 \text{ V}$, $\phi = 8 \text{ MHz}$ to maximum operating frequency

		Sta	andard \	/alue		Test	
Item	Symbol	Min.	Тур.	Max.	Unit	Conditions	Remarks
KCLK, KD output fall time	$t_{_{KBF}}$	_	_	250	ns		Figure
KCLK, KD input data hold time	$t_{_{KBIH}}$	150	_	_	ns		31.21
KCLK, KD input data setup time	t _{KBIS}	150	_	_	ns		
KCLK, KD output delay time	t _{kBOD}	_	_	450	ns		
KCLK, KD capacitive load	C _b	_		400	pF	_	

Note: * When KCLK and KD are output, an external pull-up register must be connected, as shown in figure 31.21.

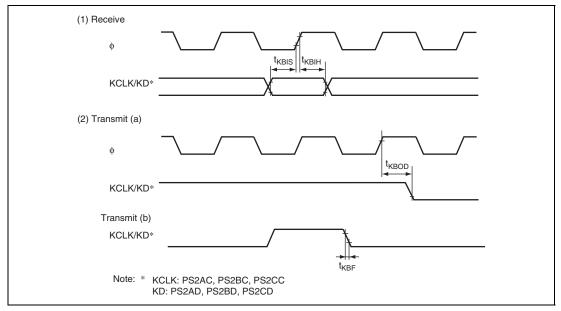


Figure 31.21 PS2 Timing

Table 31.9 I²C Bus Timing

Conditions: $V_{cc} = 3.0 \text{ V}$ to 3.6 V, $V_{ss} = 0 \text{ V}$, $\phi = 8 \text{ MHz}$ to maximum operating frequency

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
SCL input cycle time	t _{scl}	12	_	_	t _{cyc}	Figure
SCL input high pulse width	t _{sclh}	3	_	_		31.22
SCL input low pulse width	t _{scll}	5	_	_		
SCL, SDA input rise time	t _{sr}	_	_	7.5*		
SCL, SDA input fall time	t _{sf}	_	_	300	ns	
SCL, SDA input spike pulse elimination time	t _{sp}	_	_	1	t _{cyc}	_
SDA input bus free time	t _{BUF}	5	_	_		
Start condition input hold time	t _{stah}	3	_	_		
Retransmission start condition input setup time	t _{stas}	3	_	_		
Stop condition input setup time	t _{stos}	3	_	_		
Data input setup time	t _{sdas}	0.5	_	_		
Data input hold time	t _{sdah}	0	_	_	ns	
SCL, SDA capacitive load	C _b	_		400	pF	_
SOL, SDA capacitive load		-			pı	.

Note: * 17.5 t_{cyc} can be set according to the clock selected for use by the I²C module.

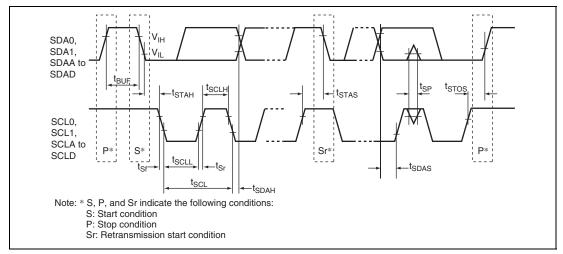


Figure 31.22 I²C Bus Interface Input/Output Timing

Table 31.10 LPC Timing

Conditions: $V_{cc} = 3.0 \text{ V}$ to 3.6V, $V_{ss} = 0 \text{ V}$, $\phi = 8 \text{ MHz}$ to maximum operating frequency

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Input clock cycle	t _{Lcyc}	30	_	_	ns	Figure
Input clock pulse width (H)	t _{LCKH}	11	_	_		31.23
Input clock pulse width (L)	t _{LCKL}	11	_	_		
Transmit signal delay time	t _{TXD}	2	_	11		
Transmit signal floating delay time	t _{OFF}	_	_	28		
Receive signal setup time	t _{RXS}	7	_	_		
Receive signal hold time	t _{RXH}	0	_			

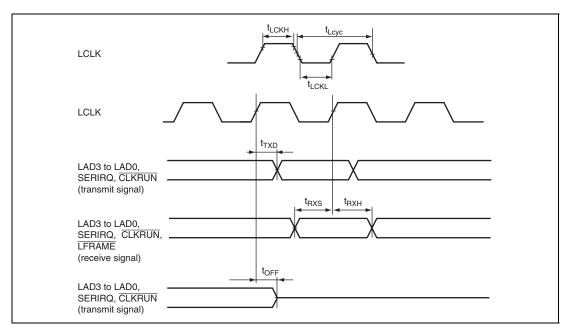


Figure 31.23 LPC Interface (LPC) Timing

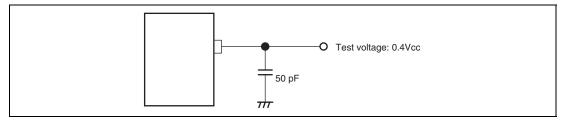


Figure 31.24 Test Conditions for Tester

Table 31.11 JTAG Timing

Conditions: $V_{cc} = 3.0 \text{ V}$ to 3.6 V, $V_{ss} = 0 \text{ V}$, $\phi = 8 \text{ MHz}$ to maximum operating frequency

