

DS75176B, DS75176BT

www.ti.com

SNLS381C -JULY 1998-REVISED APRIL 2013

DS75176B/DS75176BT Multipoint RS-485/RS-422 Transceivers

Check for Samples: DS75176B, DS75176BT

FEATURES

- Meets EIA Standard RS485 for Multipoint Bus Transmission and is Compatible with RS-422.
- Small Outline (SOIC) Package Option Available for Minimum Board Space.
- 22 ns Driver Propagation Delays.
- Single +5V Supply.
- -7V to +12V Bus Common Mode Range Permits ±7V Ground Difference Between Devices on the Bus.
- Thermal Shutdown Protection.
- High Impedance to Bus with Driver in TRI-STATE or with Power Off, Over the Entire Common Mode Range Allows the Unused Devices on the Bus to be Powered Down.
- Pin Out Compatible with DS3695/A and SN75176A/B.
- Combined Impedance of a Driver Output and Receiver Input is Less Than One RS485 Unit Load, Allowing up to 32 Transceivers on the Bus.
- 70 mV Typical Receiver Hysteresis.

Connection and Logic Diagram

DESCRIPTION

The DS75176B is a high speed differential TRI-STATE[®]bus/line transceiver designed to meet the requirements of EIA standard RS485 with extended common mode range (+12V to -7V), for multipoint data transmission. In addition, it is compatible with RS-422.

The driver and receiver outputs feature TRI-STATE capability, for the driver outputs over the entire common mode range of +12V to -7V. Bus contention or fault situations that cause excessive power dissipation within the device are handled by a thermal shutdown circuit, which forces the driver outputs into the high impedance state.

DC specifications are guaranteed over the 0 to 70°C temperature and 4.75V to 5.25V supply voltage range.

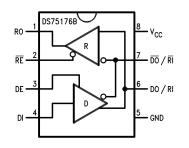


Figure 1. Top View See Package Number P0008E or D0008A

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. TRI-STATE is a registered trademark of Texas Instruments. All other trademarks are the property of their respective owners.

SNLS381C-JULY 1998-REVISED APRIL 2013

www.ti.com

Absolute Maximum Ratings (1)(2)

···· ··· ··· ··· ··· ··· ··· ··· ··· ·		
Supply Voltage, V _{CC}	7V	
Control Input Voltages	7V	
Driver Input Voltage	7V	
Driver Output Voltages	+15V/ -10V	
Receiver Input Voltages (DS75176B)	+15V/ -10V	
Receiver Output Voltage	5.5V	
Continuous Power Dissipation @ 25°C	for SOIC Package	675 mW ⁽³⁾
	for PDIP Package	900 mW ⁽⁴⁾
Storage Temperature Range		−65°C to +150°C
Lead Temperature (Soldering, 4 seconds)	260°C	
ESD Rating (HBM)		500V

(1) "Absolute Maximum Ratings" are those beyond which the safety of the device cannot be verified. They are not meant to imply that the device should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.

(2) If Military/Aerospace specified devices are required, please contact the TI Sales Office/Distributors for availability and specifications.

(3) Derate linearly @ 6.11 mW/°C to 400 mW at 70°C.

(4) Derate linearly at 5.56 mW/°C to 650 mW at 70°C.

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage, V _{CC}	4.75	5.25	V
Voltage at Any Bus Terminal (Separate or Common Mode)	-7	+12	V
Operating Free Air Temperature T _A	•	•	•
DS75176B	0	+70	°C
DS75176BT	-40	+85	°C
Differential Input Voltage, VID (1)	-12	+12	V

(1) Differential - Input/Output bus voltage is measured at the noninverting terminal A with respect to the inverting terminal B.

Electrical Characteristics ^{(1) (2)}

0°C \leq T_A \leq 70°C, 4.75V < V_{CC} < 5.25V unless otherwise specified

Symbol Parameter			Conditions	Min	Тур	Max	Units
V _{OD1}	Differential Driver Output Voltage (Unloaded)	I _O = 0				5	V
V _{OD2}	Differential Driver Output	See (Figure 2)	R = 50Ω; (RS-422) ⁽³⁾	2			V
Voltage (with Load)			R = 27Ω; (RS-485)	1.5			V
ΔV_{OD}	Change in Magnitude of Driver						
	Differential Output Voltage For					0.2	V
	Complementary Output States						
V _{OC}	Driver Common Mode Output Voltage	See (Figure 2)	R = 27Ω			2.0	V
$\Delta V_{OC} $	Change in Magnitude of Driver					3.0	v
	Common Mode Output Voltage					0.0	V
	For Complementary Output States					0.2	V

(1) All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise specified.