Item	Symbol	Min.	Max.	Unit	Test Conditions	
ETCK clock cycle time	t _{TCKcyc}	50*	125*	ns	Figure	
ETCK clock high pulse width	t _{тскн}	20	_		31.25	
ETCK clock low pulse width	t _{TCKL}	20	_			
ETCK clock rise time	t _{TCKr}	_	5	<u> </u>		
ETCK clock fall time	t _{TCKf}	_	5	<u> </u>		
ETRST pulse width	t _{TRSTW}	20	_	t _{cyc}	Figure	
Reset hold transition pulse width	t _{RSTHW}	3	_	<u> </u>	31.26	
ETMS setup time	t _{mss}	20	_	ns	Figure	
ETMS hold time	t _{msh}	20	_		31.27	
ETDI setup time	t _{TDIS}	20	_	<u> </u>		
ETDI hold time	t _{tdih}	20	_			
ETDO data delay time	t _{TDOD}		20			

Note: * When $t_{cyc} \le t_{TCKcyc}$

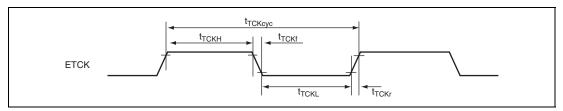


Figure 31.25 JTAG ETCK Timing

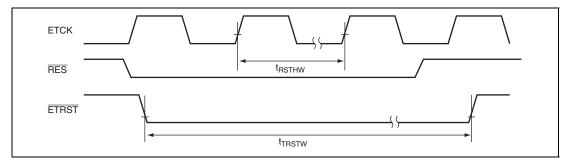


Figure 31.26 Reset Hold Timing

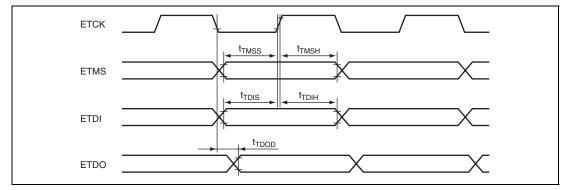


Figure 31.27 JTAG Input/Output Timing

Table 31.12 SSU Timing

Conditions: $V_{cc} = 3.0 \text{ V}$ to 3.6 V, $V_{ss} = 0 \text{ V}$, $\phi = 8 \text{ MHz}$ to maximum operating frequency

Item		Symbol	Min.	Max.	Unit	Test Conditions
Clock cycle	Master	t _{sucyc}	4	256	t _{cyc}	Figures 31.28 to
	Slave	_	4	256		31.31
Clock high pulse width	Master	t _{HI}	48	_	ns	_
	Slave	_	48	_		
Clock low pulse width	Master	t _{LO}	48	_	ns	
	Slave		48	_		
Clock rising time		t _{RISE}	_	12	ns	
Clock falling time		t _{FALL}	_	12	ns	_
Data input setup time	Master	t _{su}	25	_	ns	_
	Slave		30	_		
Data input hold time	Master	t _H	10	_	ns	_
	Slave	_	10	_		
SCS setup time	Master	t _{LEAD}	2.5	_	t _{cyc}	_
	Slave	_	2.5	_		
SCS hold time	Master	t _{LAG}	2.5	_	t _{cyc}	_
	Slave	<u> </u>	2.5	_		
Data output delay	Master	t _{od}	_	40	ns	_
time	Slave	_	_	40		
Data output hold time	Master	t _{oh}	- 5	_	ns	_
	Slave	_	0	_		
Continuous transmit	Master	t _{TD}	2.5	_	t _{cyc}	_
delay time	Slave	<u> </u>	2.5			
Slave access time		t _{sa}		1	t _{cyc}	Figure 31.30
Slave out release time		t _{rel}	_	1	t _{cyc}	Figure 31.31

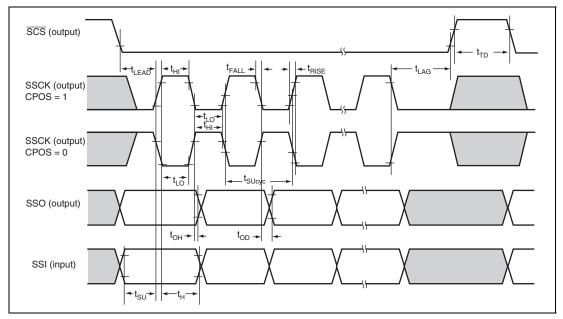


Figure 31.28 SSU Timing (Master, CPHS = 1)



Figure 31.29 SSU Timing (Master, CPHS = 0)

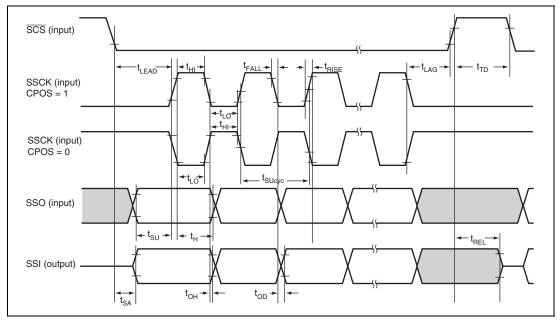


Figure 31.30 SSU Timing (Slave, CPHS = 1)

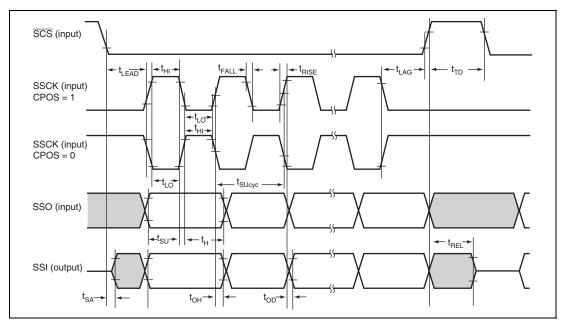


Figure 31.31 SSU Timing (Slave, CPHS = 0)

31.4 A/D Conversion Characteristics

Table 31.13 lists the A/D conversion characteristics.

Table 31.13 A/D Conversion Characteristics (AN11 to AN0 Input)

Conditions: $V_{cc} = 3.0 \text{ V}$ to 3.6 V, $AV_{cc} = 3.0 \text{ V}$ to 3.6 V, AVref = 3.0 V to AV_{cc}

 $V_{ss} = AV_{ss} = 0 \text{ V}, \phi = 8 \text{ MHz}$ to maximum operating frequency

Item	Min.	Тур.	Max.	Unit
Resolution	10	10	10	Bits
Conversion time	4.0*	_	_	μs
Analog input capacitance	_	_	20	pF
Permissible signal-source impedance	_	_	5	kΩ
Nonlinearity error	_	_	±7.0	LSB
Offset error	_	_	±7.5	
Full-scale error	_	_	±7.5	
Quantization error	_	_	±0.5	
Absolute accuracy	_		±8.0	

Note: * Value when using the maximum operating frequency of 40 states (ADCLK = 10 MHz).

Standard Value

Flash Memory Characteristics 31.5

Table 31.14 lists the flash memory characteristics.

Table 31.14 Flash Memory Characteristics

 $V_{cc} = AVCC = 3.0 \text{ V}$ to 3.6 V, AVref = 3.0 V to AV_{cc} , $V_{ss} = AV_{ss} = 0 \text{ V}$ Conditions:

	Test		Si	/alue		
Item	Symbol conditions	Applicable area	Min.	Тур.	Max.	Unit
Programming and erase		User mat	1000*²	_	_	Times
count*1		Data flash	10000*2	_	_	_
Programming time		User mat	_	150	_	μs
(per 4 bytes)		Data flash	_	300	_	
Erase time		User mat	_	300	_	ms
(per 1 block)		Data flash	_	300	_	
Programming and erase		User mat	3.0	_	3.6	V
voltage		Data flash	_			
Read voltage		User mat	3.0	_	3.6	V
		Data flash	_			
Access state		User mat	1	_	_	State
		Data flash	2	_	_	
Programming and erase		User mat	0	_	75	°C
temperature		Data flash	0	_	75	_

Notes: 1. When programming is to be performed multiple times on a system, reduce the effective number of programming operations by shifting the writing addresses in sequence and so on until the remaining blank area is as small as possible and only then erasing the entire block once. For example, if sets of 16 bytes are being programmed, erasing the block once after programming the maximum number of sets (256) minimizes the effective number of programming operations. We recommend keeping information on the number of times erasure is performed for each block, and setting up the limit on the number of times.

- 2. If an erase error occurs during erasure, execute the clear status command and then the erase command at least 3 times until the erase does not recur.
- *1. Determination of the number of times for programming/erasure operations.

Number of times programming/erasure is performed in each block.

When the number of times for programming/erasure operations is n (n = 100), data can be erased n times in each block.

For example, if programming of 4 bytes is done 1024 times, each at a different address in a 4-Kbyte per block, and the block is then erased, this counts as programming/erasure one time.

Feb 14, 2013

- However, programming of any location in a block multiple times is not possible (overwriting is prohibited).
- *2. This is the number of times for which all electrical characteristics are guaranteed. (The guaranteed value ranges from 1 to the minimum number.)

31.6 Power-on Reset Characteristics

31.6.1 Power-on Reset/Low Voltage Detection Circuit 0 Characteristics

Table 31.15 lists the power-on reset/low voltage detection circuit 0 characteristics.