- (2) All typicals are given for $V_{CC} = 5V$ and $T_A = 25^{\circ}C$.
- (3) All worst case parameters for which this note is applied, must be increased by 10% for DS75176BT. The other parameters remain valid for -40° C < T_A < +85°C.

SNLS381C - JULY 1998 - REVISED APRIL 2013

www.ti.com

Electrical Characteristics ⁽¹⁾ (2) (continued)

0°C \leq T_A \leq 70°C, 4.75V < V_{CC}< 5.25V unless otherwise specified

Symbol	Paramet	er		Conditions	Min	Тур	Max	Units
V _{IH}	Input High Voltage				2			V
V _{IL}	Input Low Voltage						0.8	
V _{CL}	Input Clamp Voltage		<u>DI,</u> DE, RE , E	I _{IN} = −18 mA			-1.5	
I _{IL}	Input Low Current		, .	$V_{IL} = 0.4V$			-200	μA
I _{IH}	Input High Current			$V_{IH} = 2.4V$			20	μA
I _{IN}	Input Current	$DO/RI, \overline{DO}/\overline{RI}$ $V_{CC} = 0V \text{ or } 5.25V$		V _{IN} = 12V			+1.0	mA
			DE = 0V	$V_{IN} = -7V$			-0.8	mA
V _{TH}	Differential Input Thresh Receiver			$-7V \le V_{CM} \le + 12V$			+0.2	V
ΔV_{TH}	Receiver Input Hysteresi	S	$V_{CM} = 0V$			70		mV
V _{OH}	Receiver Output High Vo	oltage	I _{OH} = -400 μA	2.7			V	
V _{OL}	Output Low Voltage	RO	$I_{OL} = 16 \text{ mA}^{(3)}$			0.5	V	
I _{OZR}	OFF-State (High Impeda	ince)	$V_{CC} = Max$			±20	μA	
	Output Current at Receiv	/er	$0.4 V \leq V_O \leq 2.4 V$	$0.4V \le V_0 \le 2.4V$				
R _{IN}	Receiver Input Resistant	ce	$-7V \le V_{CM} \le +12V$		12			kΩ
I _{CC}	Supply Current		No Load ⁽³⁾	Driver Outputs Enabled			55	mA
				Driver Outputs Disabled			35	mA
I _{OSD}	Driver Short-Circuit		$V_0 = -7V^{(3)}$				-250	mA
	Output Current		$V_0 = +12V^{(3)}$				+250	mA
I _{OSR}	Receiver Short-Circuit		$V_0 = 0V$		-15		-85	mA
	Output Current							

Switching Characteristics

 $V_{CC} = 5.0V, T_A = 25^{\circ}C$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PLH}	Driver Input to Output	$R_{LDIFF} = 60\Omega$		12	22	ns
t _{PHL}	Driver Input to Output	$C_{L1} = C_{L2} = 100 \text{ pF}$		17	22	ns
t _r	Driver Rise Time	$R_{LDIFF} = 60\Omega$			18	ns
t _f	Driver Fall Time	$C_{L1} = C_{L2} = 100 \text{ pF}$			18	ns
		(Figure 4 and Figure 6)				
t _{ZH}	Driver Enable to Output High	C _L = 100 pF (Figure 5 and Figure 7) S1 Open		29	100	ns
t _{ZL}	Driver Enable to Output Low	C _L = 100 pF (Figure 5 and Figure 7) S2 Open		31	60	ns
t _{LZ}	Driver Disable Time from Low	C _L = 15 pF (Figure 5 and Figure 7) S2 Open		13	30	ns
t _{HZ}	Driver Disable Time from High	C _L = 15 pF (Figure 5 and Figure 7) S1 Open		19	200	ns
t _{PLH}	Receiver Input to Output	$C_L = 15 \text{ pF}$ (Figure 3 and Figure 8)		30	37	ns
t _{PHL}	Receiver Input to Output	S1 and S2 Closed		32	37	ns
t _{ZL}	Receiver Enable to Output Low	C _L = 15 pF (Figure 3 and Figure 9) S2 Open		15	20	ns
t _{ZH}	Receiver Enable to Output High	C _L = 15 pF (Figure 3 and Figure 9) S1 Open		11	20	ns
t _{LZ}	Receiver Disable from Low	C _L = 15 pF (Figure 3 and Figure 9) S2 Open		28	32	ns
t _{HZ}	Receiver Disable from High	C _L = 15 pF (Figure 3 and Figure 9) S1 Open		13	35	ns

Copyright © 1998–2013, Texas Instruments Incorporated

DS75176B, DS75176BT

Texas NSTRUMENTS

SNLS381C-JULY 1998-REVISED APRIL 2013

www.ti.com

AC TEST CIRCUITS

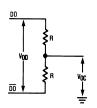
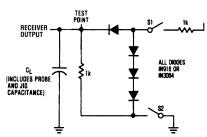
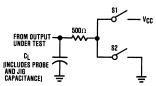



Figure 2.