Table 31.15 Electrical Characteristics of the Power-on Reset/Low Voltage Detection Circuit 0

Conditions: $V_{cc} = 3.0 \text{ V}$ to 3.6 V, $V_{ss} = 0 \text{ V}$

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
LVD0 detection voltage	Vdet0	2.70	2.85	3.00	V	VD0LS1: 1
		2.15	2.35	2.55	V	VD0LS1: 0*1
Power-on reset time	t _{por}	20	40	80	ms	
LVD0 power supply drop period* ²	t _{lwv0}	300	_	_	μs	
Power-on detection voltage offset*3	Voff	_	_	0.5	V	
LVD0 detection delay time	t dtdly0	_	_	100	μs	
VCC rise gradient	SV _{cc}	_	_	10	ms/V	_

Notes: In using the power-on reset, the RES pin must be set high (3.0 V or higher).

- 1. This represents the voltage at which a power-on reset is detected.
- 2. This represents the period while the power falls below the minimum of the LVD0 detection voltage.
- 3. This represents the initial VCC voltage to generate a power-on reset when power is supplied.

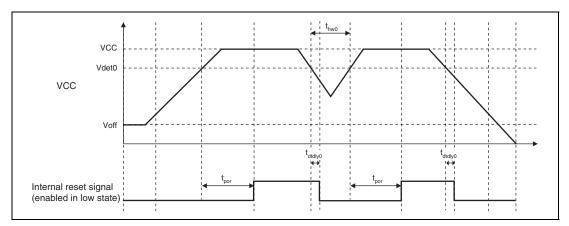


Figure 31.32 Electrical Characteristics of the Power-on Reset/Low Voltage Detection Circuit 0

31.6.2 Low Voltage Detection Circuit 1 Characteristics

Table 31.16 lists the low voltage detection circuit 1 characteristics.

Table 31.16 Electrical Characteristics of Low Voltage Detection Circuit 1

Conditions: $V_{cc} = 3.0 \text{ V}$ to 3.6 V, $V_{ss} = 0 \text{ V}$

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
LVD1 voltage rise detection	Vdet1+	3.16	3.36	3.56	V	VD1LS[2:0]: 100
level		3.01	3.21	3.41	V	VD1LS[2:0]: 011
LVD1 voltage drop detection level	Vdet1-	3.05	3.25	3.45	V	VD1LS[2:0]: 100
		2.90	3.10	3.30	V	VD1LS[2:0]: 011
Low voltage detect reset 1 time	t _{lvd1r}	200	250	300	μs	
LVD1 power supply drop period*	t _{lwv1}	100	_	_	μs	
LVD1 detection delay time	t _{dtdly1}	_	_	200	μs	
LVD1 start stabilization time	t _{Ivd1on}	_		100	μs	

Note: * This represents the period while the power falls below the minimum of the LVD1 voltage drop detection level.

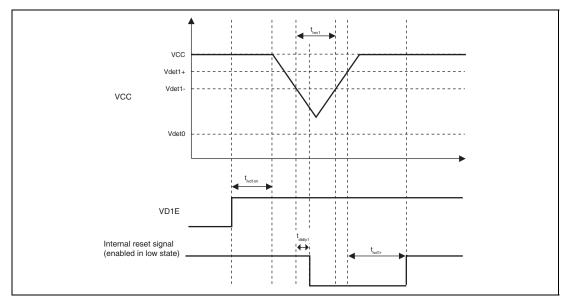


Figure 31.33 Electrical Characteristics of Low Voltage Detection Circuit 1

31.7 Usage Notes

It is necessary to connect a bypass capacitor between the VCC pin and VSS pin, and a capacitor between the VCL pin and VSS pin for stable internal step-down power. An example of connection is shown in figure 31.34.

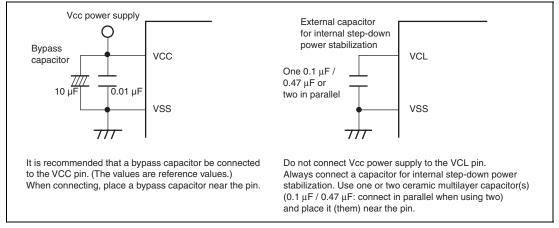


Figure 31.34 Connection of VCL Capacitor

H8S/2113 Group Appendix

Appendix

A. I/O Port States in Each Pin State

Table A.1 I/O Port States in Each Pin State

Port Name Pin Name	Reset	Software Standby Mode	Watch Mode	Sleep Mode	Program Execution State
Port 1	T	keep	keep	keep	I/O port
Port 2	Т	keep	keep	keep	I/O port
Port 3	Т	keep	keep	keep	I/O port
Port 4	Т	keep	keep	keep	I/O port
Port 5	Т	keep	keep	keep	I/O port
Port 6	Т	keep	keep	keep	I/O port
Port 7	Т	Т	Т	Т	Input port
Port 8	Т	keep	keep	keep	I/O port
Port 97	Т	keep	keep	keep	I/O port
Port 96 ¢, EXCL	Т	[DDR = 1]H [DDR = 0]T	EXCL input/ keep	[DDR = 1] Clock output [DDR = 0]T	Clock output/ EXCL input/ Input port
Ports 95 to 90	T	keep	keep	keep	I/O port
Ports A to J	T	keep	keep	keep	I/O port

[Legend]

H: High levelL: Low level

T: High impedance

keep: Input ports are in the high-impedance state (when DDR = 0 and PCR = 1, the input pull-up

MOS remains on).

Output ports maintain their previous state.

Depending on the pins, the on-chip peripheral modules may be initialized and the $\ensuremath{\text{I/O}}$ port

function determined by DDR and DR.

DDR: Data direction register

Appendix H8S/2113 Group

B. Product Lineup

Product Type		Part No.	Mark Code	Package (Code)
H8S/2113	Flash memory	R4F2113	R4F2113NFT	PTQP0144LC-A (TFP-144V)
	version		R4F2113NBG	PLBG0176GA-A (BP-176V)
			R4F2113NLG	PTLG0145JB-A (TLP-145V)

H8S/2113 Group Appendix

C. Package Dimensions

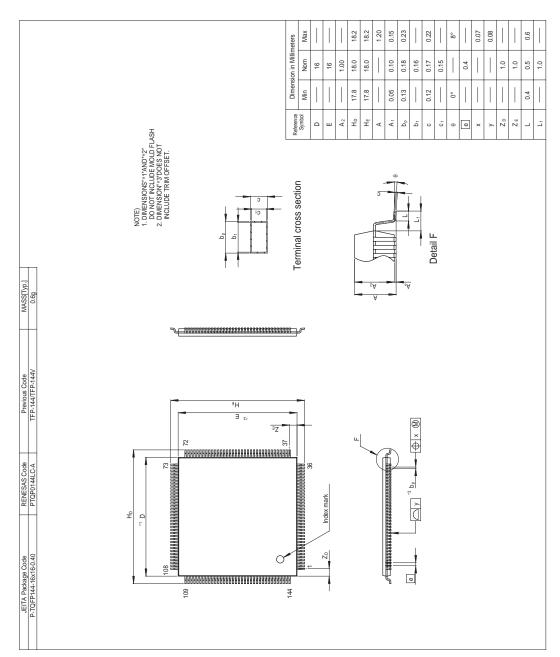


Figure C.1 Package Dimensions (TFP-144V)

Appendix H8S/2113 Group

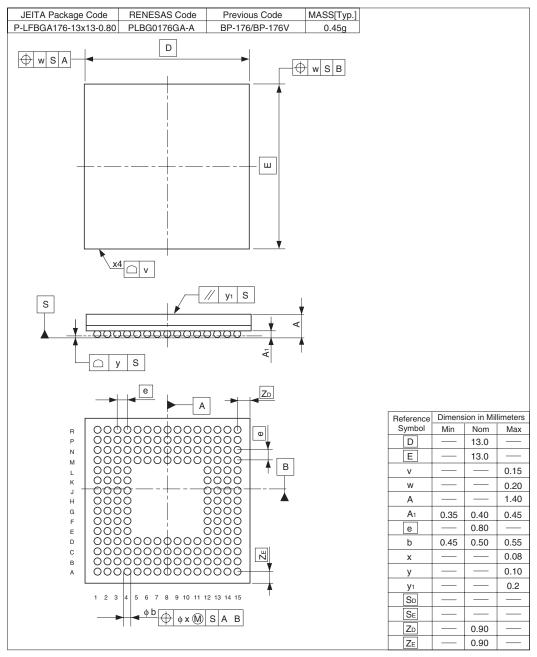


Figure C.2 Package Dimensions (BP-176V)

H8S/2113 Group Appendix

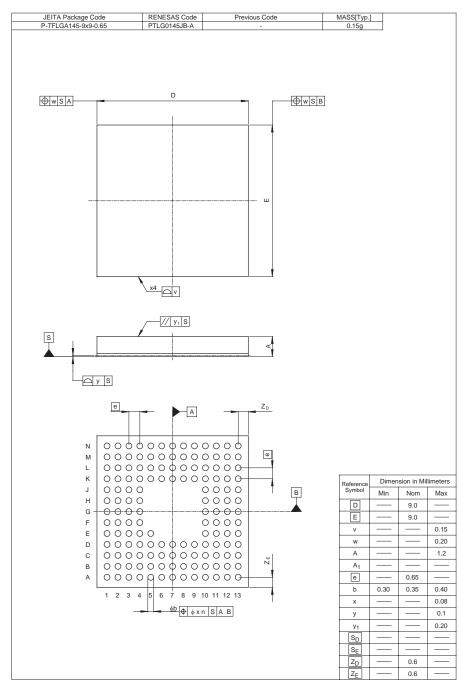


Figure C.3 Package Dimensions (TLP-145V)

Appendix H8S/2113 Group

D. Treatment of Unused Pins

The treatments of unused pins are listed in table D.1.