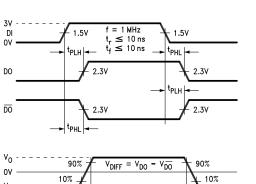
LOIFF = 60Ω 100pf


1000

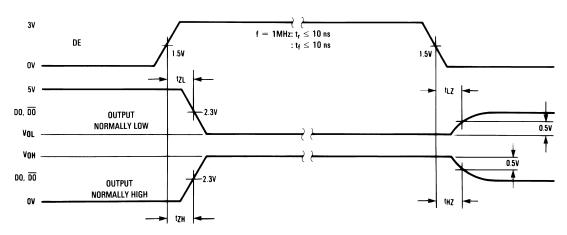
۷۵

Note: S1 and S2 of load circuit are closed except as otherwise mentioned.

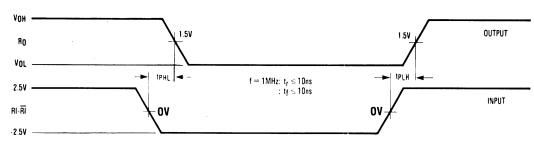
Figure 3.



Note: Unless otherwise specified the switches are closed.


Figure 5.

Switching Time Waveforms


4

www.ti.com

DS75176B, DS75176BT

SNLS381C -JULY 1998-REVISED APRIL 2013

Note: Differential input voltage may may be realized by grounding RI and pulsing RI between +2.5V and -2.5V

Figure 8. Receiver Propagation Delays

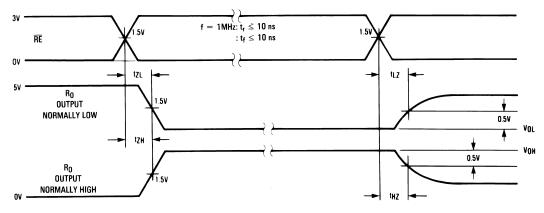


Figure 9. Receiver Enable and Disable Times

Function Tables

	Inputs		Line Condition	Out	puts
RE	DE DI			DO	DO
Х	1	1	No Fault	0	1
Х	1	0	No Fault	1	0
Х	0	Х	х	Z	Z
х	1	Х	Fault	Z	Z

Table 1. DS75176B Transmitting⁽¹⁾

X - Don't care condition Z - High impedance state (1)

Fault - Improper line conditons causing excessive power dissipation

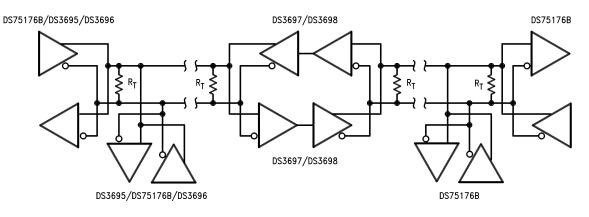
in the driver, such as shorts or bus contention situations **This is a fail safe condition

www.ti.com

SNLS381C-JULY 1998-REVISED APRIL 2013

Table 2. DS75176B Receiving⁽¹⁾

	Outputs		
RE	DE	RO	
0	0	≥ +0.2V	1
0	0	≤ -0.2V	0
0	0	Inputs Open**	1
1	0	Х	Z


(1)

X - Don't care condition Z - High impedance state

Fault — Improper line conditons causing excessive power dissipation in the driver, such as shorts or bus contention situations

**This is a fail safe condition

TYPICAL APPLICATION

6

Copyright © 1998–2013, Texas Instruments Incorporated

SNLS381C -JULY 1998-REVISED APRIL 2013

REVISION HISTORY

C	hanges from Revision B (April 2013) to Revision C	Page	
•	Changed layout of National Data Sheet to TI format	6	

	Texas
·Y	INSTRUMENTS

www.ti.com

CI	hanges from Revision B (April 2013) to Revision C
,	Changed layout of National Data Sheet to TI format