Table D.1 Treatment of Unused Pins

Pin Name	Example of Pin Treatment
RES	(Always used as a reset pin)
ETRST	(Always used as a reset pin)
MD2, MD1	(Always used as mode pins)
NMI	Connect to V _{cc} via a pull-up resistor
EXTAL	(Always used as a clock pin)
XTAL	(Always used as a clock pin)
Port 1	• Connect each pin to V_{cc} via a pull-up resistor or to V_{ss} via a pull-down
Port 2	resistor
Port 3	
Port 4	
Port 5	
Port 6	
Port 8	
Port 9	
Port A	
Port B	
Port C	
Port D	
Port E	
Port F	
Port G	
Port H	
Port I	
Port J	
Port 7	 Connect each pin to AV_{cc} via a pull-up resistor or to AV_{ss} via a pull-down resistor
PECI	Connect each pin to V _{ss} via a pull-down resistor
PEVref	Connect each pin to V _{ss} via a pull-down resistor

Main Revisions and Additions in this Edition

Item	Page	Revis	ion (Se	ee Manua	al for [Details)	ı		
Table 1.1 Overview of Functions	3	Ameno	ded	Module/ Function	Desc	ription			
		Interru (source	•	Interrupt controller	• 6 • 7 • 8	ExIRQ15 o WUE0) 61 interna Two interr system co Two levels by setting	to ExIRC I interrup upt contr ntrol regi s of interr the inter	(x), KIN15 to t sources ol modes (sp ster)	IRQ15 to IRQ0 KIN0, and WUE15 ecified by the rders specifiable egister)
1.3 Block Diagram	9	The a	row dir	ection of	PECI,	amend	led		
Table 1.4 Pin Functions	26	26 Added Pin No.							
		Type PECI	Symbo PECI PEVref	140	BP- 176V C4	TLP- 145V A4	I/O Input/ Output		nput/output pin
			PEVIE	141	D4	БЗ	Input	Power supp	oly pin for the PECI
Table 4.3 Register Configuration	75	Ameno [Before		ndment] l	d'FFC4	1 → [Aft	er ame	endment] H	l'FF91
Table 7.3 Correspondence	112	Added Register							
between Interrupt Source and ICR		Bit 1	Bit Nar		RA DT_0	ICR TMF	R_X,	ICRC LPC	ICRD TPU_2
		0	ICRn0	W	DT_1	TMF PS2		PECI	
Table 8.1 Register Configuration	151	Amended [Before amendment] H'FFC6 → [After amendment] H'FF9A [Before amendment] H'FFC7 → [After amendment] H'FF9B							
Section 23 Platform Environment Control Interface (PECI)	_	Added	l						

Item Page Revision (See Manual for Details)

Section 30 List of
Registers

— Amended

[Before amendment] TIORH_1 → [After amendment] TIOR_1

[Before amendment] TICRR_X → [After amendment] TICRR

[Before amendment] TICRF_X → [After amendment] TICRF

30.1 Register Addresses (Address Order) 908 Added

Register Name	Abbreviation	Number of Bits	Address	Module	Data Width	Access States
PECI control register	PECR	8	H'FBA0	PECI	8	2
PECI status register	PESTR	8	H'FBA1	PECI	8	2
PECI timing count pre-register	PECNT0_PRE	16	H'FBA2	PECI	16	2
PECI timing count general register	PECNT0_GR	16	H'FBA4	PECI	16	2
PECI timing count address general register	PECNTO_GRA	16	H'FBA6	PECI	16	2
PECI address register	PEADD	8	H'FBA8	PECI	8	2
PECI write byte count register	PEWBNR	8	H'FBA9	PECI	8	2
PECI read byte count register	PERBNR	8	H'FBAA	PECI	8	2
PECI client write frame check sequence register	PECWFCSR	8	H'FBAD	PECI	8	2
PECI client read frame check sequence register	PECRFCSR	8	H'FBAE	PECI	8	2
PECI FIFO register	PEFIFO	8	H'FBAF	PECI	8	2

30.2 Register Bits

928 Added

Register									
Abbreviation	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module
PECR	PESRES	PECIE	ABTE	AWFCSE	STOPE	PEWFCEIE	PERFCEIE	PETEIE	PECI
PESTR	PEBUSY	WFCSER	RFCSER	PETEND	NEGA	NEGM	RDRF	PECIR	
PECNTO_ PRE	PECNTO_ PRE15	PECNTO_ PRE14	PECNTO_ PRE13	PECNTO_ PRE12	PECNTO_ PRE11	PECNTO_ PRE10	PECNTO_ PRE9	PECNTO_ PRE8	
	PECNTO_ PRE7	PECNTO_ PRE6	PECNTO_ PRE5	PECNTO_ PRE4	PECNTO_ PRE3	PECNTO_ PRE2	PECNTO_ PRE1	PECNTO_ PRE0	
PECNT0_	PECNT0_ GR15	PECNTO_ GR14	PECNT0_ GR13	PECNT0_ GR12	PECNTO_ GR11	PECNTO_ GR10	PECNTO_ GR9	PECNTO_ GR8	
	PECNT0_ GR7	PECNTO_ GR6	PECNT0_ GR5	PECNTO_ GR4	PECNT0_ GR3	PECNT0_ GR2	PECNTO_ GR1	PECNTO_ GR0	
PECNTO_ GRA	PECNT0_ GRA15	PECNTO_ GRA14	PECNT0_ GRA13	PECNT0_ GRA12	PECNT0_ GRA11	PECNTO_ GRA10	PECNTO_ GRA9	PECNTO_ GRA8	
	PECNT0_ GRA7	PECNTO_ GRA6	PECNTO_ GRA5	PECNT0_ GRA4	PECNT0_ GRA3	PECNT0_ GRA2	PECNT0_ GRA1	PECNTO_ GRA0	
PEADD	PEADD7	PEADD6	PEADD5	PEADD4	PEADD3	PEADD2	PEADD1	PEADD0	
PEWBNR	PEWBNR7	PEWBNR6	PEWBNR5	PEWBNR4	PEWBNR3	PEWBNR2	PEWBNR1	PEWBNR0	
PERBNR	PERBNR7	PERBNR6	PERBNR5	PERBNR4	PERBNR3	PERBNR2	PERBNR1	PERBNR0	
PECWFCSR	PECWFCSR7	PECWFCSR6	PECWFCSR5	PECWFCSR4	PECWFCSR3	PECWFCSR2	PECWFCSR1	PECWFCSR0	
PECRFCSR	PECRFCSR7	PECRFCSR6	PECRFCSR5	PECRFCSR4	PECRFCSR3	PECRFCSR2	PECRFCSR1	PECRFCSR0	
PEFIFO	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bitO	

30.3 Register States in Each Operating Mode

Added

950

Register Abbreviation	Reset	High-Speed/ Medium Speed	Watch	Sleep	Module Stop	Software Standby	Module
PECR	Initialized	-		-	-	_	PECI
PESTR	Initialized	-			-		_
PECNT0_PRE	Initialized	_					-
PECNT0_GR	Initialized	_					-
PECNT0_GRA	Initialized	_					-
PEADD	Initialized	_					-
PEWBNR	Initialized						-
PERBNR	Initialized						-
PECWFCSR	Initialized						-
PECRFCSR	Initialized						-
PEFIFO	Initialized						-

30.4 Register Selection Condition

970 Added

Lower Address	Register Abbreviation	Register Selection Condition	Module
H'FBA0	PECR	MSTPA7 = 0	PECI
H'FBA1	PESTR	_	
H'FBA2	PENCNT0_PRE	_	
H'FBA4	PENCNT0_GR	_	
H'FBA6	PENCNT0_GRA	_	
H'FBA8	PEADD	_	
H'FBA9	PEWBNE	_	
H'FBAA	PERBNR	_	
H'FBAD	PECWFCSR	_	
H'FBAE	PECRFCSR	_	
H'FBAF	PEFIFO	_	

Page Revision (See Manual for Details)

30.5 Register Addresses (Classification by Type of Module) 1002 Added

Module	Register Abbreviation	Number of Bits	Address	Data Bus Width	Access States
PECI	PECR	8	H'FBA0	8	2
PECI	PESTR	8	H'FBA1	8	2
PECI	PECNT0_PRE	16	H'FBA2	16	2
PECI	PECNT0_GR	16	H'FBA4	16	2
PECI	PECNT0_GRA	16	H'FBA6	16	2
PECI	READD	8	H'FBA8	8	2
PECI	PEWBNR	8	H'FBA9	8	2
PECI	PERBNR	8	H'FBAA	8	2
PECI	PECWFCSR	8	H'FBAD	8	2
PECI	PECRFCSR	8	H'FBAE	8	2
PECI	PEFIFO	8	H'FBAF	8	2

Table 31.1 Absolute Maximum Ratings

1005 Added

Item	Symbol	Value	Unit
Power supply voltage*	V _{cc}	-0.3 to +4.3	V
PECI power supply voltage (PEVref)	V _{tt}	-0.3 to +1.8	
PECI input voltage (PECI)	V_{in}	-0.3 to V ₁₁ +0.3	
Operating temperature	T _{opr}	-20 to +75	°C
Operating temperature (when flash memory is programmed or erased)	T_{opr}	0 to +75	_
Storage temperature	T _{stg}	-55 to +125	

Table 31.2 DC Characteristics (5) Using PECI Function 1009 Added

Index

Numerics	Clocked synchronous mode	420
16-bit count mode	CMIA	329
16-bit cycle measurement timer	CMIB	329
(TCM)	Communications protocol	847
16-bit timer pulse unit231	Compare-match count mode	325
8-bit timer (TMR)299	Condition field	55
	Condition-code register (CCR)	39
	CPU operating modes	33
\mathbf{A}	Crystal resonator	878
A/D conversion accuracy794	Cycle measurement mode	349
A/D Converter777		
A/D converter activation		
Absolute accuracy794	D	
Absolute address 57	Data transfer instructions	46
Address map72		
Address space		
Addressing modes56	${f E}$	
Arithmetic operations instructions 47	Effective address	56, 60
Asynchronous mode	Effective address extension	
	ERI1	
	Exception handling	
В	Exception handling vector table	
Bcc	Extended control register (EXR)	
Bit manipulation instructions50	External clock	
Bit rate		
Block data transfer instructions 54		
Boot mode 818, 835	F	
Branch instructions 52	Flash Memory	807
Buffer operation	Framing error	
Bus controller (BSC)	Full-scale error	
C	C	
Cascaded connection	G	27
Clock pulse generator	General registers	37
Clock synchronous communication		
mode		
mouc		

1	N	
I ² C bus data format517	Noise canceler5	538
I ² C bus interface (IIC)	Nonlinearity error	194
ICIX329		
IICI 540		
Immediate58	0	
Input capture operation327	Offset error	79 4
Instruction set	On-board programming	
Interface	On-board programming mode	
Internal block diagram9	Operation field	
Interrupt controller	Output buffer control	66
Interrupt exception handling 104	Overflow3	
Interrupt exception handling	Overrun error	110
vector table131	OVI	329
Interrupt mask bit39		
Interrupt mask level		
Interval timer mode	P	
	Parity error	110
	Pin arrangement in each operating	
K	mode	13
Keyboard buffer control unit (PS2) 553	Pin assignments	. 10
	Pin functions	20
	Power-down modes	385
L	Program counter (PC)	38
Logic operations instructions	Program-counter relative	58
LPC interface (LPC)581	Programmer mode818, 8	344
LPC interface clock start request 654	PWM modes2	273
LSI internal states in each operating		
mode 892		
	Q	
	Quantization error	19 4
M		
Memory indirect 59		
Mode transition diagram 891	R	
Module stop mode 898	RAM8	305
Multiprocessor communication	Register direct	.56
function	Register field	
	Register indirect	
	Register indirect with displacement	.57

Register indirect with post-increment 57	KBCRH	560
Register indirect with pre-decrement 57	KBCRL	562
Registers	KBTR	564
ABRKCR113	LADR	505
ADCSR782	LD0CRH	.90
ADDR781	LD0CRL	.91
BAR114	LD1CRH	. 87
BCR151	LD1CRL	. 89
BRR 396	LPWRCR	388
FDLH452	MDCR	.68
FDLL452	MSTPCR	389
FFCR456	ODR	511
FIER453	PTCNT0	201
FIIR454	PTCNT2	203
FLCR457	RDR	378
FLSR460	RSR	378
FMATS 802	SAR	193
FMCR458	SARX	194
FMSR 464	SBYCR	386
FRBR451	SCIFCR	466
FRSR451	SCMR	394
FSCR 465	SCR	383
FTHR452	SIRQCR	522
FTSR452	SMR	379
HICR589	SSCR2	729
HISEL639	SSCRH	721
ICCKR496	SSCRL	723
ICCR500	SSER	725
ICDR492	SSMR	724
ICMR497	SSR	387
ICRES512	SSRDR	732
ICSR 508	SSSR	726
ICXR513	SSTDR	731
IDR610	SSTRSR	732
IER118	STCR	.71
ISCR115	STR	512
ISR119	SYSCR	. 69
KBBR564	TCKR	
KBCR1 557	TCMCNT	
KBCR2 559	TCMCR	
		-

TCMCSR341	Shift instructions49
TCMICR340	Single mode786
TCMICRF 340	Sleep mode894
TCMIER 345	Smart card
TCMMINCM 340	Smart card interface
TCMMLCM 339	Software standby mode895
TCNT257, 305, 362	SSU mode737
TCONRI 318	Stack pointer (SP)37
TCOR 305	Stack status 105
TCR237, 306	Synchronous operation267
TCSR 312	Synchronous serial communication unit
TDR378	(SSU)717
TGR257	System control instructions53
TICRF317	
TICRR 317	
TIOR243	T
TMDR241	TCI0V282
TSR254	TCI1U282
TSTR257	TCI1V282
TSYR	TCI2U282
TWR611, 612	TCI2V282
WER 125	TEI1440
WSCR	TGI0A282
WUESCR 125	TGI0B282
WUESR 125	TGI0C282
Reset	TGI0D282
Reset exception handling 102	TGI1A282
Resolution794	TGI1B282
RXI1440	TGI2A282
	TGI2B282
	Toggle output264
S	Trace bit
Sample-and-hold circuit	Transfer clock733
Scan mode	Trap instruction exception handling 104
Serial communication interface (SCI) 375	TRAPA instruction 58, 104
Serial communication interface	TXI1440
with FIFO (SCIF)	
Serial data reception 410, 424	
Serial data transmission 408, 422	U
Serial formats517	USB 2.0 host/function module (USB) 759

User boot Mat	842
User boot mode	837
User Mat	842
User memory mat	807
User program mode	818

W	
Watch mode	897
Watchdog timer (WDT)	359
Watchdog timer mode	368

H8S/2113 Group User's Manual: Hardware

Publication Date: Rev.1.00 Mar 08, 2011

Rev.2.00 Feb 14, 2013

Published by: Renesas Electronics Corporation

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada

Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China

Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-8577-1815, Fax: +86-21-8587-7858 / -7898

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 191F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852-2886-9022/9044

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949

Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd. 11F., Samik Lavied or Bidg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: 482-2-558-3737, Fax: +82-2-558-5141

© 2013 Renesas Electronics Corporation. All rights reserved. Colophon 1.3

H8S/2113 Group