19-Mar-2015

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
DS75176BM	NRND	SOIC	D	8	95	TBD	Call TI	Call TI	0 to 70	DS751 76BM	
DS75176BM/NOPB	ACTIVE	SOIC	D	8	95	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	0 to 70	DS751 76BM	Samples
DS75176BMX	NRND	SOIC	D	8	2500	TBD	Call TI	Call TI	0 to 70	DS751 76BM	
DS75176BMX/NOPB	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	0 to 70	DS751 76BM	Samples
DS75176BN/NOPB	ACTIVE	PDIP	Р	8	40	Green (RoHS & no Sb/Br)	CU SN	Level-1-NA-UNLIM	0 to 70	DS75176BN	Samples
DS75176BTM	NRND	SOIC	D	8	95	TBD	Call TI	Call TI	-40 to 85	DS751 76BTM	
DS75176BTM/NOPB	ACTIVE	SOIC	D	8	95	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	DS751 76BTM	Samples
DS75176BTMX	NRND	SOIC	D	8	2500	TBD	Call TI	Call TI	-40 to 85	DS751 76BTM	
DS75176BTMX/NOPB	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	DS751 76BTM	Samples
DS75176BTN/NOPB	ACTIVE	PDIP	Р	8	40	Green (RoHS & no Sb/Br)	CU SN	Level-1-NA-UNLIM	-40 to 85	DS75176 BTN	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

19-Mar-2015

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

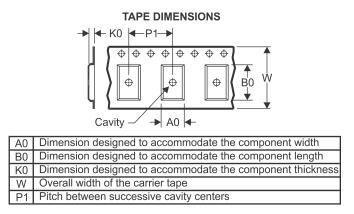
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

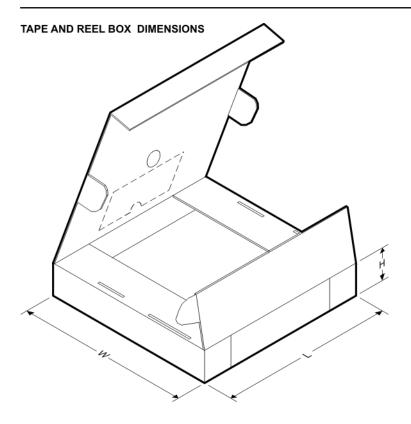

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
DS75176BMX	SOIC	D	8	2500	330.0	12.4	6.5	5.4	2.0	8.0	12.0	Q1
DS75176BMX/NOPB	SOIC	D	8	2500	330.0	12.4	6.5	5.4	2.0	8.0	12.0	Q1
DS75176BTMX	SOIC	D	8	2500	330.0	12.4	6.5	5.4	2.0	8.0	12.0	Q1
DS75176BTMX/NOPB	SOIC	D	8	2500	330.0	12.4	6.5	5.4	2.0	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

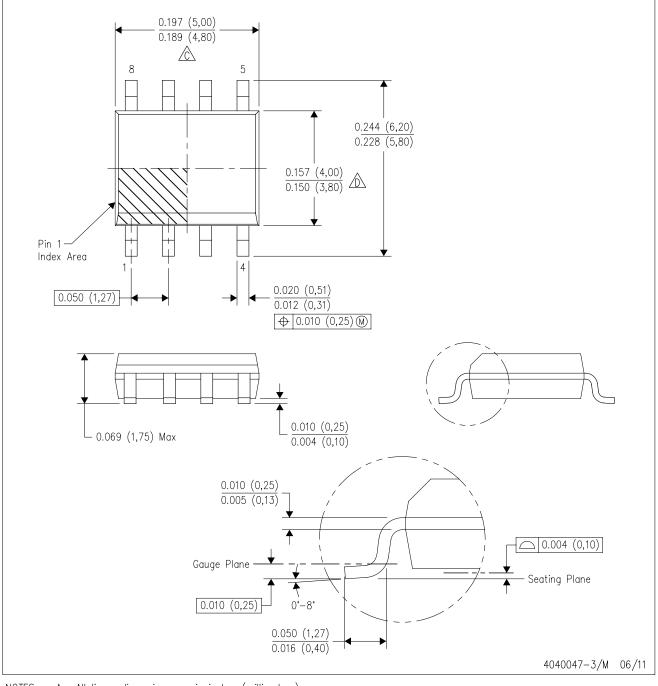
11-Oct-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
DS75176BMX	SOIC	D	8	2500	367.0	367.0	35.0
DS75176BMX/NOPB	SOIC	D	8	2500	367.0	367.0	35.0
DS75176BTMX	SOIC	D	8	2500	367.0	367.0	35.0
DS75176BTMX/NOPB	SOIC	D	8	2500	367.0	367.0	35.0

P(R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE



- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications			
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive		
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications		
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers		
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps		
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy		
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial		
Interface	interface.ti.com	Medical	www.ti.com/medical		
Logic	logic.ti.com	Security	www.ti.com/security		
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense		
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video		
RFID	www.ti-rfid.com				
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com		
Wireless Connectivity	www.ti.com/wirelessconnectivity				

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated